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ABSTRACT As multiple functions have been added to single-core-based engine electronic control
units (ECUs) in vehicles, automotive researchers and manufacturers have actively studied multi-core
architecture for engine ECUs. Multi-core architecture can provide load balancing and parallelism that can
meet the requirements of international organization standard (ISO) 26262. However, since real-world engine
ECUs have the most complex automotive open system architecture (AUTOSAR)-based control logic and
datasets among automotive ECUs, developing multi-core-based engine ECUs is a substantial amount of
work. Thus, automotive researchers and manufacturers will need new methodologies for multi-core-based
engine ECUs. In this paper, we focus on designing a multi-core migration methodology and applying it
to a real-world AUTOSAR-based engine ECU from HYUNDAI. We verify its practicability and enhanced
performance. In conclusion, through connection with other automotive domain ECUs, it is demonstrated that
a multi-core engine ECU using our migration technology can be applied in real-world automotive vehicles,
leading to a significant improvement in performance.

INDEX TERMS Multi-core-based engine system, shared data inconsistency, core load balancing, memory
and offset optimization technology.

I. INTRODUCTION
Recently, the amount of data that must be processed by an
engine electronic control unit (ECU) and the number of auto-
motive functions embedded in an engine ECU have increased
due to addition of new ECUs and advancements in vehicles.
These lead to an increased core load in the engine ECU
and an increased need for additional computing power [1].
It is particularly difficult to add new software because the
core loads of existing single-core-based engine ECUs have
reached their limit [2]. To solve these problems, automotive
manufacturers and researchers have considered multi-core
processors. Multi-core architecture can reduce the compu-
tation power and core load. Additionally, such architecture
can provide parallelism, which is needed to satisfy inter-
national organization standard (ISO) 26262 [1]. However,
100% redesigned multi-core-based engine ECUs should not
be considered because of large monetary and time costs.
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Thus, a methodology of migrating from existing single-core
to multi-core architecture is needed. Reliable migration tech-
nology can reduce costs and increase time efficiency com-
pared with redesigning the multi-core system. In addition,
this approach can help integrate the accumulated engine ECU
software knowledge and architecture.

Migration to an actual multi-core-based engine is not a
simple process; an engine ECU has many datasets, com-
plex automotive open system architecture (AUTOSAR)-
based control logic, and hard-real-time characteristics [3]–[5]
(These figures are the highest in automotive ECUs). Further,
there are noteworthy issues derived from the above studies.

First, a safe and efficient shared data protection method
considering an engine ECU should be researched. Shared data
occur when a piece of data stored in one memory is accessed
by different cores, as shown in Fig. 1. If shared data are used
without protection, the stability and coherency of the shared
data will not be protected, and the shared data can be altered
dramatically when read or written. To address these issues,
a previous study presented shared data protection using
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FIGURE 1. The example of MCU structure using in multi-Core Engine ECU.

an explicit synchronization and wait-free and semaphore
locks method as an automotive multi-core platform [6]. The
research in [7] studied several shared data protection meth-
ods and presented an algorithm for choosing an appropriate
method. However, this method is difficult to apply in an
actual engine ECU. The approach in [6], [7] is to apply a
protection method for each set of shared data. Thus, if the
number of shared data items increases, the length of the
protection code becomes proportionally larger. Therefore,
existing methods are not suitable for an engine ECU, which
processes a large amount of shared data. As another shared
data problem, an automated tool is necessary to apply the
consistency method to an actual ECU. Due to the large
amount of shared data in an engine ECU, it is impossi-
ble to manually secure the consistency of the shared data.
Therefore, it is necessary to analyze and implement the func-
tions of a tool that can automatically insert the shared data
inconsistency method into the existing engine ECU control
logic [8]. However, this is a critical issue for developers
because there is currently no tool that can automatically
analyze the control logic and insert shared data inconsistency
measures.

Next, elaborated core load balancing technology for an
engine ECU should be considered. Core load balancing com-
prises allocation of tasks to each core for shared use [9].
To apply such technology, the data to the engine ECU should
be allocated statically because AUTOSAR [10], [11] does
not allow dynamic allocation [3]. In [12]–[16], the authors
researched the static task allocation method to balance the
core load. However, these previous studies [12]–[16] did not
consider the additional core load of the shared data protection
method. In addition, there are various types of tasks in an
engine ECU [5], and it is necessary to consider the different
loads of various tasks. However, in [12]–[16], they did not

consider all types of tasks. Thus, accurate core load balancing
results are unlikely.

