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ABSTRACT The demand for renewable energy to sustain today’s vulnerability towards depleting fossil
fuels is a crucial agenda for research. Various inverter topologies have been proposed to convert renewable
sources into a usable form. But output THD, additional filtering components at line frequency (leading to
bulky circuitry), lower efficiency, etc., are some of the limitations faced in all those topologies. This paper
aims to change a voltage source inverter’s traditional behavior, which generates lesser output voltage with
higher THD. The paper proposes a closed-loop non-ideal differential boost inverter (DBI) employing a PI
controller. The optimization techniques such as, genetic algorithm (GA) and bacterial foraging optimization
algorithm (BFOA) are incorporated to accentuate the PI controller’s performance to produce a better
response during line and load disturbance conditions with reduced THD. DBI performance is evaluated
on a laboratory prototype with different loading conditions. A comparison between the algorithms and the
previous topologies from the literature survey has also been provided to validate this research’s claims. This
paper’s required simulation study is carried out using MATLAB, and real-time validation is carried out using
dSPACE 1104 with sampling time of one us.

INDEX TERMS Average modeling, bacterial foraging optimization algorithm (BFOA), differential boost
inverter (DBI), genetic algorithm (GA), small signal modeling, tuning of PI controller.
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TABLE 1. State-of-the-art in boost inverter.

Power Input Output Vol Switching Control/ No. of No. of o
Topology Ref. rating voltage | voltage 0 t.a ge frequency | modulation active memory %
W) ) V) gain (kHz) technique devices | elements THD
Hybrid energy storage system [1] 50 24 60 2.5 20 SMC 8 8 -
Grid-connected fuel cell system [5], [6] 1000 42 220 523 20 DLC 7 9 4
Active buck—boost inverter [2] 500 1;) 807 110 0'15.15_ 20 SPWM 8 2 -
Boost inverter [7] 1000 50 220 44 20 DLC 4 4 5.70
DBI [8] 44 25 42 1.68 50 DLM 4 4 6.29
Inverse Watkins—Johnson [9] - 53 140 2.6 10 SPWM 6 4 -
Switched-capacitor DBI [10] 250 60 325 54 50 SPWM 8 6 6.1
Single-stage sine-wave inverter [11] 4.84 16 22 1.375 10 SPWM 4 4 10.80
Boost inverter [3],[12] 270 96 180 1.875 20 SMC 4 4 -
Boost inverter [13] 175 55 270 49 20 VMC 4 4 2.35
SA'based. tuning of P controller |,/ 220 60 311 5.18 20 VMC 4 4 297
or boost inverter
BFOA-based tuning of PI [15] 55 36 43 20 VMC 4 4 422
controller for boost inverter

boost converters can be broadly classified into three cate-
gories: (i) single-phase grid-connected battery-super capac-
itor hybrid energy storage system [1], (ii) active buck-boost
full-bridge inverter [2], and (iii) boost-inverter [3]. Here the
main challenges faced lie in the development of a low-cost,
high-efficiency, high gain, and low THD topology, with small
size power conversion system. On this note, the use of a
differential boost inverter (DBI) is of choice. A DBI topol-
ogy employs a single-stage power conversion from DC to
AC. It uses differential boost converters, which are being
controlled by two positive DC biased clamping sinusoidal
references which are out of phase-shifted. The differences in
the output of the converters produce an AC output voltage [3].
The possibility of generating higher AC output voltage from
a comparatively lower input DC voltage, employing a single
power conversion stage, is advantageous.

