
Received February 22, 2021, accepted March 31, 2021, date of publication April 7, 2021, date of current version April 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3071517

On-Chip Error Detection Reusing Built-In
Self-Repair for Silicon Debug
HAYOUNG LEE , (Graduate Student Member, IEEE), HYUNGGOY OH,
AND SUNGHO KANG , (Senior Member, IEEE)
Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea

Corresponding author: Sungho Kang (shkang@yonsei.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2019R1A2C3011079).

ABSTRACT Post-silicon debug has become important with the increased complexity of circuit designs.
However, the increase in debug resource costs owing to improved observability has posed a major challenge.
To overcome this challenge, this study proposes on-chip error detection that reuses built-in self-repair
(BISR). The proposed method utilizes the components of BISR as storages of golden signatures and
comparators for error detection. Also, it detects error-suspect cycles more precisely by using parent and
child multiple-input signature registers (MISRs). In addition, it provides selective capture and store methods
that selectively capture error-suspect debug data in buffers and store them in the DRAM, respectively. The
experimental results of various debug cases demonstrate that the proposed method significantly reduces the
buffer size, DRAM usage, and debug time compared to previous methods.

INDEX TERMS Post-silicon debug, error detection, dynamic random-access memory (DRAM) usage,
debug time, area overhead, built-in self-repair (BISR), multiple-input signature register (MISR), three-
dimensional integrated circuit (3D-IC).

I. INTRODUCTION
With the advance of very large scale integration technology,
the density and capacity of integrated circuits has rapidly
increased. In addition, to address the increased demands for
integration capabilities, three-dimensional integrated circuits
(3D-ICs) have been introduced by integrating a system-on-
chip (SoC) die and multiple dynamic random-access mem-
ory (DRAM) dice with short and dense through-silicon vias
(TSVs) [1]–[3]. However, since many components need to
be integrated, their reliability is one of the critical issues.
To improve the reliability, manufacturing circuit tests using
a scan chain or built-in self-test (BIST) are performed to
detect faults that may appear during physical implementation.
In addition, the practical implementation of built-in self-
repair (BISR), which has been widely researched for memory
test and repair even before the introduction of the 3D-IC, has
been carefully considered for realizing yield improvement
and test cost reduction. Its use is possible because the SoC
die in the 3D-IC has a large redundant area as it does not
have memories owing to the use of multiple DRAM dice.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Huo .

Nonetheless, it is challenging to verify or validate these com-
ponents completely and to reduce the number of errors that
remain undetected during pre-silicon verification and manu-
facturing tests owing to the growing complexity of 3D-ICs.
Therefore, post-silicon debug has become an important step
in the circuit implementation flow [4], [5].

The main objective of post-silicon debug is detecting
errors such as logical, timing, and electrical errors in the
first silicon to prevent a cost increase caused by a silicon
respin. To observe the maximum feasible internal states of
the circuits, the scan-based silicon debug method has been
introduced [6]–[9]. It provides a low-cost design for debug
(DfD) architecture that reuses scan chains, which are com-
monly used in manufacturing tests; moreover, it enables to
observe a number of internal states that are concatenated by
the scan chain. However, the circuit operation needs to be
paused to perform a scan dump. Because errors can appear
in circuit states during thousands of clock cycles [10], it is
challenging to detect these errors in these run-stop debug
methods. Therefore, real-time tracing-based debug meth-
ods have been introduced. The trace buffer-based silicon
debug method is commonly used to observe real-time debug
data without pausing the functional operation [5], [11]–[21].

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 56443

https://orcid.org/0000-0002-6868-0829
https://orcid.org/0000-0002-7093-2095
https://orcid.org/0000-0003-3924-227X


H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

It requires additional on-chip buffers and an embedded logic
analyzer to manage trigger points, real-time debug data, etc.
The trace buffer-based method is effective for observing
real-time debug data for the post-silicon debug; however,
its main challenge is the limited observability because the
trace buffer size is limited, and it results in DfD hardware
overhead. To increase the trace buffer observation, state
restoration methods [12], [13] and debug data compression
techniques [14]–[18] have been introduced. Nonetheless,
trace buffer-based methods still require an exceptionally long
debug time. To overcome this limitation, a DRAM-based
debugmethod has been introduced [22]–[24]. In [22], a debug
method using external DRAM was introduced and applied to
an FPGA prototype; moreover, it will be made available to
users of DDR3 and Virtex R©-7 or DDR4 and UltraScale R©,
both on proFPGA hardware. This method enables remark-
able improvements in the observability of FPGA prototypes.
In [23], a massive signal tracing method using an on-chip
DRAM, which can be integrated in the 3D-IC, has been intro-
duced. This method detects erroneous debug intervals using a
multiple-input signature register (MISR) and stores the error-
suspect debug data dump in the DRAM through the trace
and shadow buffer. In [24], a DRAM-based silicon debug
method for multiple identical cores has been introduced. This
method exploits the fact that the error-free interval data of
a core can be applied for the erroneous data of other cores
as the golden data. These DRAM-based methods overcome
the limitation of trace buffer-based methods. However, they
still require substantial debug resources such as buffers and
DRAM usage because of the communication between the
DRAM and the DfD.

This study proposes on-chip error detection reusing BISR,
which is utilized during memory test and repair in manufac-
turing, for a cycle-accurate deterministic debug environment
for a 3D-IC. It is reasonable to assume that BISR can be
reused for 3D-IC silicon debug, because the practical imple-
mentation of BISR has been highly considered for improving
the yield and reducing the test cost of 3D-IC. However,
if BIRA hardware exists in 2D-ICs, the proposed method
can be applied for the 2D-ICs. In addition, as the proposed
silicon debug method reuses BISR, the major problem of
BISR being unnecessary after manufacturing can be solved.
This is a useful advantage becausemany studies have failed to
solve this problem. The proposed silicon debug method using
such conventional BISRs is aimed to improving the quality
of error detection by using shorter debug interval detec-
tion and reducing the buffer size, DRAM usage, and total
debug time. In addition, it is important to note that a cycle-
accurate deterministic debug environment is not an imprac-
tical assumption [15]–[18], [23]–[28]. Typically, the silicon
debug comprises two phases: nondeterministic and determin-
istic. In the nondeterministic phase, bug occurrences cannot
be reproduced because of asynchronous interfaces, interrupts
from peripherals, or mixed signal circuitry. In this phase,
themain objective is to determine how to regulate the failures.
Many studies have aimed to solve this problem [25]–[28].

In the deterministic phase, failures can be regulated by using
the abovementioned methods. The main objective of the
deterministic phase is to detect the root cause in terms of
space (erroneous logic) and time (exact clock cycle when the
debug occurs) information as rapidly as possible by using
golden data calculated through simulations using the behav-
ioral model of the circuit [15]–[18]. Therefore, the proposed
method focuses on a cycle-accurate deterministic debug envi-
ronment. The main contributions of this paper are as follows:

1) To reduce the debug resource cost, the proposed
method reuses BISR. In addition, new architectural
features, which canmake BISR used for memory repair
and silicon debug, are proposed for the DRAM-based
DfD.

2) A DRAM-based on-chip error detection method using
parent and child MISRs is proposed. As the pre-
calculated golden data are stored in the reused BISR,
the erroneous debug data can be detected more pre-
cisely. In addition, selective debug data capture and
store methods are proposed.