Finally, optimization technologies of multi-core tasks that
can improve task scheduling performance should be consid-
ered. The first optimization scheme is to allocate data to
memory. Since the data access time of each core changes
according to the memory allocation position of the data in
the multi-core [13], which has multiple memory areas [17],
the execution time of a task can be changed according to the
data position within the memory. Because the task execution
time change affects the load of the core, if a systematic
memory allocation algorithm is constructed, the core load
and task execution time can be reduced. However, existing
research does not present a specific static memory allocation
method considering the shared and non-shared data of engine
ECUs. The second optimization scheme concerns the offset
of each task, which determines the start position of a task.
An efficient offset allocation method can reduce the response
time and collisions between tasks [18]. However, despite the
potential advantages, no offset allocation method considering
anAUTOSAR-based engine ECUoperation has been studied.

To solve the aforementioned problems, we propose key
methodologies for shared data protection, core load balanc-
ing, and optimization. The migration methodology from sin-
gle core to multi-core is performed at the source code level
of the application. We apply these to an actual engine ECU
from HYUNDAI and verify the practicability and enhanced
performance using hardware in the loop simulation (HILs),
which can provide information and messages from other
domain ECUs in real-world automotive vehicles [19].

This paper is organized as follows. Section II introduces
the details of the developed migration technology method.
Section III implements and analyzes the proposed migration
technology, and Section IV concludes this paper.
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FIGURE 2. The concept of the migration technology method using shared data protection, core load balancing, optimization of memory
and offset allocation and multiple tools (Timing 1, Tasking, ASCET, TA, APP4MC and HILs) for the multi-core based engine ECU.

II. MULTI-CORE MIGRATION TECHNOLOGY
In this section, we suggest a shared data protection scheme,
load balancing, and a method of optimizing migration to
an actual multi-core-based engine ECU. Fig. 2 shows the
concept of our migration technology. We used multiple tools
to apply the migration method. Tasking and ASCET are tools
that can modify the engine ECU control logic [20], [21].
Tasking manages AUTOSAR-based basic software (BSW),
and ASCET is used for modeling the engine ECU application
software (ASW) [5], which is based on the Motor Industry
Software Reliability Association (MISRA)-C: 2004 [22]. The
details of Timing 1, Timing Architecture (TA), HILs, and the
Application Platform Project for Multi-core (APP4MC) plat-
form are introduced in Section IV. Our migration technology
is compatible with the above tools, and the detailed functions
of our technology are as follows.

A. SHARED DATA PROTECTION
The AUTOSAR-based ECU uses data through implicit com-
munication of runnables. Before runnable start, a data buffer
used in the runnable is copied to a local runnable buffer,
which is written back to the existing data buffer after runnable
end [23]. Maintaining data consistency has been demon-
strated through the runnable’s copy strategy of implicit
communication [24]. In other words, since AUTOSAR-based
runnables only use data from the local runnable buffer, their
design has been established so that they are not affected by

other runnable operations. Vehicle developers consider the
characteristics of the above implicit communication to design
vehicle software. Therefore, data consistency was maintained
in the single-core-based ECU using single-core implicit com-
munication. However, when migrating to multi-core, a num-
ber of shared variables occur. Existing AUTOSAR does not
describe a data consistency methodology of shared variables.

When each core of the multi-core accesses shared data
without the protection method, the data can cause race condi-
tions. Two major problems about race conditions are impor-
tant tomulti-core technologies for stability and coherency [8].
Therefore, a protection method is necessary to ensure the
absence of race conditions. However, because there is so
much shared data in an engine ECU, the core execution
time (CET) significantly increases when an inefficient pro-
tection method is used. To solve this issue, we formulate an
optimal race condition protective solution.

First, we investigate three types of shared data in an
engine ECU: shared data read-read, shared data write-write,
and shared data read-write. Next, we consider use of the
lock method in the multi-core-based engine ECU to pro-
tect the coherency. The lock-free, wait-free, and lock-key
methods have been considered to secure data consistency.
The lock-free method can write data using the compare and
swap (CAS) command that has the advantage of reducing
latency because it uses an atomic command. However, it has
a disadvantage in that it can be used only for writing data.
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The wait-free scheme has the advantage of ensuring integrity
without a lock key because it uses a read/writememory buffer.
However, the memory capacity can reach its limit since the
engine ECUhasmanywrite commands. The lock-keymethod
is based on the spinlock methodology, which can support
read/write cases of shared data. Additionally, since spinlock
does not use the memory resources, it is an appropriate
method for use in engine ECUs. Therefore, we use spinlock
in the lock method.

