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ABSTRACT In this paper, we propose two deep-learning based uplink channel estimation approaches
that can utilize not only high-resolution-ADC-quantized but also low-resolution-ADC-quantized received
pilot signals to improve estimation performance for mixed analog-to-digital converters (ADCs) massive
multiple-input multiple-output (MIMO) systems. In each approach, low-resolution-ADC-quantized received
pilot signals are utilized with one of three different schemes, i.e., High-resolution quantized pilot + All
low-resolution quantized pilot(High + All), High-resolution quantized pilot + Argument of low-resolution
quantized pilot (High + Arg) or High-resolution quantized pilot + Modulus of low-resolution quantized
pilot (High+Mod). All three schemes include the intact quantized pilot signals at high-resolution antennas,
but the quantized pilot signals at low-resolution ADCs are exploited differently in each scheme. Modified
selective-input prediction deep neural network (Modified SIP-DNN) is developed to predict more realistic
channels and test the effectiveness of the utilization scheme. To achieve further performance improvement,
a deep neural network (DNN) based two-stage network is proposed where the recovering DNN (RC-DNN) in
the first stage forms a coarse estimation for channels at antennas with low-resolution ADCs and the refining
DNN (Ref-DNN) in the second stage outputs a refined estimation for channels at all antennas. Simulation
results show that our proposed approaches outperform state-of-the-art channel estimation method especially
when most antennas are equipped with low-resolution ADCs.

INDEX TERMS Massive MIMO, mixed-ADC, channel estimation, deep learning.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) can bring
huge improvements in system throughput, spectral efficiency
and overall signal coverage for wireless systems by equipping
a large number of antennas at base stations [1]–[3]. However,
using high-resolution analog-to-digital converters (ADCs)
in MIMO systems leads to high hardware cost and power
consumption. Hence, low-resolution ADCs (i.e., one to three
bits) are considered as a solution to this problem. However,
pure low-resolution ADCs degrade overall performance and
cause error floor in linear multi-user detection [4], data rate
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loss in the high SNR regime [5] and challenging channel
estimation [6].

Mixed-analog-to-digital converter (mixed-ADC) architec-
ture where one-bit ADCs only partially replace conventional
high-resolution ADCs is a good solution to this cost-
performance conundrum [7], [8]. It is shown in [7] that
compared with pure low-resolution ADC systems, channel
estimation is more tractable in mixed-ADC architecture.
A round-robin method is proposed in [8] to improve esti-
mation performance for slowly and moderately varying
fading channels where each antenna take turns to use
the high-resolution ADC for channel estimation until all
antennas are traversed. The linear minimum mean squared
error (LMMSE) estimate of uplink channel and its vari-
ances of the independent zero mean elements is derived for
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mixed-ADC massive MIMO in [9]. The GTurbo-MMV algo-
rithm in [10] exploits the joint sparsity of channel response
and obtains good results and robustness in channel estimation
as well as user detection. An algorithm that can simultane-
ously achieve good performance in uplink channel estimation
and user activity detection in mixed-ADC distributed massive
MIMO is proposed in [11].

Though the mixed-ADC architecture can reduce hardware
cost and energy consumption, the low-resolution ADC part
still limits the performance of the transceiver, including chan-
nel estimation performance. Recently, deep learning (DL) is
adopted in channel estimation for massive MIMO [12] and
obtains substantial success, especially when low-resolution
ADC is deployed. For instance, [13] compares the estimation
performance of DL approaches to generalized approximate
message passing (GAMP) in massive MIMO with non-
ideal one-bit ADCs and simulation results show that DL
approaches are more robust to ADC impairments than GAMP
approaches. References [14] develops a deep-learning based
channel estimation framework for one-bit massive MIMO
and observes that fewer pilots are required for the same
channel estimation performance when more antennas are
employed. Balevi andAndrews et al. [15] propose a two-stage
estimation scheme for one-bit massive MIMO by exploiting
deep neural network as well as convolutional neural net-
work and obtain 5-10dB gain in channel estimation. In addi-
tion, [16] proposes a segment-average based one-bit massive
MIMO channel estimation scheme that utilizes a deep neural
network (DNN) to process the average of multiple pilot signal
segments and the proposed scheme outperforms linear chan-
nel estimators. References [17] proposes a channel estimation
approach for few-bit massive MIMO that utilizes DNN as an
autoencoder to optimize the training signal and perform min-
imum mean squared error (MMSE) channel estimation con-
currently and this approach outperforms the Bussgang-based
linear MMSE channel estimator. References [18] exploits a
generative adversarial network (GAN) to estimate channels
from compressed pilot measurements for one-bit massive
MIMO and the scheme achieves superior performance over
sparse signal recovery methods.