3) The DfD operation by reusing BISR is introduced to
perform DRAM-based on-chip error detection. It over-
comes the challenge of communication between the
DfD and the DRAM,which is caused by using the com-
ponents of BISR as buffers. Also, it reduces the buffer
size, DRAM usage, and total debug time.

The remainder of this paper is organized as follows:
Section II discusses related works. Section III discusses the
motivation for the proposed method and the proposed debug
scheme. Section IV presents experimental results for various
debug cases. Finally, Section V presents the conclusions of
this study.

II. RELATED WORKS
To reduce the silicon debug cost, previous studies have intro-
duced debug schemes that reuse test resources or existing
architectural elements [6]–[9], [29]–[31]. These studies reuse
test architectures such as the scan chain, test access mech-
anisms, test bus, IEEE 1149.1, 1500 test wrapper, and/or
caches. Since these resources are not utilized after the man-
ufacturing process, debug schemes that reuse test architec-
tures are highly cost-effective in that they can reduce the
unavoidable increase in debug resources. Similarly, the pro-
posed method reuses BISR hardware that is not utilized after
manufacturing process. In this section, the 3D memory test
and repair using BISR and the DRAM-based silicon debug
are briefly described.

A. 3D MEMORY TEST AND REPAIR USING BISR
Typically, a 3D-IC consists of an SoC die and multiple
DRAM dice. To improve the DRAM yield, the memory test
and repair must be performed during the chip implementation
process [32]. However, the DRAM test and repair using
only external automatic test equipment incurs high test costs
because memory tests and repairs in both pre- and post-bond
are required, and I/O resources are limited. To overcome this

56444 VOLUME 9, 2021



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

FIGURE 1. Block diagram of memory test and repair using BISR for 3D-IC.

challenge, many studies have investigated BISR [33]–[45].
Fig. 1 shows an overview of the memory test and repair using
BISR for the 3D-IC. Typically, BISR consists of the mem-
ory BIST and built-in redundancy analysis (BIRA). First,
the memory BIST is performed to generate test patterns for
memories on each DRAM die and to compare test responses
with golden data for identifying the fault sites. Then, the fault
information of the memory is sent to BIRA and collected
in the memory fault storing logic of BIRA. Simultaneously,
the redundancy analyzer of BIRA determines the memory
repair solution autonomously. BISR works on the memory
test and repair during manufacturing to improve the yield.
Therefore, it can be reused after the memory test and repair to
reduce the silicon debug resource cost. In the BISR hardware,
the proposed method reuses the memory fault storing logic
that constitutes a large part of the BISR because it typi-
cally consists of content addressable memories (CAMs) since
CAM structure has been introduced [46]. The main reason for
adopting the CAM structure for the memory repair is that it
supports rapid address comparisons between incoming new
faults and previously restored faults and stores the informa-
tion of the faults in a cycle [37]–[41], [43]. Thus, the char-
acteristics of the memory fault storing logic are suitable for
silicon debug.

B. DRAM-BASED SILICON DEBUG
The main concept of the DRAM-based method is to transfer
the debug data from buffers to a larger on-chip DRAM.
Fig. 2(a) shows an overview of the DRAM-based silicon
debug process. In [23], only the erroneous interval debug
data are captured using the MISR signature. First, golden
MISR signatures are generated to detect whether the debug
interval is erroneous or not; moreover, they are stored in the
DRAM using a trace port such as JTAG. After the debug

FIGURE 2. The previous DRAM-based silicon debug: (a) block diagram of
debug process and (b) example of debug process.

runs, the debug data are captured in the trace buffer and
compressed by MISRs. At the end of the interval, the debug
data are analyzed by comparing the MISR signature and the
golden signature. Through this debug process, only the debug
data of error-suspect intervals are captured in the DRAM.
Fig. 2(b) shows an example of the application of the previous
DRAM-based method. The main challenge in the previous
debug method is that the debug data captured in the buffers
are almost entirely error-free, although the corresponding
debug session is error-suspect. This is because the error
rate of the post-silicon debug is very low. In addition, it is
necessary to increase the buffer size and the debug interval
detection length to perform the DRAM-based debug method;
this is because the DRAM may operate at a lower frequency
compared to the debug data sampling frequency. In other
words, the debug expense can be reduced significantly by
reducing the requirement of debug resources for these error-
free debug data and the bottleneck in the communication with
the DRAM.

III. PROPOSED DEBUG SCHEME
In this section, the proposed debug scheme that reuses BISR
resources is described. First, the motivation for developing
the proposed method is discussed by comparing the proposed
method to the previousmethod. Then, the on-chip error detec-
tion and the selective debug data capture and store methods
using BISR are described. Subsequently, the DfD opera-
tion considering the DRAM-based silicon debug method is
demonstrated. Finally, the proposed DfD architecture that

VOLUME 9, 2021 56445



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

TABLE 1. Notations for debug experiments.

reuses BISR is described to explain how to reuse BISR.
For ready reference, the notations used herein are presented
in Table 1; these notations are similar to those used in [23].

A. MOTIVATION
To overcome the challenges faced in the silicon debug pro-
cesses for 3D-ICs, on-chip error detection method that reuses
BISR is proposed in this paper. Notably, the proposed method
can be adapted for 3D-ICs, such as the hybrid memory
cube (HMC) system [1], TSMC chip on wafer on substrate
(CoWosTM) [2], or HBM 2.5D system in package (SiP) [3].
The proposed method imparts several advantages to the
DRAM-based silicon debug method. First, BISR is practi-
cally suitable for the silicon debug on-chip error detection
method because the memory fault storing logic of BISR
supports the data comparison required for error detection in
a clock given that it is typically constructed with the CAM
structure. In addition, the size of the buffers used to communi-
cate with the DRAM can be reduced because the CAM-based
memory fault storing logic can be used as buffers pipelining
the communication with the DRAM. Consequently, the com-
pression quality can be enhanced for error detection because
the debug interval length can be reduced. An overview of the
proposed DfD scheme that reuses BISR is shown in Fig. 3(a).
As shown, the memory fault storing logic is included in
the proposed method. Moreover, the BISR and DfD opera-
tions are configured through an external port, for instance,
JTAG. Fig. 3(b) shows an example of the proposed method.
In Fig. 3(b), DI and DS represent the debug interval and
debug session, respectively. First, the parent MISR signature
detects the erroneous interval. Simultaneously, the debug data
are periodically compressed to detect the erroneous debug
cycles in each session by using the child MISR signatures.
These signatures are compared to the golden signatures stored
in CAMs. After the debug data are captured in the trace
buffer, the erroneous debug data are selectively captured in
the shadow buffer and stored in the DRAM. This process

FIGURE 3. The proposed silicon debug. (a) Block diagram of the proposed
debug process (b) Example of the proposed debug process.

reduces the use of debug resources, such as buffer size and
DRAM usage. The total debug time, which is strongly related
to DRAM usage, can be reduced as well.