After choosing the spinlock method, we consider how
to apply this method efficiently, since overuse of spinlocks
increases the task execution time of engine ECUs. To address
this, we consider the copied shared data method. First,
this method converts the name of existing shared data into
a task-specific name. If the existing shared data name is
shared_data_1, which is used in the 1ms task, this method
changes the name to shared_data_1_T1; this means that this
data is only used in the 1ms task. Using the same principle,
if the 10ms task also has shared_data_1, the name will be
changed to shared_data_1_T10. In other words, global shared
data are converted to local shared data unique to each task.
By converting local shared data, this method can avoid usage
of a global variable, which is recommended in MISRA-C:
2004 [22]. After changing the name, the critical copy/update
section is inserted into the normal section. Here, we define the
critical section as the control logic protected from the spin-
lock and the normal section as the control logic not protected
from the spinlock. At the start of the critical copy/update
section, all the interrupts should be disabled, and the spinlock
request function should be inserted. Conversely, the spinlock
release function should be inserted at the end of the critical
copy/update section, and all interrupts should be re-enabled.
The critical copy section replicates the original shared data
before the task starts. For example, shared_data_1_T1 copies
the shared_data_1 value. After copying, the task executes
the normal section using the generated copied shared data.
Using the local shared data in the normal section secures
the stability of race conditions. When the normal section of
the task is completed, the value of the copied shared data
is updated to the original shared data via the update critical
section before the end of the task. Likewise, shared_data_1 is
updated to the shared_data_1_T1 value. Here, if the data
are of the read type in a task, they are not updated to the
original global value. Since read type data do not use stored
instructions, they do not need to be updated to the original
global value. Our copy/update shared data method uses just
two locks (which are in the copy and update critical sec-
tions), resulting in reduced remote blocking time [25] and
CET. This approach considers an efficient coherency method
by reducing the number of spinlocks and source code level
protection methods. As described above, data consistency
through the copy strategy of implicit communication of the
runnables has been demonstrated, allowing data consistency
of the local shared variables in the task. Therefore, if we use
our shared variable copy/update strategy, we can ensure safe
write of shared data in critical and non-critical sections.

To apply the coherency method, automated tools are
needed because the engine ECU uses a significant amount
of shared data. However, no tools have been applied in the
above coherency method. Thus, we develop automated tools
for our coherency method for application in engine control
logic and describe the methodology below.

1) THE COPY AND UPDATE CRITICAL SECTION
MAKING TOOL
The goal of this tool is to generate prototypes of the criti-
cal copy and update sections. The operation of this tool is
described in detail as follows. First, the tool must extract
shared data information and shared data read/write informa-
tion. If the shared data are read type, the tool will insert the
data into the critical copy section. In contrast, if the shared
data are write type, the tool will insert the data into the copy
and update the critical section. To create these two files, this
tool requires a meta data exchange (MDX) format and uses a
core allocation file as the input data.
• The MDX file: MDX is a software architecture format
defined through cooperation with automotive compa-
nies [26] (Bosch, Audi, Volkswagen, Continental, etc.).
It contains ECU software architecture information, such
as tasks and runnables, and data information of the ECU
like number of data items in a task or runnable. However,
the format of existing MDX files is difficult to apply
to multi-core environments because existing MDX is
based on single-core environments. For example, there
is no protocol that distinguishes between global and
local shared data including copied shared data. To solve
this problem, we modified the MDX file format to be
suitable for multi-core systems and distinguish between
global and local shared data using unused MDX fields.
(<LONG>, <ADMIN-DATA> in MDX) [26].

• Core allocation file: This file has information that spec-
ifies the tasks to be distributed by each core. The core
allocation information of this file can be used to find
data shared between tasks located in different cores. This
file is created via core load balancing as described in
Section III.

Using the modified MDX file and the core allocation file,
the tool extracts the shared data information file of each
task and the shared data read/write type file of each task
as the output. Additionally, the tool uses the two files to
create the copy/update source codes comprising a header file
and C files. In the C files, the copy/update functions and
spinlock functions of each task are defined. In the header file,
declaration of the original shared data and the copied shared
data is included, as is that of the critical copy and update
section functions and the spinlock functions.