The DBI topology used in the literature comprises four
ports (two power ports and two signal ports) [4]. The unreg-
ulated input and the regulated output represent two power
ports, whereas the controlled input (duty cycle) and the
sensed feedback signals represent two signal ports. TABLE 1
summarizes various attributes of DBISs, such as control strate-
gies, modulation techniques, switching frequencies, etc. It is
to mention here that the topologies compared in the table
have different voltage, power ratings and are used for various
applications. Further, the control technique employed uses
many control parameters and feedback, leading to complexity
in design. The use of diversifying control techniques in those
studies is mainly because of their applications. The voltage
mode control (VMC) technique is simple and well established
whereas, the other control techniques such as sliding mode
control (SMC) and double loop control (DLC) are primarily
appreciated for their control mechanism’s added flexibility.
But, they have some lacunae. The SMC [1], [3], [12] and
DLC [5], [6], [7] techniques require a minimum of four feed-
backs for a fixed input voltage, and the number may further
increase for the increase in feedback parameters as well as
the multiple-input case. In [8], VMC and dynamic linearizing
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modulator (DLM) for DBI achieve stabilized output for a
wide range of frequencies. Further, the feedbacks may dras-
tically increase in number, or complexity may increase under
the line and load disturbance conditions. A proper selection
of the controller parameters in the case of VMC can tackle
the issues described above. It is further to highlight that
most of the above studies used the mathematical modeling of
only one-half of the DBI, which indicates that the complete
structure is not mathematically analyzed for the non-ideal
case. As a result, the selection of controller parameters will
be difficult under real-time disturbance conditions.

A close inspection on the DBI literature reveals that,

(i) The use of mathematical models is only applied for a
second-order system, i.e., for one-half of the DBI [4].

(i1) A forth order mathematical modeling employed in [13],
though accounts for non-ideal cases; stability analysis is
not carried out.

(iii) The topologies in [1], [3] [5]-[7], [10], [12] have
employed intricate control strategies involving more
control parameters leading to a bulky structure.

(iv) An intuitive way of determining controller parame-
ters by comparing multiple optimization algorithms has
never been suggested in the literature.

Following the above research gaps in the literature, this
research aims to provide a perfect DBI topology solution
via mathematical modeling of the fourth-order non-ideal DBI
system. The paper’s significant contributions are listed under-
neath.

(1) The controller parameters’ selection is taken from the
root locus plot, and the parameters’ range values are
confirmed from the stability region in the plot.

(i1) The controller parameters are tuned in the confirmed
stability region using optimization techniques, genetic
algorithm (GA), and bacterial foraging optimization
algorithm BFOA) to achieve a high-quality output sine
wave with lower THD under line and load disturbances.

(iii)) The outcome is experimentally tested to be stable under
the line and load disturbance conditions.
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(iv) The obtained results under different voltage levels,
power values, and load types using an experimental
set-up attest to the proposed scheme’s suitability for a
real-time application.

The research flowchart for the proposed topology of the
non-ideal boost inverter scheme is elucidated in Fig. 1 for
better clarity.

Boost Inverter

i Iy ! i
| Mode 1 Operation | | Mode 2 Operation |

[ Dynamic Equations | |Dynamic Equations|

| State-Space Model | |State-Space Model |
| |

| Average Large Signal Model |

( Steady-State Model |

N Voltage Gain of
Boost Inverter

[ Small Signal Model |

Controlled
—» Transfer Function
of Boost Inverter

Root Locus Plot and
Steady-State Plot

System Stability Checking
and Selection of kp and k

l

System Response Under
Load and Line Disturbances

FIGURE 1. Research flow for the proposed work.

Il. OPERATING MODES OF DBI

A. DESCRIPTION OF DBI

The DBI topology (refer to Fig. 2) consists of four IGBT
switches, two high-frequency inductors, and two DC capac-
itors. The assumptions in modeling are: (i) use of non-ideal

FIGURE 2. Traditional DBI circuit for non-ideal case.
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component, (ii) continuous converter current, (iii) inductance
L; = Lj, and capacitance C; = C;.

B. DBI OPERATIONAL MODES

There are two modes of operation for the DBI, Mode 1, and
Mode 2, which are respectively portrayed in Fig. 3 and Fig. 4.
In each mode, two of the switches are in the on state and
remaining in the off state.

Converter 1 B_o _iz__ Converter 2
i
yG
Cz::— Cz
FIGURE 3. Mode 1 operation (S; and S, are ON) of DBI.
Converter 1 Ro iZ
+V, S,
. 8
lC] Y : lcz
—vC.==C1 - Co==
U +VC‘!
S4
fong

FIGURE 4. Mode 2 operation (S; and S, are ON) of DBI.