B. DRAM-BASED ON-CHIP ERROR DETECTION AND
SELECTIVE DEBUG DATA CAPTURE AND
STORE METHOD
To detect error cycles more precisely, on-chip error detection
is performed using hierarchical MISRs during the debug
experiment. In the trace-buffer-based silicon debug method,
error detection methods that use MISRs have been intro-
duced [15]–[18]. However, the main difference between
the existing trace-buffer-based methods and the proposed
method is whether the error data detection and capture pro-
cess are performed in real-time. In the trace-buffer-based
methods, multiple debug runs are required to detect and
capture the error data because of the limited trace buffer
size. However, these processes are conducted simultaneously
during only one debug experimental run with the proposed
selective debug data capture module and tag bit compres-
sion in the proposed method because of the reuse of CAMs

56446 VOLUME 9, 2021



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

FIGURE 4. Examples of on-chip error detection in the debug case where (a) debug interval in error-free, (b) debug interval is error-suspect, and (c) error
cycle is detected using PTs and CTs.

in BISR. In addition, the hardware area overhead is neg-
ligible because of BISR reuse, even though the proposed
method requires only one debug run, as demonstrated in
Section III-D. Consequently, the proposed method provides
a 3D-IC silicon debug solution with on-chip error detection
by using MISRs and BISR.

To realize on-chip error detection using the CAMs in
BISR and the DfD operation, a debug scheduling algorithm
is introduced (Algorithm 1). Before the debug experiment,
the golden signatures are stored in the CAMs after being
transferred from the DRAM. To schedule the period of the
golden signatures, this algorithm determines the trace buffer
depth (M ), total number of debug sessions in cycles (DS),
and total number of debug intervals in cycles (DI) by cal-
culating the CAM size (lines 1–5). In the existing DRAM-
based method,DI is determined to be larger than the memory
access latency because of the speed between the DRAM and
the circuit under debug (CUD). Then, DS and M are deter-
mined similarly as DI. Unlike the previous method, DI can
be reduced in the proposed method because the CAMs can
be used as buffers during communication with the DRAM.
Thus,M can be reduced as well. The proposed DfD operation
considering the communication between the DRAM and DfD
is introduced and discussed in Section III-C. In contrast to
the method in the previous work, two types of golden signa-
tures are generated in the proposed method. First, the golden
debug data are sequentially compressed to detect whether
the corresponding debug interval of the debug session is
erroneous. These golden signatures are called golden parent
signatures (GPS) in this paper. In addition, the golden debug
data are periodically compressed to detect the specific error

cycles during the debug session. These golden signatures are
called golden child signatures (GCS) in this paper. These two
golden signatures, namely GPS and GCS, are stored in the
DRAM and CAMs during the debug experiment to perform
on-chip error detection.

After the start of the debug process, the generated debug
data are traced in the trace buffer during the DI cycles. While
the debug data are captured in the trace buffer, the debug
interval data of each DI cycle are compressed by MISR to
detect whether they are erroneous (line 14). In this paper, this
MISR for detecting the debug interval is called the parent
MISR, and the signature generated by the parent MISR is
called the parent signature (PS). In each DI cycle, the PS
is compared to the corresponding GPS by using CAMs in
a cycle, and the comparison result is obtained as a bit. This
bit is called the parent tag bit (PT). If PT is one, the debug
data in the trace buffer are captured by the shadow buffer.
If not, they are bypassed, and the next debug data are over-
written in the trace buffer (lines 13–19). To detect the error
cycles, the debug data are periodically compressed by other
MISRs during PS generation (line 21). In this paper, these
MISRs for detecting the error cycles are called child MISRs,
and the signatures generated by the child MISRs are called
child signatures (CSs). These CSs are generated completely
during the last DI of DS. Moreover, they are compared to the
correspondingGCSs using CAMs by the sequence of a cycle,
and the comparison result is obtained as a bit (lines 22–26).
This bit is called the child tag bit (CT) in this paper.

Fig. 4 illustrates examples of the on-chip error detection
method for each debug case. For clarity, a simple debug case
is used, where DS is 12, DI and M are four, I is 3, and

VOLUME 9, 2021 56447



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

Algorithm 1 Scheduling of the Whole Debug Experiment
Input: I , SE, L, DRAM access latency,
Output:M , TCUD, DUCUD
1 Calculate p, c using L;
2 Update I , SE using p, c;
3 DS >= DRAM access latency;
4 DI = DS/I ; M = DI; Update # of SBs;
5 Generate GPSs and GCSs and transfer to the DRAM;
6 Run debug experiment
7 i = 0;
8 while (Debug run) do
9 for each (DSi) do
10 j = 1; k = 1;
11 for each (DIij) do
12 Capture the debug data to the TB;
13 Generate PSij;
14 if (PSij == GPSij) then
15 PTij = 0;
16 else
17 PTij = 1;
18 Capture the debug data to the SB;
19 while (k <= SE) do
20 generate CSik ;
21 if (j == I ) then
22 if (CSik == GCSik ) then
23 CTik = 0;
24 else
25 CTik = 1;
26 k ++;
27 end
28 k = 1; j++;
29 end
30 Store the debug data from the SB to the DRAM;
31 Load the GSs from the DRAM to the GRs;
32 end
33 end
34 Run post-debug analysis; Calculate TCUD andDUCUD;
35 return TCUD and DUCUD;

SE is 4. In this case, it is assumed that the 7th cycle is the
error cycle. After the start of the debug process, the debug
data are captured to the trace buffer. Simultaneously, they
are compressed using the parent MISR. After the PS1 is
generated, it is compared with theGPS1 in CAMs, and PT1 is
generated. In this case,PT1 is zero because this debug interval
is error-free. That is, the debug data of the first DI (first–
fourth cycles) are bypassed. Meanwhile, the debug data are
periodically compressed by the child MISRs to generate CSs,
as shown in Fig. 4(a). After PT1 is generated, the subsequent
debug data are overwritten in the trace buffer and compressed
similarly. However, PT2 is one because the corresponding
debug interval is error-suspect. Consequently, the debug data
of the second DI cycle (fifth–eight cycles) are captured
to the shadow buffer, as shown in Fig. 4(b). In the final

DI (cycles 9–12), theCSs and PS3 are generated, as described
in Fig. 4(c). In the ninth cycle,CS1 is generated and compared
with GCS1 using CAMs. Moreover, CT1 is generated. In this
case, CT1 is zero because the first, fifth, and ninth cycles
are not error cycles. In this manner, the PTs and CTs are
completely generated in the 12th cycle. Furthermore, it can
be detected that the 7th cycle is the error cycle. Then, the
subsequent debug data are detected on the chip similarly.

FIGURE 5. Examples of (a) selective capture module and (b) selective
debug data capture process.

To capture the erroneous data selectively, the selective
capture module is introduced. The selective capture module
for the above example is illustrated in Fig. 5(a). CE is the
capture enable signal for the shadow buffer. Each of CEi and
CEij are generated using PTi and CTi. CEi and CEij are used
to select the debug data captured in the shadow buffer and
DRAM. In this example, CE2 is one, whereas CE1 and CE3
are high impedance. That is, only the debug data of the second
DI are captured in the shadow buffer, whereas the debug data
of the other cycles are bypassed (lines 15–19). After the debug
data are captured in the shadow buffer, the erroneous data are
captured in the DRAM by using the DRAM controller and
CEij signals. In this case, only the debug data of the seventh
cycle are stored in the DRAM (line 31) because CE23 is one,
and the others (CE21, CE22, and CE24) are zero, as shown

56448 VOLUME 9, 2021



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

in Fig. 5(b). Consequently, in this example, DRAM usage
is reduced by one-twelfth due to the on-chip error detection
and selective debug capture method. Moreover, in this simple
example, the debug data are captured in cycles. However, in
practical debug cases, the clustered debug data detected by
parent and child signatures are selectively captured because
the observation window (N ) is extremely long. The quality
of error detection is determined by the size of the reused
CAMs in BISR, as demonstrated with various debug cases
in Section IV. After the end of the debug experiment, the
captured debug data are unloaded to an external workstation,
and a post-debug analysis is performed with the result of on-
chip error detection. After completion of the debug process,
TCUD and DUCUD are calculated and returned at the end of
the algorithm (line 35). Then, the subsequent debug plan is
performed similarly.