2) ENGINE SOFTWARE CONVERSION TOOL
After creating prototypes of the shared data copy and update
functions, these must be applied to the existing engine ECU
software. Our engine software conversion tool performed this
work through two major functions. First, at the beginning and
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end of each task, the copy and update functions are added.
In addition, to allow use of these added functions, a new
header file for the critical section is added to the engine
source code file. Second, the existing shared data in each
task are converted into copied shared data. The input of this
tool requires the existing ECU source code and copy/update
functions source code from the critical copy/update section
tool.

B. CORE LOAD BALANCING
Existing tasks of engine ECU have different execution times
and periods. When migrating to a multi-core, the load value
of each core changes according to allocation. To solve this,
first, we need to define multiple types of tasks in the engine
ECU. The types of tasks in current engine ECUs are divided
into periodic, aperiodic, and sporadic tasks as established
by HYUNDAI [5]. Periodic tasks are invoked at the same
fixed time intervals, while aperiodic tasks occur at unknown
intervals. Sporadic tasks do not show set periodicity, similar
to aperiodic tasks, but the period changes according to the
revolutions per minute (RPM) of the engine. That is, if the
engine crankshaft is running faster, the period of the sporadic
task becomes shorter. Second, the core load of the newly
added shared data protection code should be considered.
Since the number of shared data items is different according
to core allocation, the core load of shared data protection code
varies depending on core allocation. To produce sophisticated
core load balancing techniques, shared data protection code
load of each allocation case should be calculated accurately.
We could consider a heuristic search for our methodology
which could derive faster calculations, although their accu-
racy would not be guaranteed. However, once the software
architecture of an engine ECU is determined, it will be used
until the model is discontinued. Therefore, even if our algo-
rithm takes more time than the heuristic method, its usage
is more preferable since it achieves greater accuracy. The
one-time measurement result of our algorithm is used for
years, allowing vehicle consumers to drive their vehicles in
a more secure environment. For that reason, we developed
load balancing of migration (LBM), the protocol of which is
as follows:

1. Under LBM, two properties of the core are analyzed
in the first step. 1) The processing speed of each core is
measured as each can support heterogeneous speeds. 2) The
number of cores in the MCU (m) is calculated to produce
cases where tasks are allocated to specific cores.
• m = number of cores in the MCU
2. In the second step, the information of sporadic, peri-

odic, and aperiodic tasks should be analyzed. We extract the
average execution time of all tasks and assume that sporadic
tasks are periodic. Unlike aperiodic tasks, sporadic tasks have
shared variables, and they exhibit the same minor character-
istics of periodic tasks. The CET and period of sporadic tasks
were assumed to be the average values. The required infor-
mation is as follows. 1) The normal section execution times
of tasks (τnormal) and aperiodic tasks (Ak ): in the second step,

the algorithm simply analyzes the normal section of tasks but
not the critical section of tasks. Furthermore, we suppose that
aperiodic tasks do not have a critical section since the engine
ECU does not have shared data. If an aperiodic task has
shared data in another ECU, Equation 4 can be used to find
the critical section. Creating a critical section in the interrupts
is nearly impossible because of the irregular occurrence time.
2) The numbers of tasks (n) and aperiodic tasks (l): n and l
values are used in the fourth step when making the allocation
case.
• n = number of tasks
• τnormal = normal section execution time of task j
• l = number of aperiodic tasks
• Ak = execution time of aperiodic task k
3. The third step analyzes the data name and the read/write

directions of all tasks. To calculate the critical section exe-
cution time of each allocation case, LBM needs to know
the number of shared data items. To calculate this number,
it is necessary to compare the data names of tasks in dif-
ferent cores and analyze the data read/write direction. Here,
we assume that the read/read relation between data is not
shared.

4. The LBM solver distinguishes allocating tasks and ape-
riodic tasks as follows.∑m

i=1
xij = 1, j = 1, . . . n (1)∑m

i=1
yik = 1, k = 1, . . . l xij, yik ∈ 0, 1 (2)

CaseP = (x01, x02 . . . x(m−1)j, y01, y02 . . . y(m−1)k )

p = 1, . . .mj+k (3)

• xij = allocation value of task j and core i
• yik = allocation value of aperiodic task k and core i
• CaseP = a case p of xij and yik
The case considered here is the grouping of xij and yik , like

in Equations (1) and (2), and the LBM solver gathers results
for all cases of xij and yik . If xij is 1, task j is allocated in core
i. Otherwise if xij is 0, task j is not allocated in core i. The yik
value is allocated in the same way. If the difference in load
ratio between cases exceeds 10%, the case is excluded. The
allocation result of a case is the same as in Equation (3).