Detailed dynamic equations and state-space models for
the operational modes of the DBI can be found in [13].
From the state-space model, the average model is formed.
The non-ideal state-space equations related to the average
model, the steady-state model, the small-signal model, and
the controlled transfer functions are as detailed under:

1) AVERAGE MODEL
The DBI’s average state-space model [13] as derived from
Fig. 3 and 4 is as follows.

le _r/L1 0 _d/Ll 0
£L2 _ 0 _r/Lz 0 O 1)/Lz
ve, e 0 e, ke

Ve, o (- d)/Cz 1/RCz _I/RCQ
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L, 1/L1
x LZ + %2 [ve] (1)
VCZ 0
vol = [00 —11] :Z )
ve,

2) STEADY-STATE MODEL

By equating the differential terms to zero in (1), the resulting
steady-state model help deriving the converter voltage gains
and duty cycles as formulated under.

V¢ D?R — 2D’R+DR+r 3
BTV, T (D'—2D°+D%) R+ (2D — 2D+ 1)«

J(& — 28 +1)R? -8R — (g, +1)R
D, = - “)
giR
_ Vo, —D’R — D’R+r 5
227V, T (D'—2D°+D?) R+ (2D* — 2D+ 1)«

(@~ 25+ 1) R —8R — (g, — )R

(6)

h =

The voltage gain of the DBI can be obtained as the differ-
ence of the voltage gains “g>”” and “g;” as in (3) and (5),
respectively. Further, the ideal voltage gains and duty cycles
can easily be obtained by substituting the value of “r” set to
zero in (3) through (6).

3) SMALL-SIGNAL MODEL

The DBI circuit in Fig. 2 comprises non-linear switches.
To control DBI during line and load disturbance cases, it must
operate the voltage gain in the linear region where a small
elemental length helps tune the output voltage with respect
to the duty cycle. On this note, an establishment of a small-
signal model is vital.

N
£L| _r/Ll 0 _D/Ll 0
?Lz _ DO _r/Lz 10 (Dl_ 1)/L2
A /C1 0 B /RC1 /RC1
G o =D Ve, ke
N
LVC,
A 1 —Vc
iLl 1/L] v 1/L1 N
| i |4 /L _ICZ/LZ [vAg] -
VC] 0 ILI/Cl d
ch 0 - Lz/C2
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FIGURE 5. Root locus plot of closed-loop DBI.
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1L,

A

L
A 2
[Vo]z[oo—n] . 8)
vCl

AN
VCZ
4) CONTROLLED TRANSFER FUNCTION
The controlled transfer function as the ratio between vy
(in (8)) and d (in (7)) is given in (9). The detailed formulation
can be found in Appendix.
A
vo(s)

H(s) = )

A

d(s)

IIl. OPTIMIZATION OF Pl CONTROLLER PARAMETERS
The closed-loop controlled transfer function model of DBI
has three zeros and four poles, located respectively in the RHS
and LHS of the s-plane (refer to Fig. 5), demonstrating the
non-minimum phase characteristic [16]. Such a feature helps
get a variable output voltage on the load side. The selection
of controller parameters from the Root Locus plot is detailed
underneath.

ki s+a
k=kp+—=k=kp , (10)
s a

where,
= &%

(1)

a

A. CLOSED LOOP DBI

The closed loop DBI block diagram is shown in Fig. 6.
The converter 1 switches S; and S4 (refer to Fig. 2) are
turned on by control inputs u; and uy4 respectively. Similarly,
the converter 2 switches S, and S3 (refer Fig. 2) are triggered
respectively by control inputs uy and u3. The output voltage
is controlled by VMC technique. The reference voltages for
the converters are expressed as,

VM .

V¢, = Vpe + T sind, (12)
VM . 0

Ve, = Voe + (" ) sin (9 — 180 ) (13)
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has been previously applied on a novel boost DC-DC con-
verter [17] and a buck-boost feedback controller design [10].
It is also used in reducing harmonic contents in a multi-
level converter [16]. The design flow of the GA is explained
in Fig. 8.