C. DfD OPERATIONS OF DRAM-BASED DEBUG METHODS
In the DRAM-based silicon debug method, it is important to
regulate communication with the DRAM during functional
operation [22]–[24]. First, a specific DRAM area must be
allocated for debug data storage. This is called DRAM usage
in this paper. The DRAM usages of the previous and pro-
posed method are discussed in Section IV. Then, the DRAM
access operation from the DfD module must be scheduled
to prevent interference with the debug experiment. To adapt
this operation, adequate sizes of the two buffers (trace buffer
and shadow buffer) is required in the DRAM-based debug
method. Typically, the size of DS should be larger than the
memory read and write latency. DI is equal to DS in the
previous method [23] because of the memory read latency for
loading the golden signature to the golden register. Thus, M
should be equal to DI for capturing the debug data during DI.
During DS (DI), the debug data of the corresponding debug
interval are captured in the trace buffer. If the corresponding
interval is erroneous, they are captured to the shadow buffer.
Subsequently, they are stored in the DRAM. This operation
is described in Fig. 6(a).

Meanwhile, in the proposed method, the golden signatures
in the DRAM can be pipelined to the CAMs in BISR. It is
possible because the CAMs usually consist of multiple parts
for efficient memory fault storing processes during memory
repair processes. An example of the proposed method is
shown in Fig. 6(b). In this example, I is 3, and SE is 4. The
GPSs are pipelined to the first part, which can be called the
parent CAM, at the start of each debug interval. The GCSs
are pipelined to the second part, which can be called the child
CAM, during the intermediate debug intervals because the
CSs are compared to the GCSs in the last debug interval.
By using this pipeline operation, DI can be reduced while
maintaining the memory access latency. As a result,M can be
reduced because DI is reduced. Similarly, as in the previous
method, the debug data generated during DI are captured
in the trace buffer, and the erroneous interval debug data
are selectively captured in the shadow buffer by using PT.
In addition, the debug data are periodically compressed to

FIGURE 6. Examples of DfD module operation during DRAM-based silicon
debug. (a) Previous method and (b) proposed method.

detect the error cycles of each DI through child MISRs.
During the final DI of DS, CTs are generated, and the
error data can be detected more precisely, as discussed in
Section III-B. The error-suspect data in the shadow buffer
are stored in the DRAM, and the amount of stored data are
reduced compared to that in the previous method because of
the selective capture and store method.

D. PROPOSED DfD REUSING BISR
The hardware architecture of the proposed DfD that reuses
BISR is illustrated in Fig. 3(a). The BISR and DfD operations
are configured through an external port, for instance, JTAG.
To handle each process, an additional controller is required,
as described in Fig. 7(a). A mode register is implemented
to determine the current state. Because the memory repair
process is typically carried out before the silicon debug
process in chip validation, the mode register is configured
such that the current state is the repair phase at first. During
the memory repair process, the CAMs and the redundancy
analyzer are regulated by the existing BISR controller. After
the repair process, the mode register changes the current state
in the debug phase. During silicon debug,MISRs are required
to generate real-time signatures for on-chip error detection.
To perform on-chip error detection during the debug exper-
iment, the golden MISR signatures should be generated by
conducting behavioral simulations or emulations on an FPGA
board during the configuration step.

In each mode, the address size of the CAMs is calculated
using the counter register. Moreover, the address generator is

VOLUME 9, 2021 56449



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

FIGURE 7. Examples of reusing BISR structures. (a) Example of controller
for the proposed method. (b) Example of reused CAM structure.

used to adapt the precise size of data for CAMs. These overall
operations are regulated by the finite state machine (FSM).
In addition, the DfD controller is used for communication
between the DRAM controller and the FSM because the
golden signatures in theDRAMshould be stored in the CAMs
during the debug process. The FSM computes the debug
cycles and regulates the data transfer between the CAMs and
the DRAM. To reuse the CAMs for the golden signatures
appropriately, it is important to generate the golden signatures
in accordance with the size of the CAMs. Typically, CAMs
consist of multiple parts. In Fig. 7(b), examples of CAM
structures for BRANCH [37] and the proposed method are
illustrated. According to [37], the memory fault storing logic
of BRANCH consists of CAMs, and it is used for a J × K
memory block with Rs spare rows and Cs spare columns.
The size of the parent CAM is (3 + log2(JK))(Rs + Cs)
while that of the child CAM is (2 + log2{(max(J ,K ))(Rs +
Cs)})(Rs(Cs − 1) + Cs(Rs − 1)). In case of the proposed
method, the required size of the golden parent (child) sig-
nature is 1 + L + log2I (SE). In this example, p and c are
calculated as

Pmax

=
(3+log2(JK ))(Rs + Cs)

1+ L + log2I
(1)

Cmax

=
(2+log2{(max(J ,K ))(Rs+Cs)})(Rs(Cs−1)+Cs(Rs−1))

1+ L + log2SE
(2)

where Pmax and Cmax denote the maximum numbers of
golden signatures during the debug session, and they should
be greater than I and SE, respectively. However, as memory
faults can occur on all memory cells, all faulty memory
addresses should be stored in CAMs for memory repair.
Therefore, CAMs are used in spite of large area overhead.
Furthermore, the size of CAMs for memory repair is in
proportion to Rs and Cs for memory repair, and both Rs and
Cs are usually larger than 2 since the density and capacity
of memory highly increases. On the other hand, the size of
CAMs for the proposed silicon debug can be decided by L,
I and SE. L is a small value compared to the total size of
CAMs for memory repair and, can be reduced using a spatial
compressor (e.g., an XOR tree [15] and [23]). Furthermore,
only if I and SE are set tomore than or equal to 2, the proposed
method can be applied. However, as the size of CAMs for
memory repair is very large, Pmax and Cmax can also be very
large even when I and SE are set to quite large values. For this
reason, as the size of CAMs for memory repair is enough to
be reused for the proposedmethod, it is not a problem to apply
the proposed method. BRANCH is exemplified because it
is the representative BIRA method. The proposed method
that reuses BISR can similarly be adapted to any BISR.
The golden signatures are required to perform on-chip error
detection, while the debug data are captured in the trace
buffer. The result of on-chip error detection is obtained as a bit
(where one indicates a failure and zero indicates the absence
of failure). During the debug experiment, the erroneous data
are selectively captured in the shadow buffer and stored in
the DRAM by using the tag bits. Then, the subsequent debug
data are captured in the trace buffer, and the subsequent
golden signatures are transferred from the DRAM to CAMs
and stored in CAMs. After the end of the debug process,
the validation process ends if the CUD satisfies the product
release qualification.