DL is also demonstrated to be effective for channel estima-
tion in mixed-ADCmassiveMIMO as well. To the best of our
knowledge, [19] is the only work that adopts deep learning
in channel estimation for mixed-ADC massive MIMO. The
selective-input prediction deep neural network (SIP-DNN)
proposed in [19] shows superiority in estimation performance
over state-of-the-art linear and nonlinear channel estimation
methods.

However, due to the severe quantization distortion, exist-
ing channel estimation methods for mixed-ADC massive
MIMO usually do not utilize the pilot signals quantized by
low-resolution ADCs. For instance, SIP-DNN completely
discards the pilot signals received by low-resolution antennas
(antennas that are connected with low-resolution ADCs),
and round-robin method does not use low-resolution ADCs
to quantize pilot signals at all. Avoid using pilot signals

quantized by low-resolution ADCs may be viable when most
antennas are high-resolution antennas (antennas that are con-
nected with high-resolution ADCs). But for case with few
high-resolution antennas, discarding these signals may cause
degradation in channel estimation performance since these
coarsely quantized pilot signals contain information that can
assist channel estimation.

Inspired by previous observation, we propose deep-learning
based channel estimation approaches that exploits use-
ful information in not only high-resolution but also
low-resolution received pilot signals with consideration of
their adversarial impact in mixed-ADC massive MIMO. The
contributions of this paper are summarized as follows:

1) Two deep-learning based approaches are proposed for
channel estimation in mixed-ADC massive MIMO.
In the proposed approaches, the pilot signals quantized
by low-resolution ADCs are utilized in one of three
ways: High+Arg, High+Mod and High+All. These
three schemes all include the intact quantized pilot
signals at high-resolution antennas, but the quantized
pilot signals at low-resolution antennas are exploited in
different manners. High+Arg utilizes the argument of
quantized pilot signal at low-resolution antennas while
High + Mod utilizes the modulus of low-resolution
quantized pilot signals. Unlike High + Arg and High
+Mod, High+All directly utilizes the quantized pilot
signal at low-resolution antennas without any further
processing.

2) Modified SIP-DNN approach is proposed based on
SIP-DNN in [19] with modifications on input layer
to fit the output of our low-resolution pilot utilization
scheme. To achieve further performance improvement
and alleviate the adversarial impact of low-resolution
ADCs, we propose a two-stage channel estimation
approach where RC-DNN in the first stage forms a
coarse estimation for channels at low-resolution anten-
nas and Ref-DNN in the second stage outputs a refined
estimation for channels at all antennas.

3) Simulation results show that compared to SIP-DNN
approach, which is state-of-the-art for channel estima-
tion in mixed-ADC massive MIMO system, the pro-
posed approaches achieve significant reduction in
normalized mean squared error (NMSE) when the
ratio of high-resolution antennas is low. Compared to
SIP-DNN approach, the proposed approaches can also
reduce the number of high-resolution antennas while
maintaining approximately the same estimation perfor-
mance.

Notations: In this article, upper and lower case boldface
letter are used to denote matrices and vectors respectively.
In is the identity matrix of size n. ‖‖ , (·)T ,E {·} denote
the Euclidean norm, transpose and expectation. |χ | is the
cardinality of set χ . CN

(
µ, σ 2

)
is circular symmetric com-

plex Gaussian distribution with mean µ and variance σ 2. |a|
and 6 a denote the modulus and argument of the complex
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FIGURE 1. System model of a massive MIMO uplink with mixed-ADC.

number a. Re (a) is the real part of the complex number a
and Im (a) is the imaginary part. [w]i denotes the ith element
of the vector w.