Randomly Generate Initial Population

FIGURE 6. Block diagram of closed-loop DBI for non-ideal case.

where the DC component, Vpc > Vg + (VTM) help obtain a

perfect sinusoidal output voltage waveform.
Finally, the output voltage is obtained as difference of (12)
and (13) and can be expressed as,

Vo = Ve, — Ve, = Vusin. (14)

For an easy understanding, the closed-loop duty cycle
generation technique is detailed in Fig. 7 for an ideal case.
A double edge carrier PWM technique has been employed to
obtain the duty cycle for the DBI.

PEEEEEY

FIGURE 7. SPWM implementation using double edge carrier wave.

For real-time implementation of the closed loop non-ideal
DBI, (3)-(6) are used for the steady-state voltage gain and
duty cycle generation.

B. GA-BASED TUNING OF PI CONTROLLER

This control strategy is based on ‘“‘survival of the fittest.”
It aims to eliminate the weakest members from a gene pool,
resulting in a more robust future generation. This strategy

VOLUME 9, 2021

Yes
Generate
[ No |
Calculate Fitness Factor of Each Chromosome
Y
Rank the Chromosome According to Fitness Value
y
Apply Reproduction Crossover, Mutation, Elitism
Operation

Fitness Value Meets Yes |»f
Requirement
= Replace the Population and n=n+1 |

( End )=

FIGURE 8. Generalized GA-based design flow for parameter tuning.

Here, the objective is to accomplish rapid turn on and turn
off, i.e., by minimizing the values of transient parameters f,
ts, Pg, and Egg [17]. On this note, a GA-based optimization is
carried out with the following parameter specifications:

(i) Population size of 75,

(i) Chromosome structure is binary coding, and

(ii1) Reproduction is probabilistic crossover followed by
mutation. Multi-point crossover is applied with ten iterations.

The objective function is given as,

MinF = (1 +4+#) (1 +1) (1 +Pg) (1 +Ess), 15)

subjected t0, @(Lower) < @ =< P(Upper)» where ¢ = {kp, ki}.

The range of values of kp and &y to be used as upper and
lower limits in the GA, are taken from the root locus plot
(refer Fig. 5) and are listed down.

kp (Min) = 0.000001, and kp (Max) = 0.0001
ki (Min) = 0.0000001, and k; (Max) = 0.00001

58681



IEEE Access

G. Arunkumar et al.: Implementation of Optimization-Based Pl Controller Tuning for Non-Ideal DBI

The final values of kp and kj are found to be 0.00003 and
0.000008 respectively which are obtained through GA-based
tuning (performed using MATLAB) to stabilize the DBI out-
put voltage. Fig. 9 shows the control strategy involved in the
GA-based tuning of the PI controller for the rapid prototype
control of DBI using dSPACE 1104.

Simulink +
dSPACE 1104

GA-Based GA-Based
kp and k| 3 v kp & kl
Controller Y Y Controller
Vc, Vc,
ll4 lll u2 u3
vc, sz
L \ i
LEM HCPL HCPL HCPL HCPL LEM

LV25-P 3120 3120 3120 3120 LV25-p

Ro iz |
o vy + -
Yo
- >
. S Power S .
lC, / iy Circuit / i 1
¥ | v'G

-
=}
4

AAA

Wy

-
o]
=

AAA

V

FIGURE 9. Block diagram of GA-based tuning of the PI controller used for
the closed-loop DBI.

C. BFOA BASED TUNING OF PI CONTROLLER

The BFOA is based on the strategy of “‘elimination and dis-
persal.” While foraging, a bacterium tries to garner maximum
energy while searching for nutrients and communicates with
other bacteria. It essentially follows a chemotactic movement
while solving a problem utilized in this algorithm [18]. The
block diagram of the BFOA-based tuning of the PI controller
to control the DBI is shown in Fig. 10. The flow of the BFOA
control strategy is similar to that of Fig. 9 but by replacing
both the blocks namely “GA-Based kp and k; Controller”
by “BFOA-Based kp and kj Controller”. It is to mention
that, the parameter tuning process using BFOA (as discussed
in Fig. 10) is more involved as compared to GA-based design
flow as discussed in Fig. 8. This leads to more computational
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Increase Elimination Dispersal |
Loop Counter I=i+1 -

=
—

Increase Reproduction Loop
Counter k=k+1

Rl

Yes

Perform Elimination
dispersal (for i=1,2...8
with Probability Ped)

Increase Chemotactic Loop

Counter j=j+1
Perform No
Reproduction

J < Nre

Yes

Ilncreasa Bacterium Index ( I=i+1 )|

No

Yes

Compute the Objective Function Value for the i becterium as
J(i,j.k,1), and set jec(i,j,k,1)

i

Tumble by Taking step Size C(i) Along Randomly Generated
Tumble Vector

!