IV. EXPERIMENTAL RESULTS
This section discusses the experimental results in terms of
DRAM usage, debug time, and hardware area overhead to
describe the benefits of the proposed silicon debug method
that reuses CAMs in BISR. In the experiments, DRAM-
based silicon debug methods [22] and [23] are used for fair
comparisons. Although several silicon debug methods have
been proposed after the silicon debug methods [22] and [23],
they are not the DRAM-based silicon debug method but the
trace buffer-based silicon debug method. Furthermore, there
is no study on the DRAM-based silicon debug method after
then. It is because the trace buffer-based silicon debugmethod
is widely used for silicon debug. However, if the advantages
of the DRAM-based silicon debug method are highly consid-
ered, it can also be widely used in the future. It is reasonable
since three-dimensional integrated circuits (3D-ICs) have
been introduced by integrating a system-on-chip (SoC) die
and multiple dynamic random-access memory (DRAM) dice
with short and dense through-silicon vias (TSVs). For this
reason, we progressed experiments using other DRAM-based

56450 VOLUME 9, 2021



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

TABLE 2. DRAM usage and debug time comparison with different error rates.

silicon debug methods, [20] and [21]. The experimental
results are presented for Ambercore, the ARM-based proces-
sor design, [47] and the CPU core in OpenSPARC T2 [48].
To implement DRAM-based debug methods, the CAMs in
BISR, buffers, and DRAM are modeled as Verilog modules.
The errors in the silicon debug process are randomly injected
into the CUD to reproduce misbehavior according to various
error rates. A 32-bit data bus is used in the ARM-based
design, and a 64-bit data bus is used for the CPU core in
OpenSPARC T2. It is assumed that the data bus is utilized
for trace signal selection like a lot of related methods.

A. DRAM USAGE AND DEBUG TIME
Table 2 presents the DRAM usages and debug times
of the DRAM-based conventional method [22], previous
method [23], and proposed method in the debug experiment,
where N is 2M cycles. As discussed previously, I is the
number of GPS, and SE is the number of GCS, and they are
determined by calculating the size of the CAMs in BISR.
It is determined from the memory and row (column) spare
number, Rs (Cs). Thus, I and SE are determined using the
assumption of various BISR methods. DS indicates debug
session, and it is determined by the DRAM read and write
latency. DRAMusage is calculated as described in [24]. First,
the DRAM usage of the conventional method is calculated as
follows:

DU conv = L × N (3)

where L is the number of trace signals. Because the error
detection process is not executed, all of the debug data are
stored in the DRAM in the conventional method.

In the previous method, the error session detection process
is performed. First, the expectation of the number of erro-
neous sessions is calculated as follows:

PDS = (1− (1− p))DS (4)

E[X ] = PDS
N
DS

(5)

where p indicates the average probability of occurrence of
every cycle error, PDS indicates the error session probability,
and E[X ] indicates the expected value as the number of erro-
neous sessions. Given that the previous method only stores
the debug data of the erroneous sessions, the DRAM usage
of the previous method is calculated as follows:

DUprev = E [X ] (S + L × DS)+ L
N
DS

(6)

where S is the size of the time stamp that identifies the
corresponding error interval, and L × N/DS is the number
of golden MISR signatures stored in the DRAM.

In the proposed method, error detection is performed using
the parent and child MISRs. The number of error-suspect
cycles (ESC) in the kth session is calculated as follows:

PPT i = (1− (1− p))
DS
I (i = 1, 2, . . . , I) (7)

PCT j = (1− (1− p))
DS
SE (j = 1, 2, . . . ,SE) (8)

ESCk = ∪
I
i Cand{PS i} × PPT i ∩ ∪

SE
i Cand {CS i} × PCT i

(9)

where PPTi(PCTi) is the probability of PSi(CSi) being erro-
neous, which means PTi(CTi) is 1, and Cand{PSi}({CSi})
indicates the cycle candidates of each signature. As a result,

VOLUME 9, 2021 56451



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

the DRAM usage of the proposed method can be calculated
as follows:

DUprop = E [X ]× S +
∑N/DS

1
ESCk × L + (L + 1)

×
N (I + SE)

DS
(10)

where (L + 1) × N(I + SE)/DS is the number of golden
signatures (GPS and GCS) and tag bits (PT and CT) stored
in the DRAM.

To calculate the debug execution time, the concepts of
on-chip sampling and communication time are used. The
on-chip sampling time is related to the number of clock
cycles elapsed between the trigger point and termination of
the debug experiment. In the DRAM-based debug method,
the sampling time is N cycles because the debug data can be
stored in the DRAM during one debug run. The communica-
tion time is the time during which the stored debug data are
offloaded through the JTAG interface. Typically, the speed of
the JTAG interface is relatively lower than that of the CUD.
In this experiment, it is assumed that the speed ratio between
the CUD and JTAG is 10. In case of the debug time for the
DRAM-based method, the debug time is strongly related to
the sampling time when the error rate is low. Meanwhile, the
communication time dominates the total debug time as the
error rate increases. This debug experiment is performed
with the different error rates presented in the second column.
The error rates are computed as the number of erroneous
cycles divided byN . The third and fourth columns present the
DRAM usage (MB) and debug time (M cycles), respectively,
of the conventional, previous, and proposed methods.

As illustrated in Table 2, the DRAM usage of the con-
ventional method is high because all the debug data are
stored in the DRAM. This is because the error detection in
the conventional method is not performed during the debug
experiment. Also, the debug time in the conventional method
is long by the same reason. In contrast, the DRAM usages
of the previous and proposed method are lower than those
of the conventional method. Moreover, the debug times of
the previous and proposed method are shorter than those of
the conventional method because the on-chip error detection
is performed during the debug experiment. In [23], only the
debug data of the error-suspect intervals are stored in the
DRAM. It means that the DRAM usage and debug time
decrease with reduction of error rate. Moreover, the DRAM
usage and debug time more decrease as DS decreases.
However, the error detection quality of the previous method
decreases significantly as DS increases (the error rate is
approximately 0.5% or more). In addition, when the error rate
is approximately 1%, the DRAM usage and debug time of the
previous method are saturated to a similar extent as that of
the conventional method because almost all of the intervals
are error-suspect. In contrast, although the DRAM usage and
debug time of the proposed method increase as DS and the
error rate increase, the DRAM usage of the proposed method
is always less than that of the previous method. Moreover,
the debug time decreases correspondingly compared to that of

the previous method. For example, compared to the previous
method, the DRAM usage and debug time reduction ratio
of the proposed method are approximately 46% in [47] and
36% of that in [48] for the least effective debug case, where
DS is 1,024 and the error rate is approximately 1%. Thus,
the proposed method can overcome the limitations of the
previous method, where the DRAM usage and debug time
increase significantly as the error rate and DS increase.