II. SYSTEM MODEL
Consider aMIMO uplink system as shown in Fig. 1. M anten-
nas at the BS are divided into two groups, where one group
is equipped with high-resolution ADCs while the other group
is connected with low-resolution ADCs. SH and SL represent
the index sets of the antennas connected with high-res and
low-res ADCs respectively and SH ∩ SL = ∅, SH ∪ SL =

{1, 2, · · · ,M}. Denote

η =
|SH|

M

the ratio of antennas connected with high-resolution ADCs
over the total number of antennas. One single antenna user
is considered for simplicity but the proposed schemes can
be easily generalized to MIMO scenario since the channels
of different users can be isolated from the received signal.
A pilot signal

√
Px with P representing the transmit power

is transmitted by the user to the BS equipped with a uniform
linear array (ULA). Then the signal vector received at base
station is

y = (
√
Px) · h+ z, (1)

where z ∼ CN (0,σ 2
0 IM ) is the additive white Gaussian noise

with zero mean and covariance σ 2
0 IM and h is the multipath

channel, and

h =
L∑
l=1

βla (ϕl), (2)

where L is the number of paths. For the lth path,
βl ∼ CN

(
0, σ 2

β

)
is its propagation gain with σ 2

β as the
average power gain, ϕl is its azimuth angle of arrival (AoA),
and a (ϕl) is its response vector which will vary with different
types of antenna array manifold. In our case of ULA, it can

be expressed as

a (ϕl) =
1
√
L

[
1, e−j2π

d
λ
sin(ϕl ), · · · , e−j2(M−1)π

d
λ
sin(ϕl )

]T
,

(3)

where d is the distance between two adjacent antennas in the
ULA and λ is the corresponding wavelength of carrier.

The received pilot signal are then quantized by the ADCs
in set SH and SL respectively. Since the ADCs connected
with antennas inSH are high-resolution ones, the quantization
distortion upon the signal would be diminutive and thus can
be neglected. However, for signals received by antennas in
SL, the quantization distortion must be taken into consider-
ation. Thus, let r denote the quantized received pilot signal,
the signal output of ADCs connected to the mth antenna [r]m
could be expressed as

[r]m =

{
[y]m, m ∈ SH

QL(Re([y]m))+ jQL(Im([y]m)), m ∈ SL
(4)

where QL(·) denotes the element-wise quantization function
for low-resolution ADC and [r]m is the mth element of r.
We ignore the quantization error of the high-resolution ADC
in (4) for antennas in set SH.

In this paper, the low-resolution ADCs are considered to
be uniform midrise ones with a fixed quantization step 1.
For a one-bit quantizer, we use sign function to denote its
quantization [20]. We do not write this function explicitly for
its simplicity. For a D-bit uniform midrise quantizer (D ≥
2,D ∈ N) with quantization step1, its quantization function
QD-bit(·) can be described as

QD-bit(Vin)

=



(m−
1
2
)1 if (m− 1)1 < Vin ≤ m1 and

m ∈ {−
2D

2
+ 2, · · · ,

2D

2
− 1}

2D − 1
2

1 if Vin > (
2D

2
− 1)1

−
2D − 1

2
1 if Vin ≤ (−

2D

2
+ 1)1

(5)

where Vin is the input of the quantizer. Fig. 2 illustrates the
quantization function of a 3-bit uniform midrise quantizer.

III. DEEP LEARNING-BASED CHANNEL ESTIMATION FOR
MIXED-ADC MASSIVE MIMO
In the following section, two deep-learning based uplink
channel estimation approaches, i.e., the modified SIP-DNN
approach and the two-stage approach, are proposed for
mixed-ADC massive MIMO. In both approaches, one of
three schemes is employed to utilize the low-resolution-
ADC-quantized received pilot signals, i.e., High-resolution
quantized pilot + All low-resolution quantized pilot (High
+ All), High-resolution quantized pilot + Argument of low-
resolution quantized pilot (High + Arg) or High-resolution
quantized pilot +Modulus of low-resolution quantized pilot
(High+Mod). Modified SIP-DNN approach is derived from
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FIGURE 2. A 3-bit uniform midrise quantizer.