Compute the Objective Function Value(l,j+1, k,l)

.

Set swim Counter m=0

\\JO

M < Ns

Yes

No
Set m = Ns @

Yes

| Set Jlast = J(Lj+1,k,1) I >

FIGURE 10. Generalized BFOA-based design flow for parameter tuning.

time compared to GA-based tuning. The strategy is utilized
to tune the PI controller, which in turn controls the DBI.
The dotted boundary box in the figure refers to the complete
control unit functioning with MATLAB and dSPACE 1104.
The voltage sensor output acts as the sensing voltage (for
duty cycle calculation) through dSPACE 1104 analog ports.
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The PWM signal is collected from the slave I/O port in the
dSPACE. The population size and the number of iterations
are ten. The chemotactic size and the reproductive loop size
are four, the elimination and dispersal loop size is two, the
swim length is four, and the dispersal probability is 0.2. The
objective function and constraint are the same as in (15).

IV. RESULTS AND DISCUSSIONS

This Section consists of four subsections to help manifest
and validate the paper’s purpose claimed so far. The first
one discusses the traditionally controlled DBI employing a
PI controller. Different voltage rating results have been show-
cased as stages. Stage 1 is performed at low voltage levels to
observe the converter’s behavior in the event of disturbances.
In stage 2, results depict standard 220 V operations. The
detailed analysis of GA and the BFOA-based tuning of the
PI controller for better results are elucidated respectively
in subsections IV (B) and IV (C). Hardware results imple-
menting the algorithms are also given in these two subsec-
tions. Finally, the fourth subsection compares the THD results
obtained by employing the algorithms and their influence on
producing a better output from the DBI. A detailed compari-
son between the traditional topologies in the literature survey
and the proposed topology has been provided. The required
simulation is carried out using MATLAB-Simulink. The
hardware setup for validating the closed-loop DBI claimed
in this model is shown in Fig. 11.

Programmable DC
power supply

Capyitors

Inductors |

HCPL 3120 | Duty cycle

Assembly & Current

Differential probe

R-Load  Probe  LEM
LV-25P

dSPACE
1104 RT

FIGURE 11. Hardware setup of DBI using dSPACE 1104.

A. NON-IDEAL DBI EMPLOYING A PI CONTROLLER

TABLE 2 shows the stage 1 design parameters used to deter-
mine the DBI’s performance with resistive and motor load
under various load combinations. The relevant results are
also provided in Fig. 12 (a)-(c). The expected phase shift as
obtained in Fig. 12 (a) and (b) indicates the DBI’s smooth
performance under boosted gain. Further, in Fig. 12 (c), it is
noteworthy that the load voltage is stable under load distur-
bance conditions. TABLE 3 shows the design parameters for
the stage 2 result analysis. Fig. 13 (a) depicts the hardware
results obtained for the DBI under study. The obtained AC
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TABLE 2. Stage 1 specifications.

Parameter

Value

Input DC voltage, V,

Output AC voltage, V,
Reference sine wave frequency

24V

72 V (Max. value)
50 Hz

Input DC voltage, V,
Output AC voltage, V,
Reference sine wave frequency

Switching frequency, f; 20 kHz

Inductors, L; and L, 500 uH

Parasitic resistance in series with inductor 0.1Q

Capacitors, C; and C, 20 uF

Dual IGBT modules, S; to S4 CM75DU-12H

Switch on-time resistance 1 mQ

Load resistor, R 220 Q

Universal motor load rating 220V

Real-time interfacing kit dSpace-1104

Voltage sensor, LEM LV 25-P 500V
TABLE 3. Stage 2 specifications.