As discussed previously, a specific DRAM area should
be allocated for the silicon debug. The observation window
(N ) of the CUDs can be limited by this DRAM area. This
assumption is practical because a large number of CUDsmust
be debugged during the post-silicon debug process [4]. For
example, the DRAM area required in [48] is approximately
4 GB when the conventional DRAM method is used and
the number of CUDs is 32. If the allocated DRAM area is
smaller than 4 GB, the number of cores should be reduced to
satisfy the DRAM specification. As a result, DRAM usage is
strongly related to N . Fig. 8 shows the performance compar-
ison of the previous method [23] and the proposed method
when length of observation window in cycles (N ) is 2M
cycles, debug session in cycles (DS) is 256, and the error dis-
tribution is uniform. In Fig. 8, the conventional method [24] is
regarded as the basis for comparison since it is a cornerstone
method for DRAM-based silicon debug. Fig. 8(a) shows the
DRAM usage reduction ratio of the previous method and
the proposed method compared to the conventional method.
As shown, the DRAM usage reduction ratio of the proposed
method is always larger than that of the previous method. It is
because as the proposed method can divide DS into several
debug interval in cycles (DIs), the size of erroneous inter-
val debug data which are selectively captured can decrease.
Also, as the error rate increases, the DRAM usage reduction
ratio of the previous method decreases drastically but, that
of the proposed method decreases linearly because of the
same reason. In addition, the DRAM usage reduction ratio
of the proposed method is nearly 100%, when the error rate
is small. It means the proposed method is highly effective
for silicon debug since the error rate is extremely low in
the post-silicon debug which is generally progressed after
the pre-silicon verification and manufacturing test. Likewise,
Fig. 8(b) shows debug time reduction ratio of [23] and the
proposed method compared to [24]. The debug time is highly
related with the size of erroneous interval debug data like
DRAM usage since the communication time, which is the
time to store erroneous interval debug data in DRAM, can be
reduced in proportion to the reduction of the size of erroneous
interval debug data. For this reason, debug time shows similar
tendencies to DRAM usage.

B. HARDWARE AREA OVERHEAD
Table 3 presents the hardware areas of BISR and the DfD con-
troller in the previous method [23] and the proposed method.
For fair comparison, all the hardware was synthesized with
the Silvaco 45-nm Open Cell Library [50] and the size of
each synthesized hardware was represented as the number

56452 VOLUME 9, 2021



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

FIGURE 8. Performance comparison with different error rates. (a) DRAM usage reduction and (b) debug time reduction.

TABLE 3. Hardware area overhead comparison.

of two-input-NANDs (NAND2s). In this paper, the BISR
consists of memory BIST [49] and a BIRA module [37]. The
memory BIST is generated using the Tessent MemoryBIST
tool of Siemens. Then, the BIRA module and the BISR
controller are designed to adapt the memory BIST by using
RTL code. In addition, the DfD modules are also designed in
RTL code. The results indicate only the logic circuitry and
do not account for the CAMs in BISR or on-chip buffers.
Memory BIST and the BIRAmodule are designed to perform
memory tests and repairs for DRAM. The SMarchCHKB
algorithm is used to test DRAM in the memory BIST, and
the BRANCH algorithm is used to repair DRAM in the BIRA
module. The hardware size of the BISRmodule is determined
using the memory size, Rs, and Cs. In the experiment, it is
assumed that the memory size is 1,024× 1,024, and the value
of both Rs and Cs is 2, as in [37]. The CAM size can be
increased according to the memory repair case with different
Rs and Cs because it is determined by the memory size,

Rs and Cs. In this experiment, the maximum values of I and
SE are 4 and 8, respectively, as discussed in Section IV-A.
For the silicon debug, the SPARC processor core (spc)

module is used. In case of the previous method, two MISRs,
a golden signature register, and the interval and time stamp
counters are required to perform the debug experiment.
Because only the debug intervals are detected using the
MISRs, the hardware area overhead of each DS is almost
identical. The marginal difference between each of the DSs
can be ascribed to the small size of the debug interval counter.
Meanwhile, the proposed method incurs a larger hardware
overhead because additional hardware is implemented. In this
experiment, the proposed method consists of two parent
MISRs and two, four, and eight child MISRs for each SE.
That is, the hardware area overhead increases as SE increases
because of the corresponding numbers of child MISRs.
Additionally, the selective capture module, address genera-
tor module, and counters are used in the proposed method.
However, the hardware area of the DfD controller increases
as DS increases, unlike the previous method. This increment
can be primarily ascribed to the fact that the complexity of
the selective capture module increases as DS increases. That
is, the hardware area overhead of the proposed method can be
reduced by improving the memory specification. In addition,
the size of the address generator module increases as I and
SE increase. Therefore, there exists a tradeoff relationship
between the hardware area overhead and the DRAM usage
(and total debug time). Nonetheless, the increase of hardware
overhead of the proposed method is negligible in Table 3.
The hardware overhead in the proposed design increases
compared to the previous work [21] in Table 3. However,
the overall hardware overhead for silicon debug is decided
by the number of used buffers. Indeed, the logic circuitry
in the proposed design is less than 20% compared to those
in trace buffer-based silicon debug methods [15] and [17].
Buffers occupy more than 80% of the hardware for silicon

VOLUME 9, 2021 56453



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

FIGURE 9. Expected results of on-chip shadow buffer size with different
error rates. (a) DS = 256. (b) DS = 512. (c) DS = 1,024.

debugwhen the proposed design is constructed with the worst
case in Table 3 (the number of debug intervals for DS cycles
is 4, the number of segments for a debug interval is 8 and
Debug session in cycles is 1,024). For this reason, although
the logic circuitry increases up to 5%, it occupies only 1%
compared to the total hardware overhead. Thus, the increase
of hardware overhead in Table 3 is negligible.

To estimate the size of the on-chip buffers in the previous
and proposed methods, DS should be determined. As dis-
cussed previously, DS is determined by the DRAM read and
write latency.Moreover,M should be equal toDS in the previ-
ous method to capture the debug data in the trace buffer and
shadow buffer during the debug experiment. Thus, the total
required buffer depth in the previous method is 2 × DS.
However, the trace and shadow buffers can be reduced in
the proposed method by reusing BISR because BISR can
be used to overcome the challenge in the communication
between the DfD and DRAM as buffers. First, the trace buffer
depth size can be reduced to DS/I, which is equal to DI.
Typically, the size of the shadow buffer should be equal to

DS because the CSs are compared to the GCSs in the final
DI of DS. However, in the post-silicon debug phase, where
the pre-silicon verification and manufacturing test phase are
already complete, errors may occur in certain corner cases
such as electrical errors, and the error rate is exceptionally
low. Thus, the shadow buffer size can be decreased as the
error rate decreases. The shadow buffer depth is estimated
by calculating the maximum number of error-suspectDIs per
DS during the entire debug experiment. Fig. 9 shows the on-
chip shadow buffer size depending on different error rates
and DS. In the experiments, N is 2M cycles. Also, DS is 256,
512, and 1,024, respectively. As shown in Fig. 9, the shadow
buffer size of the proposed method is always smaller than
that of the previous method. It is because the smaller error
rate is, the smaller the error suspect debug data required to
be stored in the shadow buffer is. It results in the reduction
of the shadow buffer size. In the same reason, when I is
2 in the proposed method, the required shadow buffer size
of the error rate smaller than 0.25% is reduced compared
to that of other error rates in Fig. 9. However, if I becomes
large, the shadow buffer size of the proposed method can be
more reduced compared to that of the previous method. It is
because the error suspect debug data required to be stored
in shadow buffer decreases. As shown Fig.9(a), the required
shadow buffer size of the proposed method can be reduced
by 12.5%, which is the minimum value in the experiments,
when DS is 256 and the error rate is 0.05%. Although DS
increases as shown in Fig.9(b) and (c), the required shadow
buffer size of the proposed method can be reduced by 25%
in the same error rate. In addition, although the error rate
increases, the required shadow buffer size can still be reduced
by 50% or 62.5%. For this reason, the shadow buffer size of
the proposed method can be significantly reduced compared
to the previous method.