FIGURE 3. Deep learning-based channel estimation.

the SIP-DNN approach in [19] with modifications on the
input vector and size of input layers. We also propose a
two-stage approach where RC-DNN at the first stage uses the
output of low-resolution ADCs to achieve a coarse estimation
of channels at low-resolution antennas while Ref-DNN uses
the output of RC-DNN and rH to yield a more accurate esti-
mation of channel at all antennas. Fig. 3 shows the algorithm
detail of both approaches.

A. LOW-RESOLUTION RECEIVED PILOT UTILIZATION
SCHEMES
Let rH and rL denote the sub-vector of the quantized received
signal vector r for antennas in SH and SL respectively.
To exploit low-resolution information, rL must be utilized in
channel estimation. However, it is also essential to include rH

in channel estimation since rH mainly determines the accu-
racy of the estimation [21]. Therefore, denote g the output
vector of our utilization scheme, we devise three schemes
to utilize the pilot signals at low resolution antennas in both
approaches as below.

1) HIGH + ALL
In this scheme, all the quantized pilot signals, no matter
quantized by high-resolution or low-resolution ADCs, are
utilized directly without further processing. Hence,

[gAll]m = [r]m, ∀m ∈ SH,SL (6)

2) HIGH + ARG
For a low-resolution antenna, this scheme utilizes the argu-
ment of its quantized pilot signal. The quantized pilot signals
at high-resolution antennas are utilized directly without fur-
ther processing. Thus the output of this scheme corresponding
to the mth antenna is

[gArg]m =

{
[r]m, m ∈ SH
6 [r]m , m ∈ SL

(7)

3) HIGH + MOD
For a low-resolution antenna, this scheme utilizes the modu-
lus of its quantized pilot signal. The quantized pilot signals at
high-resolution antennas are utilized directly without further
processing. Thus the output of this scheme corresponding to
the mth antenna is

[gMod]m =

{
[r]m, m ∈ SH

|[r]m| , m ∈ SL
(8)

Fig. 4 shows the proposed low-resolution received pilot
utilization scheme. There are two reasons for selecting argu-
ment/modulus as the way to exploit low-bit information. The
first reason is that calculating argument and modulus are two
of the most common methods to process complex numbers
and since the real and imaginary part of [r]m is available for
∀m ∈ {1, 2, · · · ,M}, it does not require too much resources
to determine 6 [r]m and |[r]m| for m ∈ SL. Another reason
is that involving argument/modulus of ach element in rL in
estimation may open up new angles for us to further investi-
gate the channel estimation problem in mixed-ADC massive
MIMO system.

After processing, the output of the utilization scheme g
(which is either gAll, gArg or gMod depending on scheme
selection) is exploited as inputs for the deep-learning estima-
tion network in modified SIP-DNN approach in Section B
as well as the RC-DNN in the two-stage approach in
Section C.

B. MODIFIED SIP-DNN APPROACH
SIP-DNN is a deep-learning-based channel estimation
approach proposed in [19]. It achieves significant improve-
ment in estimation accuracy by utilizing two DNNs in paral-
lel. The estimation approach in [19] only uses the quantized
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FIGURE 4. Low-resolution received pilot utilization schemes.

received signals at high-resolution antennas as input for the
SIP-DNN network. We modify this approach by using the
output of our low-resolution utilization scheme g as input for
deep-learning estimation network and change the input layer
size for both DNNs.

We propose this approach mainly to test the effectiveness
of the proposed utilization schemes. If the modified approach
outperforms the original SIP-DNN approach under same test
conditions in simulation, the effectiveness of the proposed
utilization schemes can be proved credibly since the only
difference between two approaches is the input. In addition,
by devising the modified approach, we could demonstrate
the applicability and practicality of the proposed utilization
schemes since deploying the schemes only requires sim-
ply changing the input and adjusting the size of the input
layer.

Fig. 3(a) shows the modified SIP-DNN approach. Denote
ĥH and ĥL the estimated channel corresponding to high-
resolution antennas and low-resolution antennas respectively.
ĥH and ĥL can be expressed as below

ĥH = gR,S (USgR,S−1(· · · gR,2(U2g)))

ĥL = gMP,T (VT gMP,T−1(· · · gMP,2(V2g))) (9)

where S and T represent the total numbers of neural layers,
gR,s and gMP,t are the activation function for sth layer and
tth layer, respectively. Us and Vt denote the corresponding
weight matrices with respect to R-DNN and MP-DNN for
∀s = 2, . . . , S and ∀t = 2, . . . ,T . Table 2 shows the

architecture of the modified SIP-DNN under different η with
M = 64.