Parameter Value

48V

308 V (Max. value)
50 Hz

Switching frequency, f; 20 kHz
Inductors, L; and L, 700 uH
Parasitic resistance in series with inductor 0.1Q
Capacitors, C; and C, 10 pF

Dual IGBT modules, S; to S, CM75DU-12H
Switch on-time resistance 1 mQ

Load resistor, R 220 Q
Real-time interfacing kit dSpace-1104
Voltage sensor, LEM LV 25-P 500 V

RMS output voltage is almost equal to 220V. Finally, the THD
value is indicated in Fig. 13 (b).

B. GA-BASED TUNING OF PI CONTROLLER

The GA-based closed loop DBI (refer to Fig. 9) is success-
fully implemented in Fig. 11. The design parameters involved
in the GA-based tuning of the PI controller used for DBI is
presented in TABLE 4. The hardware result for the resistive
load is shown in Fig. 14 (a), whereas for the motor load, it is
given in Fig. 14 (b). Fig. 14 (c) shows that even under load
disturbance, the system’s output voltage regains its stability
within one cycle. Fig 14 (d) indicates that the output voltage
of DBI reached the steady-state in less than a cycle under
input transient condition.

The input voltage is rapidly changed from O V to the
rated value to incorporate a transient environment. Even then,
the output voltage attains stability in a cycle, and this proves
the claim of improved settling time due to the usage of the GA
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FIGURE 12. Stage 1 steady-state testing with (a) Resistive load, (b) Motor
load, (c) Load disturbance test.

algorithm. Even when the line disturbance was introduced
the integral and proportional constants generated by the GA
algorithm forced the response to become stable as shown
in Fig. 14 (e). The THD result obtained after tuning the PI
controller of the DBI with GA is given in Fig. 14 (f).

C. BFOA -BASED TUNING OF PI CONTROLLER
The design parameter for the BFOA-based PI controller for
the DBI is provided in TABLE 5.

Fig. 15 (a) results showcase the steady-state capacitor
voltages along with the output current and voltage wave-
forms. Fig. 15 (b) shows line disturbance response. Even after
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FIGURE 13. (a) Vg, V¢1. V¢, and Iz as obtained from the DBI, (b) Graph of
steady-state results of Vg, I, and I, ; during stage 2 operation.

TABLE 4. Specifications for GA-based PI controlled DBI.

Parameter

Value

Input DC voltage, V,

Output AC voltage, V,
Reference sine wave frequency
Switching frequency, f;
Inductors, L; and L,

Parasitic resistance in series with inductor
Capacitors, C; and C,

Dual IGBT modules, S; to S4
Switch on-time resistance
Load resistor, R

Universal motor load rating
Real time interfacing kit

Voltage sensor, LEM LV 25-P

24V

48 V (Max. value)
50 Hz

20 kHz

500 uH

0.1Q

20 uF
CM75DU-12H
1 mQ

220 Q

220V
dSpace-1104
500 V

incorporating the line disturbance, due to the stepping down
of the input voltage from 36 V to 33 V (line disturbance),
the current waveform stabilizes in just 20 ms due to BFOA
controlling in the PI controller. In Fig. 15 (c), load distur-
bance is depicted by a sudden load change from a unity
power factor to a lagging power factor, which has negligible
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FIGURE 14. GA-based DBI steady-state response for (a) Resistive load, (b) Motor load, (c) Load disturbance,
(d) Transient response, (e) Supply voltage regulation and transience, (f) THD results for resistive load.

TABLE 5. Specifications for BFOA-based PI controlled DBI. TABLE 6. System response for traditional Pl, GA-based PI and

BFOA-based PI.
Parameter Value
Input DC voltage, V, 36V Dynamic Tradglio(rilal GA BFOA

metho
Output AC voltage, V, 155.5 V (Max. value) re.st?0n§e (kp=0.00001, ;{k" T) (())(‘))(‘))(())gg, ;{kp =00(‘)%%%%593’
Reference sine wave frequency 50 Hz specifications ky=0.000001) = ) = )
Switching frequency, . 20kHz . 561 ms 5.62ms 5.5ms
Inductors, L; and L, 200 uH t 18.5 ms 17 ms 16.9 ms
Parasitic resistance in series with inductor 0.1Q
P, 0 0 0
Capacitors, C; and C 20 uF
apacttors, &1 and L2 E 0513V 0414 V 0.402 V