V. CONCLUSION
In a 3D-IC, the practical implementation of BISR has been
extensively considered to improve yield and reduce test costs.
Moreover, the DRAM-based debug method has been used to
improve the observability of the silicon debug process. In this
paper, for the 3D-IC silicon debug process, the DRAM-based
on-chip error detection method that reuses BISR is proposed
to reduce the DRAM usage, debug time, and on-chip buffer
size. Since BISR is unused after the memory repair process,
the proposed method can reduce unavoidable increment in
debug resources duo to reusing BISR in post-silicon debug.
In addition, the proposed debug method can overcome the
challenge in the communication between the DRAM and
CUDby using BISR as a pipelined buffer. Unlike the previous
method, which detects only the error intervals, the proposed
method achieves error interval detection and cycle detec-
tion by using the CAMs in BISR. The DRAM usage and
debug time significantly decrease because of the on-chip
error detection. The hardware area overhead of the proposed
method is negligible because the sizes of the on-chip buffers
decrease when BISR is reused. In addition, the proposed

56454 VOLUME 9, 2021



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

method is compatible for adaptation with other error detec-
tion and debugging interconnection techniques with BISR
reuse. As a result, the proposed method is suitable for appli-
cation to practical debug cases of 3D-IC systems.

REFERENCES
[1] J. Jeddeloh and B. Keeth, ‘‘Hybrid memory cube new DRAM architec-

ture increases density and performance,’’ in Proc. Symp. VLSI Technol.
(VLSIT), Honolulu, HI, USA, 2012, pp. 87–88.

[2] S. K. Goel, S. Adham, M.-J. Wang, J.-J. Chen, T.-C. Huang, A. Mehta,
F. Lee, V. Chickermane, B. Keller, T. Valind, S. Mukherjee, N. Sood,
J. Cho, H. H. Lee, J. Choi, and S. Kim, ‘‘Test and debug strategy for
TSMCCoWoS stacking process based heterogeneous 3D IC:A silicon case
study,’’ inProc. IEEE Int. Test Conf. (ITC), Anaheim, CA, USA, Sep. 2013,
pp. 1–10.

[3] H. Jun, S. Nam, H. Jin, J.-C. Lee, Y. J. Park, and J. J. Lee, ‘‘High-bandwidth
memory (HBM) test challenges and solutions,’’ IEEE Des. Test. Comput.,
vol. 34, no. 1, pp. 16–25, Feb. 2017.

[4] S. Mitra, S. A. Seshia, and N. Nicolici, ‘‘Post-silicon validation opportuni-
ties, challenges and recent advances,’’ in Proc. 47th Design Autom. Conf.,
Anaheim, CA, USA, 2010, pp. 12–17.

[5] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, ‘‘A reconfigurable design-for-debug infrastructure for SoCs,’’ in
Proc. 43rd Annu. Conf. Design Autom., San Francisco, CA, USA, 2006,
pp. 7–12.

[6] X. Gu, W.Wang, K. Li, H. Kim, and S. S. Chung, ‘‘Re-using DFT logic for
functional and silicon debugging test,’’ in Proc. Int. Test Conf., Baltimore,
MD, USA, 2002, pp. 648–656.

[7] B. Vermeulen, T. Waayers, and S. K. Goel, ‘‘Core-based scan architecture
for silicon debug,’’ in Proc. Int. Test Conf., Baltimore, MD, USA, 2002,
pp. 638–647.

[8] R. Datta, A. Sebastine, and J. A. Abraham, ‘‘Delay fault testing and silicon
debug using scan chains,’’ in Proc. IEEE Eur. Test Symp. (ETS), Corsica,
France, 2004, pp. 46–51.

[9] K.-J. Lee, S.-Y. Liang, and A. Su, ‘‘A low-cost SOC debug platform based
on on-chip test architectures,’’ in Proc. IEEE Int. SOC Conf. (SOCC),
Belfast, U.K., Sep. 2009, pp. 161–164.

[10] D. D. Josephson, ‘‘The manic depression of microprocessor debug,’’ in
Proc. Int. Test Conf., Baltimore, MD, USA, 2002, pp. 657–663.

[11] ARM. (2013). CoreSight Technical Introduction. [Online]. Available:
http://www.arm.com

[12] H. Fai Ko and N. Nicolici, ‘‘Algorithms for state restoration and trace-
signal selection for data acquisition in silicon debug,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 2, pp. 285–297,
Feb. 2009.

[13] X. Liu and Q. Xu, ‘‘On multiplexed signal tracing for post-silicon valida-
tion,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32,
no. 5, pp. 748–759, May 2013.

[14] E. A. Daoud and N. Nicolici, ‘‘Real-time lossless compression for silicon
debug,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28,
no. 9, pp. 1387–1400, Sep. 2009.

[15] E. Anis Daoud and N. Nicolici, ‘‘On using lossy compression for repeat-
able experiments during silicon debug,’’ IEEE Trans. Comput., vol. 60,
no. 7, pp. 937–950, Jul. 2011.

[16] J.-S. Yang and N. A. Touba, ‘‘Improved trace buffer observation via
selective data capture using 2-D compaction for post-silicon debug,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 2, pp. 320–328,
Feb. 2013.

[17] H. Oh, T. Han, I. Choi, and S. Kang, ‘‘An on-chip error detection method to
reduce the post-silicon debug time,’’ IEEE Trans. Comput., vol. 66, no. 1,
pp. 38–44, Jan. 2017.

[18] I. Choi, W. Jung, H. Oh, and S. Kang, ‘‘A debug scheme to improve the
error identification in post-silicon validation,’’ PLoS ONE, vol. 13, no. 9,
Sep. 2018, Art. no. e0202216.

[19] H. F. Ko, A. B. Kinsman, and N. Nicolici, ‘‘Design-for-Debug architecture
for distributed embedded logic analysis,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 19, no. 8, pp. 1380–1393, Aug. 2011.

[20] Y. Cheng, H. Li, Y. Wang, H. Shen, B. Liu, and X. Li, ‘‘On trace
buffer reuse-based trigger generation in post-silicon debug,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 10,
pp. 2166–2179, Oct. 2018.

[21] Y. Cheng, H. Li, Y.Wang, andX. Li, ‘‘Cluster restoration-based trace signal
selection for post-silicon debug,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 38, no. 4, pp. 767–779, Apr. 2019.

[22] D. Amos. (2016). CertusTM Silicon Debug: Don’t Prototype Without.
[Online]. Available: http://s3.mentor.com/fv/volume12-issue1.pdf

[23] S. Deutsch and K. Chakrabarty, ‘‘Massive signal tracing using on-chip
DRAM for in-system silicon debug,’’ in Proc. Int. Test Conf., Seattle, WA,
USA, Oct. 2014, pp. 1–10.

[24] H. Oh, I. Choi, and S. Kang, ‘‘DRAM-based error detection method to
reduce the post-silicon debug time for multiple identical cores,’’ IEEE
Trans. Comput., vol. 66, no. 9, pp. 1504–1517, Sep. 2017.

[25] S. R. Sarangi, B. Greskamp, and J. Torrellas, ‘‘CADRE: Cycle-accurate
deterministic replay for hardware debugging,’’ in Proc. Int. Conf. Depend-
able Syst. Netw. (DSN), Philadelphia, PA, USA, 2006, pp. 301–312.

[26] I. Silas, I. Frumkin, E. Hazan, E. Mor, and G. Zobin, ‘‘System-level
validation of the Intel PentiumM processor,’’ Intel Technol. J., vol. 7, no. 2,
pp. 37–43, May 2003.