C. TWO-STAGE APPROACH
Inspired by the fact that neural networks have been widely
used to recover information in image processing and the
excellent performance of DNN in recovering channel infor-
mation at antennas with low-bit ADCs, we believe that
improvements in performance can be obtained by recovering
the channel information at the antennas with low-resolution
ADCs with decent accuracy first and then further processing
the combined signal of recovered channels at low-resolution
antennas and information at high-resolution antennas.
Denote hL the real channels from user equipment to the

BS antennas in SL. The basic idea of the proposed two-stage
approach can be summarized as follows:

1) RC-DNN at the first stage utilizes the output of
Low-resolution received pilot utilization schemes g to
obtain a coarse estimation of hL, i.e. ĥL−c.

2) ĥL−c is combined with rH to form the input vector ĥin
for Ref-DNN, which is the DNN at second stage.

3) Ref-DNN uses ĥin to produce a refined estimation of
h, i.e. ĥ. Fig. 3(b) shows the detailed structure of our
two-stage approach.

1) RC-DNN
For RC-DNN, its output ĥL−c can be expressed as

ĥL−c = c · gRC,T (WT gRC,T−1(· · · gRC,2(W2g+ bRC,2)

+ · · · )+ bRC,T ) (10)

where T ≥ 2,T ∈ N is the total number of layers in RC-
DNN. For t ∈ {2, · · · ,T }, gRC,t (·) denotes the activation
function for RC-DNN. bRC,t and Wt denotes the bias vector
and the weight matrix of tth layer respectively. c is a scaling
factor to make sure all of the target data fall into the range of
the activation function at the output layer.

The weight and bias matrices of RC-DNN are updated
through offline training, then saved at base station for uplink
channel estimation. The training objective of RC-DNN is to
minimize the MSE between the coarse estimation and the
actual channel over all training samples, which is

MSERC =
1
Ntr

Ntr∑
n=1

∥∥∥hL,n − ĥL−c,n
∥∥∥2 (11)

where Ntr is the number of training samples. hL,n and ĥL−c,n
denote the true channels at low-resolution antennas and their
coarse estimate respectively for the nth training sample. Back
propagation algorithm is exploited to minimize the training
objective.
For RC-DNN, the nth offline training sample has the form

of (
cn,

hL,n
c

)
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where cn is the input for RC-DNN for the nth sample and

hL,n
c

is the target data that RC-DNN is trying to approximate in
offline training.

2) FORMULATING THE INPUT VECTOR FOR REF-DNN
As mentioned before, rH and ĥL−c need to be combined
into one vector before being processed by Ref-DNN. The
combining principle can be described as

[
ĥin
]
m
=

 [rH]um , if m ∈ SH[
ĥL−c

]
vm
, if m ∈ SL

(12)

where um and vm are the indexes in SH and SL for the mth
antenna, respectively.

3) REF-DNN
Although ĥL−c is obtained in the first stage, more processing
is required to achieve a more accurate estimation of hL.
In addition, an estimation of hH also remains to be acquired
since rH is still noisy and cannot be regarded as accurate
estimation.

For Ref-DNN, its output ĥ can be expressed as

ĥ = c · gRef,K (PKgRef,K−1(· · · gRef,2(P2ĥin + bRef,2)+ · · · )

+bRef,K ) (13)

where K ≥ 2,K ∈ N is the total number of layers in Ref-
DNN. For k ∈ {2, · · · ,K }, gRef,k (·) denotes the activation
function for Ref-DNN, bRef,k and Pk denotes the bias vector
and the weight matrix of kth layer. c is the same scaling factor
used in RC-DNN. ĥ is the also final output of this approach,
which is a refined estimation of the real channel h.
The weight and bias matrices of Ref-DNN are updated

through back propagation in offline training and saved at base
station. The training objective of Ref-DNN is to minimize the
MSE between ĥ and h for all training samples, which is

MSERe f =
1
Ntr

Ntr∑
n=1

∥∥∥hn − ĥn
∥∥∥2 (14)

hn and ĥn represent the true channels and the output channel
estimation for the nth sample. For Ref-DNN, the nth offline
training sample has the form of(

ĥin,n,
hn
c

)
where ĥin,n is the input for Ref-DNN for the nth sample,
which is formed by ĥL−c,n and hH,n.

hn
c

is the target data that Ref-DNN is trying to approximate in
offline training.