Dual IGBT modules, S; to S4 CM75DU-12H
Switch on-time resistance 1 mQ . .

controller used in the DBI. Even during turn on and turn off,
Load resistor, R 220 Q . c1s .

the waveforms attained are smooth and within the desirable
Uni 1 motor load rati 220V . . .

pversalmotor foac Tating range, as depicted by Fig. 15 (d). THD response is shown

Real time interfacing kit dSpace-1104 in Fig. 15 (C)
Voltage sensor, LEM LV 25-P 500V

influence on the voltage waveform. In contrast, the current D. FURTHER DISCUSSIONS AND COMPARISONS
waveform attains stability again in just 20 ms indicating the As manifested by the hardware results, a DC to AC con-
advantage of using the BFOA technique to control the PI version was achieved. A close-loop circuit was implemented
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FIGURE 15. (a) Capacitor voltages, Output current and output voltages obtained in the steady-state, (b) Line disturbance

response, (c) Load disturbance response, (d) Transient response during turn on and turn off, (e) THD analysis.

successfully, and the performance was enhanced by incorpo-
rating the GA and BFOA algorithms. A better response was
obtained by reducing the rise time, settling time, maximum
overshoot, and the steady-state error, as shown in TABLE 6.
The THD values were less than 5% which complies with
Class-A IEEE standard 519-2014. Also, the response during
line and load disturbances reached a steady state in signif-
icantly less time. Thus, the result complies with the claims
made at the beginning of this research.

V. CONCLUSION

The voltage gain and the THD results so obtained comply
with the claims made at the beginning of this research. The
modeling of the proposed DBI is done for the non-ideal case,
thus, providing the expected result. Despite the incorporation
of load disturbance, the output waveforms attain stability in
just one cycle due to the GA and BFOA algorithms’ addition
to tune the PI controller. A detailed benefit of this addition has
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been highlighted. Also, in stages, hardware results for differ-
ent ratings have been given to prove the versatile applications
in which this inverter can be used. A future prospectus for this
topology would be to extend it as a three-phase inverter to
cater to the higher power demands used in industrial devices.

APPENDIX
FORMULATION OF CONTROLLED TRANSFER FUNCTION
The transfer function in (9) can be derived as,

A
vo(s)  (q1xa + q2x3 + q3x2 + gax1)

9(5) T st s34 nps? 4 nas + g
where,
g1 = —8° — moos® + mizs — mays + migs — mao + mig
q2 = s> — mias® + miys® — miss + mios — mig + mis
q3 = —mgs® — mos +m7 — myo
q4 = m1s2 — mys + mps — ms + m3
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ny = —ke — k3 + kio — ki
ny = —kykyg — kakg + (k3 + k10 + k1)ke — kaks
+(kio + k1)ks + kikio
n3 = (k3 + kp)k7kg + (kake + k1ka)ks
+((—k10 — k1)ks — kikio)ke
+(koks + kioka)ks — kikioks
nyg = kikskiko + (koksks — kikake)ks
+kikiokske — kiokaksks
my = ks, my = (—k3 — k10)ks, m3 = —kakskg + kioksks
my = kskg, ms = —ksksko, mg = k7kg, m7 = —k1k7ks
mg = kg, mg = —kekikg, mio = (kek1 — kaks)ks
my1 = —k3 — kio — ki,
mip = —kakg + (k1o + k1)ks + kikio
m3 = kiks — kikioks, mig = kg, mis = (—kz — ki)ko
mi¢ = kiksko, my7 = k7, mig = (—k3 — ki)ky
myg = kiksky, myo = —k¢ — k3 — ki
my1 = (ki + k3)ke — koks + kik3,
myy = —kikske + kaksks

ki="Yke ="k = T k= O
ks = Yo, ke = ~re, k1 = Yrey ks = 1D,
ko = ey k0= "rey 1 = Vo,

X = VCZ/L2,
X3 = IL]/Cl,x4 = 'IL2/C2
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