5. Using the allocation results, we can calculate the task
total execution time (τ pj ). τ

p
j is the sum of the execution times

(τnormal) of the critical and normal sections. τnormal was cal-
culated in the second step; thus, we only need to know the task
j critical section execution time of each case p(τ pjcritical), which
is the sum of the shared data copy time (vpjc Tcopy), update
time (vpju Tupdate) and spinlock time (Tlock ). This is calculated
in Equation (4). Here, the copy/update time of a shared data
(Tcopy,Tupdate) is the copy/update process time of one shared
data. Tlock is the added value of the lock request instruction
processing time and release time instruction processing time.
After calculating this, τ pj is determined by Equation (5).

τ
pj
critical = vpjc Tcopy + v

pj
u Tupdate + Tlock (4)

τnormal + τ
pj
critical = τ

p
j (5)
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• τ
pj
critical = CET of a task j critical section in CaseP

• vpjc = the number of shared data of task j, which should
be copied in CaseP

• vpju = the number of shared data of task j, which should
be updated in CaseP

• Tcopy = copy time of a shared data
• Tupdate = update time of a shared data
• Tlock = sum of the lock request and release time
• τ

p
j = the total execution time of task j in CaseP

The total core execution time of core i in CaseP(C
p
i ) is

calculated in Equation (6). Additionally, the maximum core
execution time of each case (Cpmax) is determined in Equa-
tion (7). Cpmax is used in the sixth step, and is compared with
execution times of the other cores.∑n

j=1
τ
p
j xij +

∑l

k=1
Akyik = Cpi , i = 0, · · ·m (6)

max(Cp0,C
p
1 . . .C

p
i ) = Cpmax (7)

• Cpi = total execution time of core i in CaseP
• Cpmax = the longest total execution time of a core in

CaseP
6. In the final step, the optimal and most balanced case

(Cresult ) is chosen in Equation (8). To accomplish this,
the minimum value of Cpmax is calculated. The Cresult case
has the shortest core execution time and is considered opti-
mal. The suboptimal value is the second smallest Cpmax value.

min(C1
max ,C

2
max . . .C

mj+k
max ) = Cresult (8)

• Cresult = selected optimal and balanced case
The time complexity of the task allocation algorithm is

O[2N], and the space complexity is O[N]. The value of N
corresponds to the number of task.

C. OPTIMIZATION OF THE MULTI-CORE ECU SOFTWARE
Optimization techniques are required for efficient migration.
In this paper, optimized memory allocation and task offset
techniques are described. Memory allocation is a technology
for multi-core micro controller units (MCUs), which have
multiple random access memories (RAM), and includes an
allocation strategy description of all data of the engine ECU.
Using this memory allocation technology, the existing CET
of all tasks can be reduced. Task offset technology assigns
an offset to all periodic tasks. Using offset technology, the
preemption, response time, and peak load between tasks can
be reduced. We coded the optimization technique and created
it with a tool.

1) MEMORY ALLOCATION OPTIMIZATION
Each core of multi-core has its own memory access time that
is very fast; however, the memory access times of the other
cores are relatively slow. Hence, each core shows a differ-
ent CET performance according to the memory allocation
method of the data. The types of data that are involved in
the memory allocation technique are shared data, non-shared
data, and local shared data. Here, non-shared data and local

TABLE 1. Shared data-memory table.

shared data are not used by other cores, so these data are
allocated in the RAM of each core. To address bank conflict,
we stack data from the lowest address and accumulate shared
data from the first address of the remaining memory. To
allocate shared data, the memory access times of each core
and the shared data read/write information are needed.
• SDRKN = N th shared data read count when allocated in

core K
• SDWK

N = N th shared data write count when allocated in
core K
•ACRKR = R th RAM read access time of core K
•ACWK

R = R th RAM write access time of core K
Here, the SDRKN and SDWK

N values must consider the
periodic properties of the tasks. Also, if the same bank
is used between (non-shared data, local shared data) and
shared data, (memory access time + bank collision and
row buffer latency) value is added to the ACRKR and ACRKR .
Using these values, we perform a mathematical analysis of
the shared-data memory table as shown in Table 1. Each
equation represents the total access time when the N th
shared data are allocated in the R th RAM. In Table 1,
the RAM location of the value inmin (