TABLE 1. Output vector size for the low-res received pilot utilization
schemes.

TABLE 2. Architecture of modified SIP-DNN.

IV. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
estimation approaches. In our simulation, the number of
antennas is set as M = 64 in all experiments. The number
of paths is set as. L = 8.. The ADCs are arranged in a block
pattern where high-resolution and low-resolution antennas
are placed in two blocks without any overlap. For example,
when η = 0.5, SH will be SH = {1, 2, · · · , 32} while
SL = {33, 34, · · · , 64}. For each path, the average power
gain is set as σ 2

β = 1, d
λ
is set as 0.5 and the AoA is selected

randomly from 2π
20 × [0, 1, · · · , 19].

Table 1 shows the output size for the low-resolution
received pilot utilization schemes. Table 2 shows the
detailed structure of the modified SIP-DNN approach under
High + Arg scheme and all the η in the test. Both MP-DNN
and R-DNN are densely connected and have one input layer,
three hidden layers and one output layer. In addition, in order
to facilitate comparison with the original SIP-DNN and test
the effectiveness of our scheme, all other aspects of this
approach is identical to the original SIP-DNN approach
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TABLE 3. Architecture of two-stage approach.

including offline training objectives and vector combining
principle.

The detailed structure for the two-stage approach is shown
in Table 3. The RC-DNN architecture we design forM = 64
consists of one input layer, three hidden layers with recti-
fied linear unit (ReLU) activation function and one output
layer with hyperbolic tangent (tanh) activation function. The
Ref-DNN architecture includes one input layer, two hidden
layers with 192 neurons each layer and one output layer with
tanh activation function. All neurons in RC-DNN and Ref-
DNN are densely connected.

100 sets of AoAs are generated randomly for training and
validation and another 10 sets of random AoAs are generated
for testing. 1000 samples are generated for each AoA, which
means 100000 samples in total for training and validation
and 10000 samples for the training set. The 100000 samples
are first shuffled to ensure the intrinsic channel structure
can be studied without interference of clusters in data and
then divided into the training set and validation set by the
ratios of 90% and 10%. The number of epochs, learning
rate, batch size are as 100, 1 × 10−3 and 128 respectively.
Adam optimizer is used for training. The scaling factor, i.e.
c, is set as 3. The transmit power for the pilot signal, i.e.
P, is set as 1. Normalized MSE (NMSE) is exploited to
evaluate the channel estimation performance. NMSE can be
described as

NMSE = ηE


∥∥∥hH − ĥH

∥∥∥2
‖hH‖2

+ (1− η)E


∥∥∥hL − ĥL

∥∥∥2
‖hL‖2


in modified SIP-DNN approach and

NMSE = E


∥∥∥h− ĥ

∥∥∥2
‖h‖2



TABLE 4. Training and testing time for all approaches.

in two-stage approach. SIP-DNN from [19] serves as bench-
mark for comparison.

A. ANALYSIS WITH η = 0.2
Fig. 5 illustrates the NMSE of the original SIP-DNN
approach and the two proposed approaches with different
low-resolution pilot utilization schemes for SNRs from 0dB
to 30dB. 1∼3bit ADCs are selected as low-resolution ADCs.
As we can see in Fig. 5, both proposed approaches, especially
the modified SIP-DNN, outperform the original SIP-DNN
in nearly all scenarios when η = 0.2. This shows the
effectiveness of the low-resolution received pilot utilization
schemes and that our approach could effectively utilize the
low-resolution-ADC-quantized pilot signals to improve esti-
mation performance.

From Fig. 5 we can also notice that when both
approaches apply the same low-resolution pilot utilization
scheme, two-stage approach outperforms modified SIP-DNN
approach. This indicates that the two-stage approach can take
better advantage of the information in the low-resolution-
ADC-quantized received pilot signals. We speculate that this
is because two-stage approach allows the received pilot sig-
nals at low-resolution antennas to undergo more processing,
thereby improving the estimation accuracy for channels at
low-resolution antennas. Compared to rL, the recovered ĥL−c
at the output of first stage has more accurate modulus infor-
mation and reduced distortion, thus the DNN in second stage
could utilize the additional information to further improve the
estimation accuracy.