[27] B. R. Quinton and S. Wilton, ‘‘Programmable logic core based post-silicon
debug for SoCs,’’ in Proc. IEEE Silicon Debug Diagnosis Workshop,
May 2007, pp. 1–7.

[28] M. Fujita and H. Yoshida, ‘‘Post-silicon patching for verifica-
tion/debugging with high-level models and programmable logic,’’ in
Proc. 17th Asia South Pacific Design Autom. Conf., Sydney, NSW,
Australia, Jan. 2012, pp. 232–237.

[29] X. Liu and Q. Xu, ‘‘On reusing test access mechanisms for debug
data transfer in SoC post-silicon validation,’’ in Proc. Asian Test Symp.,
Sapporo, Japan, 2008, pp. 303–308.

[30] I. Choi, H. Oh, Y.-W. Lee, and S. Kang, ‘‘Test resource reused debug
scheme to reduce the post-silicon debug cost,’’ IEEE Trans. Comput.,
vol. 67, no. 12, pp. 1835–1839, Dec. 2018.

[31] C.-H. Lai, Y.-C. Yang, and I.-J. Huang, ‘‘A versatile data cache for trace
buffer support,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 11,
pp. 3145–3154, Nov. 2014.

[32] K. Cho,W.Kang, H. Cho, C. Lee, and S. Kang, ‘‘A survey of repair analysis
algorithms for memories,’’ ACM Comput. Surv., vol. 49, no. 3, pp. 1–41,
Dec. 2016.

[33] S.-K. Lu and C.-H. Hsu, ‘‘Fault tolerance techniques for high capacity
RAM,’’ IEEE Trans. Rel., vol. 55, no. 2, pp. 293–306, Jun. 2006.

[34] Y. Huang, D. Chang, and J. Li, ‘‘A built-in redundancy-analysis scheme
for self-repairable RAMs with two-level redundancy,’’ in Proc. IEEE Int.
Symp. Defect Fault Tolerance VLSI Syst., Arlington, VA, USA, 2006,
pp. 362–370.

[35] S.-K. Lu, Y.-C. Tsai, C.-H. Hsu, K.-H. Wang, and C.-W. Wu, ‘‘Efficient
built-in redundancy analysis for embedded memories with 2-D redun-
dancy,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 1,
pp. 34–42, Jan. 2006.

[36] S.-K. Lu, C.-L. Yang, Y.-C. Hsiao, and C.-W. Wu, ‘‘Efficient BISR
techniques for embedded memories considering cluster faults,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 2, pp. 184–193,
Feb. 2010.

[37] W. Jeong, J. Lee, T. Han, K. Lee, and S. Kang, ‘‘An advanced BIRA for
memories with an optimal repair rate and fast analysis speed by using
a branch analyzer,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 29, no. 12, pp. 2014–2026, Dec. 2010.

[38] W. Kang, H. Cho, J. Lee, and S. Kang, ‘‘A BIRA for memories with
an optimal repair rate using spare memories for area reduction,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 11, pp. 2336–2349,
Nov. 2014.

[39] J. Kim, W. Lee, K. Cho, and S. Kang, ‘‘Hardware-efficient built-in redun-
dancy analysis for memory with various spares,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 25, no. 3, pp. 844–856, Mar. 2017.

[40] W. Kang, C. Lee, H. Lim, and S. Kang, ‘‘Optimized built-in self-repair for
multiple memories,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 24, no. 6, pp. 2174–2183, Jun. 2016.

[41] H. Lee, D. Han, S. Lee, and S. Kang, ‘‘Dynamic built-in redundancy
analysis for memory repair,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 10, pp. 2365–2374, Oct. 2019.

[42] C.-C. Chi, Y.-F. Chou, D.-M. Kwai, Y.-Y. Hsiao, C.-W. Wu, Y.-T. Hsing,
L.-M. Denq, and T.-H. Lin, ‘‘3D-IC BISR for stacked memories using
cross-die spares,’’ in Proc. VLSI Design, Autom. Test, Hsinchu, Taiwan,
2012, pp. 1–4.

[43] W. Kang, C. Lee, H. Lim, and S. Kang, ‘‘A 3 dimensional built-in self-
repair scheme for yield improvement of 3 dimensional memories,’’ IEEE
Trans. Rel., vol. 64, no. 2, pp. 586–595, Jun. 2015.

VOLUME 9, 2021 56455



H. Lee et al.: On-Chip Error Detection Reusing Built-In Self-Repair for Silicon Debug

[44] W. Kang, C. Lee, H. Lim, and S. Kang, ‘‘A new 3-D fuse architecture
to improve yield of 3-D memories,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 35, no. 10, pp. 1763–1767, Oct. 2016.

[45] T. Ni, H. Chang, Y. Yao, X. Li, and Z. Huang, ‘‘A novel built-in self-
repair scheme for 3D memory,’’ IEEE Access, vol. 7, pp. 65052–65059,
May 2019.

[46] K. Pagiamtzis and A. Sheikholeslami, ‘‘Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,’’ IEEE J. Solid-
State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.

[47] Amber ARM-Compatible Core. Accessed: Dec. 23, 2010. [Online]. Avail-
able: http://opencores.org/projects/amber

[48] OpenSPARC-Based SoC. Accessed: Oct. 13, 2011. [Online]. Available:
http://opencores.org/projects/sparc64soc

[49] Tessent MemoryBIST. Accessed: 2019. [Online]. Available: https://
resources.sw.siemens.com/en-US/fact-sheet-tessent-memorybist-fact-
sheet

[50] PDK 45nm Open Cell Library. Accessed: Aug. 1, 2011. [Online].
Available: https://silvaco.co.kr/products/nangate/FreePDK45_Open_Cell_
Library/index.html

HAYOUNG LEE (Graduate Student Member,
IEEE) received the B.S. degree in electrical and
electronic engineering from Yonsei University,
Seoul, South Korea, in 2016, where he is cur-
rently pursuing the combined Ph.D. degree with
the Department of Electrical and Electronics Engi-
neering. His current research interests include
built-in self-repair, built-in self-testing, redun-
dancy analysis algorithms, reliability, system-level
test and validation, design for testability/debug,
and VLSI design.

HYUNGGOY OH received the B.S. and combined
Ph.D. degrees in electrical and electronic engineer-
ing from Yonsei University, Seoul, South Korea,
in 2014 and 2020, respectively. Since 2020, he
has been an Engineer with Samsung Electronics
Company Ltd., Hwaseong, South Korea. His cur-
rent research interests include diagnosis, machine
learning based failure analysis, design for testabil-
ity/debug, and system-level test and validation.

SUNGHO KANG (Senior Member, IEEE)
received the B.S. degree in control and instrumen-
tation engineering from Seoul National University,
Seoul, South Korea, in 1986, and the M.S. and
Ph.D. degrees in electrical and computer engi-
neering from The University of Texas at Austin,
Austin, TX, USA, in 1988 and 1992, respectively.
He was a Research Scientist with the Schlum-
berger Laboratory for Computer Science, Schlum-
berger Inc., Austin, and a Senior Staff Engineer

with Semiconductor Systems Design Technology, Motorola Inc., Austin.
Since 1994, he has been a Professor with the Department of Electrical
and Electronic Engineering, Yonsei University, Seoul. His current research
interests include VLSI/SoC design and testing, design for testability, design
for manufacturability, and fault tolerant computing.

56456 VOLUME 9, 2021