∑m−1
K=0 SDR

K
1 ∗ACR

K
1 +∑m−1

K=0 SDW
K
1 ∗ACW

K
1 ,

∑m−1
K=0 SDR

K
1 ∗ACR

K
2 +

∑m−1
K=0

SDWK
1 ∗ACW

K
2 ) becomes the optimization value. The sub-

optimal value is the second smallest value.
The next step involves selecting the absolute minimum

total access time and the secondary minimum total access
time of each shared data item. After selection, the difference
between these two total access times is calculated based on
RAM allocation priority. That is, when the difference value is
the largest in a shared data set, the data should be assigned the
highest priority in a RAM and has the minimum total access
time. The largest difference indicates that the efficiency of
allocation to the RAM, which shows the secondary minimum
total access time, is much lower. In addition, if some RAM
(which shows the minimum total access time to a shared data)
is full, then the allocation priority can be newly determined
by comparing the difference between the secondary and third
minimumvalues. This can be performed iteratively as needed.
The data is transferred between the different memories using
the regular load/store instructions of the cores. Our memory
allocation tool creates a memory map containing information
about the allocation location of shared data. The memory
map is applied when reprogramming the ECU. The time
complexity of memory allocation algorithm is O[CS], and the
space complexity is O[CS]. The value of C corresponds to the
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FIGURE 3. AUTOSAR based 10ms task operation of engine ECU.

number of cores, and the value of S corresponds to the number
of shared data items.

In addition, we can think of the cache as a memory opti-
mization option. The cache is a high-speed data storage tier
for subsets of data. In Fig. 1, data cache exists in each core
(DCACHE0, DCACHE1, DCACHE2). Caching is a method
of fetching and accessing data stored in main memory into
cache. Also, if necessary, the cache should update the data in
the main memory or read the latest data from main memory.
Cache usage is very easy to implement in the single-core
case; however, hardware support technology is required in
multi-core-based logic, such as snooping- or directory-based
technologies [27]. If the multi-core-based MCU does not
provide hardware-based cache coherence technology, cache
miss problems and cache coherence problems can be gen-
erated. To address this, software-based cache invalidate or
flush code must be inserted when using a shared variable.
Cache invalidate reads the latest value of main memory by
invalidating the cache, and cache flush writes back the value
to the main memory as a new value.

2) OFFSET ALLOCATION OPTIMIZATION
Offset allocation is a technique for improving the scheduling
performance of tasks by delaying the start point of each task.
Using offset technology, the response time, start delay time,
and preemption count can be decreased [28]. Response time
refers to the execution time from the time the task is activated
by the scheduler to the time the task is terminated. Start delay
is the wait time between the time the task is activated and the
time the task enters the running state. Further, through offset
technology, the peak load factor can be reduced. Currently,
automotive companies consider the performance of the peak
load [1], which is the highest value of the instantaneous core
load per 10ms. If the instant core load is high, the patterns of
tasks are not uniform, and the operation of tasks is saturated
within a certain time. In addition, the engine ECU is related
to safety; if the peak load is high, it is likely that urgent tasks
will not be executed on time.

Currently, AUTOSAR-based engine ECUs operate in the
manner of the BSW-ASW-BSW chain task phase, as shown
in Fig. 3, and the period of each periodic task is only deter-
mined at BSW-start [5], [29]. BSW-start reads the informa-
tion needed from ASW, and BSW-end updates the results
used by ASW. It is easy to allocate an offset considering only
the operation of ASW, but it is very complicated to assign the
offset assignment value of each task in the AUTOSAR-based

FIGURE 4. Example of 20ms task ASW applying the existing
method(above) and the offset allocation method (below).