In addition, it is noticeable in Fig. 5 that High+All scheme
achieves the best performance when other factors are the
same. This is understandable since the calculation of modulus
or argument is lossy, therefore High + All scheme retains
more information at the network input than the other two
schemes. What interests us is that High + Arg outperforms
High + Mod. This indicates that the argument of received
pilot signals at low-resolution antennas is more useful than
their modulus at improving estimation performance. Since
the observations in [21] show that the addition of low-bit
antenna information, though not helpful for estimating the
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FIGURE 5. NMSE versus SNR with η = 0.2 and 1∼3bit ADCs used as
low-resolution ADCs.

amplitude, can provide useful information for the estima-
tion of AoA, this indicates that argument can provide more
AoA related information than modulus and thus can help
improve the estimation performance. In addition, by observ-

FIGURE 5. (Continued.) NMSE versus SNR with η = 0.2 and 1∼3bit ADCs
used as low-resolution ADCs.

ing Fig. 5(d) to Fig. 5(f), we can notice that though all three
schemes will benefit from the bit increase, High + Mod is
most-benefited and while High + Arg is the least-influenced
scheme regarding the bit increase.
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FIGURE 6. NMSE versus SNR with one-bit ADC as low-resolution ADC and
different η.

The improvement in performance of our proposed
approaches comes with additional complexity. Table 4 shows
the amount of time required to complete training and testing
for modified SIP-DNN, original SIP-DNN and two-stage

FIGURE 6. (Continued.) NMSE versus SNR with one-bit ADC as
low-resolution ADC and different η.

approach. As is shown in the table, the two-stage approach
need almost twice the time to achieve an estimation com-
pared to the modified and original SIP-DNN approach. This
is because in SIP-DNN, the estimation of channels at
high-resolution antennas and low-resolution antennas can
be performed in parallel while in two-stage approach the
received pilot signals must be pipelined through RC-DNN
and Ref-DNN sequentially to form a channel estimate. How-
ever, both the two-stage approach and modified SIP-DNN
approach are sufficient for practical usage with this testing
time.

B. ANALYSIS WITH DIFFERENT RATIO
Fig. 6 shows the NMSE versus SNR for the original SIP-
DNN, modified SIP-DNN approach and two-stage approach
with all three schemes when η = 0.1, 0.3, 0.4, 0.5 respec-
tively. One-bit ADCs are used as low-resolution ADCs
in Fig. 6. Compare Fig. 6 with Fig. 5, we can notice that
with the increase of η, the performance gain of our pro-
posed approaches decreases. This is because the gain of our
method is due to the addition of information at low-resolution
antennas and as the proportion of high-resolution antennas
increases, the proportion of low-resolution antennas corre-
spondingly decreases, leading to the reduction in perfor-
mance gain. This also corroborates our previous statement
that High + Arg scheme is a good alternative to High +
All scheme since Fig.6 also shows that the performance gap
between High + Arg and High + All scheme decreases as
the number of high-resolution antennas increases and when
η ≥ 0.3, the High+Arg and High+All schemes can achieve
similar estimation performance.

C. ANALYSIS UNDER DIFFERENT SNR
Fig. 7 shows the NMSE performance versus the ratio of high-
resolution antennas under SNR from 5 to 30 dB for origi-
nal SIP-DNN, modified SIP-DNN approach and two-stage
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FIGURE 7. NMSE versus η with one-bit ADC as low-resolution ADC and
different SNRs.

approach with all three schemes. One-bit ADCs are used as
low-resolution ADCs in Fig. 7. Fig. 7 shows that compared
to the original SIP-DNN approach, the proposed approaches
can reduce the number of high-resolution antennas while

FIGURE 7. (Continued.) NMSE versus η with one-bit ADC as
low-resolution ADC and different SNRs.

maintaining approximately the same estimation performance.
For instance, under High + All scheme and SNR = 10dB,
the estimation performance of modified SIP-DNN approach
at η = 0.15 is approximately the same as the performance