operation. Considering the above problems, we developed
an offset protocol-based AUTOSAR and its protocol-based
automation offset tool as follows. First, we divided tasks into
two groups: a task group with a period of 10ms or less and a
task groupwith a period exceeding 10ms. This was performed
because the offset allocation criteria of the two groups are
different. A task exceeding a 10ms period is assigned an
offset value to reduce the peak load. Our method is shown
in Fig. 4 with an example of a task with a period of 20ms
and a CET of 8ms. Before applying the offset technology,
the [0, 10] ms moment load is 80%, and the [10, 20] ms
moment load is 0%. Therefore, the peak offset before apply-
ing the technology is 80%. After applying our offset method,
the [0, 10] ms moment load is 40%, and the [10, 20] ms
moment load is 40%. After applying the technology, the peak
offset is 40%. In this way, our tool deploys tasks exceeding
a 10ms period in 10ms unit increments and assigns offset
values to avoid collisions. In other words, the midpoint of
ASW tasks exceeding 10ms period should be allocated in a
10ms unit. If collisions are inevitable, they should be arranged
for minimization. Tasks with 10ms or smaller periods are
assigned an offset value to minimize the response time. The
allocation method obeys the following rules. A task with
a 10ms or smaller period should minimize the number of
collisions with other tasks with priorities higher than its own.
In the same way, it also should consider conflicts with other
tasks with priorities lower than its own. If a task is preempted
by the long CET of another task, the offset value minimiz-
ing the preemption should be considered as the best case.
Our tool considers all cases by incrementally changing the
offset of each task with a period less than or equal to 10ms
by 10µ s and calculates the number of preemptions of each
case.

To select the optimal case, that with the smallest number
of preemptions is chosen. The above concept is the same as
Equation 9.

Pd = {C
off x
1 . . .Coff x

m } (9)

• m = the number of tasks
• Coff x

m = offset value of task m
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TABLE 2. Specification of the TC275 MCU.

• Pd = Number of preemptions in each offset case
• d = case number

mind∈0∼z (Pd ) (10)

• z = total number of Pd
Equation (10) is the optimum, and the second smallest is

the suboptimal value. The time complexity of the offset allo-
cation algorithm is O[N], and the space complexity is O[N].

III. IMPLEMENTATION AND ANALYSIS
In this paper, we apply our migration technology to the
single-core software of a HYUNDAI engine ECU. The
single-core software was verified for stability and correct
operation and has been used in actual HYUNDAI vehicles.
The target multi-core MCU is Tricore TC275, which was
developed by the Infineon Company [30]. The specifica-
tions of TC275 are described in Table 2. TC275 has three
cores with heterogeneous processing speeds [30]. Core 0 is
a low-specification core, so its processing speed is slower
than those of cores 1 and 2. Further, each core has its own
RAM and cache. (DSPR 0, 1, 2, Dcache 0, 1, 2) Additionally,
local memory unit (LMU) memory is connected to all cores.
This type of memory has lower performance than DSPR,
so the access time of LMU RAM is slower. We did not use
a cache in our methodology since TC275 does not support
hardware-based cache coherence. We could consider using a
software cache coherence implementation, but our methodol-
ogy uses shared variables only in critical sections within the
shared variable copy/update. If a cache was used, the latest
value of the global shared variable would be copied to local
shared variable through invalidate at task startup, and the
main memory would have to be accessed directly. Also, at the
end of the task, the value of the local shared variable would
have to be written back to themainmemory as the value of the
global shared variable through flush. Even if we used a cache,
we would have to access the main memory, negating any
advantage of using a cache. Also, ourmethodology aims to set
local shared variables and non-shared variables in their own
core RAM memory. According to the TC275 datasheet [30],
the core’s own RAM read/write access time and the access
time through a cache are almost equal to 0 clock cycles.
Therefore, use of a cache was not considered in our method-
ology. The engine ECU software architecture is based on
AUTOSAR. Since AUTOSAR is scheduled using a fixed
priority mechanism [31], we adopt a rate-monotonic method,
which is a pre-emptive static-scheduling technology [32].
In the rate monotonic process, all tasks have fixed priority,

FIGURE 5. HILs environment for verifying engine ECU.