VOLUME 9, 2021 54947



J. Zicheng et al.: DL-Based Channel Estimation for Massive-MIMO

FIGURE 8. NMSE versus SNR with 2-bit/3-bit ADC as low-resolution ADC
and different η.

of original SIP-DNN approach at η = 0.3, which means our
estimation approach could reduce the ratio of high-resolution
antenna by 0.15 without damaging estimation performance.
The ratio of high-resolution antennas can be further reduced
by implementing two-stage approach. In Fig. 7(b), while both

FIGURE 8. (Continued.) NMSE versus SNR with 2-bit/3-bit ADC as
low-resolution ADC and different η.

using High+All scheme, the two-stage approach can reduce
η by 0.05 on the basis of modified SIP-DNN approach.
Another observation from Fig. 7 is that when the number

of high-resolution antennas exceeds a certain proportion, the
performance gain brought by adding quantized received pilot
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FIGURE 8. (Continued.) NMSE versus SNR with 2-bit/3-bit ADC as
low-resolution ADC and different η.

signals at low-resolution antennas becomes much less signif-
icant. From Fig. 7 we observe that this certain proportion
is related to SNR and decreases as SNR increases. When
SNR = 10dB, the performance gain brought by the addition
of low-bit information will not disappear until η = 0.5
but when SNR = 15dB and SNR = 20dB, the performance
gain will disappear after η = 0.4 and η = 0.3. The
performance gain brought by adding received pilot signals
at low-resolution antennas is still decreasing for η ≤ 0.3
when SNR = 25dB and SNR = 30dB, indicating this certain
proportion will keep decreasing as SNR increases. We hope
to investigate the properties of this certain proportion further
in future studies.

Though involving the quantized received pilot signals at
low-resolution antennas in channel estimation does not sig-
nificantly improve estimation accuracy when SNR is high
or the ratio of high resolution antennas exceeds a certain
proportion, it can significantly improve the estimation per-
formance at low SNR and can effectively reduce the ratio of
high-resolution antennas needed at base station. And from our
observation, if the estimation approach is well-designed, the

addition of low-resolution signals will not hinder the overall
estimation performance.

D. ANALYSIS WITH 2-BIT ANT 3-BIT ADCS AS
LOW-RESOLUTION ADCS
An important issue related to practical applications is whether
it is necessary to use 2-bit or 3-bit ADCs instead of 1-bit
ADCs as low-resolution ADCs in a mixed-ADC MIMO sys-
tem. We mainly inspect this issue from the perspective of
channel estimation performance. Fig. 8 and Fig. 5 show that
under the condition of using High+All scheme and η ≤ 0.2,
equipping 3-bit ADCs as low-resolution ADCs can reduce
NMSE by 50 percent compared to when 1-bit ADCs are used.
Similar phenomenon can be observed when High + Mod
scheme is employed. However, when High + Arg scheme is
employed, the performance improvement brought by the bit
increase is not obvious except when SNR is high. Therefore,
when η ≤ 0.2, it is preferable to use 2-bit ADCs or 3-bit
ADCs for High+All or High+Mod scheme but for High+
Arg scheme, it is not necessary to use 2-bit or 3-bit ADC as
low-resolution ADC. When η ≥ 0.3, it can be observed from
Fig. 8 that increasing the number of bits of the low-resolution
ADC has little effect on the performance for all schemes,
thus using 2-bit or 3-bit ADC as low-resolution ADC in this
scenario is unnecessary. However, when the cost and energy
consumption conditions permit, using 2-bit or 3-bit ADCs as
low-resolution ADCs can improve channel estimation perfor-
mance. In this case, using 2bit and 3bit ADCs is better.

V. CONCLUSION
In this paper, two-stage approach and modified SIP-DNN
approach are proposed for uplink channel estimation in
mixed-ADC massive MIMO systems. By adopting the
three low-resolution received pilot utilization schemes we
proposed, the DNN in both approaches could exploit
not only high-resolution-ADC-quantized but also low-
resolution-ADC-quantized received pilot signals to improve
estimation accuracy. Simulation results show that the pro-
posed approaches outperform state-of-the-art SIP-DNN
method and reduces the number of high-resolution ADCs
required at base stations without performance degradation.
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