and the priority of a task is higher when its period is shorter.
The priority of each task is as follows: Interrupts > 1ms >
2ms> knk> sync0> sync1> 5ms> 10ms> 20ms> 50ms
> 100ms > 200ms > 1000ms. Each task has the following
number of runnables (1ms = 60, 2ms = 48, 5ms = 40, 10ms
= 488, 20ms = 62, 50ms = 14, 100ms = 59, 200ms =
88, 1000ms = 30, knk = 44, SyncS0 = 97, SyncS1 = 90).
Here, knk, sync0, and sync1 tasks are sporadic with priorities
between 2ms and 5ms. The knk task is to assess the engine
knocking task in which fuel is abnormally burned in the
cylinder of an internal combustion engine. Sync 0, 1 are tasks
for synchronizing wheel. The runnables in each periodic task
consist of functions that should calculate the data values at
each period. In addition, the runnables of sporadic tasks con-
sist of functions that are related to the RPM.We used HILs to
verify our engine ECU, which is applied tomigration technol-
ogy. A schematic of the experimental environment is shown
in Fig. 5. INCA is a tool of the ETAS Company, and is used
to modify the calibration values of the engine ECU, like the
offset [33]. Labcar and RTPC are virtual automotive testing
and validating systems of the ETASCompany that can change
the variables of the automotive operation environment, such
as RPM [19]. These tools can transmit message frames of
other ECUs to the engine ECU to produce a real automotive
operation environment. When HILs were verified, RPMs in
the range of [100, 3000] were applied uniformly for 30 min.
The total source code size of the software was about 1G
bytes, and the binary/object code size of our methodology
was 34K bytes. To apply our migration technology, we first
analyzed the existing single-core engine ECU. For analysis,
we used Timing 1, a timing analysis tool for ECUs developed
by the GLIWA Company. This tool analyzes ECU operation
in real time as well as the scheduling performance of periodic,
sporadic, and aperiodic tasks considering the CET, response
time, worst case response time, and spinlock cost [34]. In the
next step, we applied our load balancing technique based on
the results of the Timing 1 tool. Since the tool that creates the
critical copy/update section needs a core allocation file, the
shared data protection method is used after applying the core
load balancing method. When load balancing technology is
applied, the TA tools of VECTOR and APP4MC are utilized.
The size of the engine ECU software is so large that it takes
a long time to download new software. When verifying the
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TABLE 3. Core load balancing results of conventional method using GA and our proposed method using LBM.

core load balance, we additionally used TA simulations; this
saves a great deal of time if we conduct verification using
an accurate TA model before reprogramming the new control
logic based on core equalization results. The Timing-1 results
are transferred to the TAmodel in TA. In addition, the created
TA model is compatible with APP4MC [35, 36] and is used
to execute our LBM algorithm. Additionally, we consider
AUTOSAR-based software architecture that consists of the
BSW-ASW-BSW chain of tasks [29]. We allocate all BSWs
in core 1. BSW should not be distributed to reduce the use of
spinlock and code size and is controlled by one core. On the
contrary, all ASWs are allocated in cores 0 and 2. Therefore,
only ASW is applied to LBM.

When calculating Cpi , the execution times of the tasks are
used as the average value. The number of shared data items
and the read/write relationships of each task are obtained
through theMDXfile. The shared data read/write access time
is assumed to be stored in the LMU to balance the access
time. The measured core load balancing results are shown
in Table 3 for our LBM algorithm and the existing genetic
algorithm (GA) load balancing algorithm [35].

The existing GA assigns 10ms and 50ms tasks to core
0 and the remaining tasks to core 2. In our proposed LBM,
only a 10ms task is allocated to core 0, while 83 aperiodic
tasks are allocated to core 0. The other aperiodic tasks are
allocated to core 2. Since sporadic and aperiodic tasks are
not considered in the existing scheme, we suppose that the
aperiodic tasks are allocated to equalize the results after spo-
radic and periodic allocation. When simulating the existing
GA results in the TA, with 33.7% in core 0 and 32.0% in
core 2, a 1.7% load equalization difference was observed.
When the existing GA results are applied to the actual engine
ECU, the difference in load equalization is 2.1%, 35.2% in
core 0 and 33.1% in core 2. When the LBM results were
simulated in the TA, core 0 occupied 33.2% and core 2 32.9%,
showing a 0.7% load equalization difference. When the LBM
result is applied to the actual engine ECU, a 0.3% load
equalization difference was observed, with 34.3% in core
0 and 34.0% in core 2. Our developed LBM showed a better
equalization effect for the TA model and the actual engine

ECU results. Since the verification method using TA is con-
firmed to have a similar tendency to the actual engine results,
subsequent experimental results are shown only as HILs
results.

Using the LBM core allocation results and shared data
information, we implement a shared data protection strat-
egy to protect against the race condition. The number of
copy/update data items is the same as the number of shared
data items presented in Table 3. The results of shared data pro-
tection are analyzed after applying optimization technology.
To use an engine ECUwith shared data protection technology
more efficiently, we applied the memory optimization tech-
nique of shared and non-shared data. In our memory alloca-
tion optimization method, data are mapped first to the target
platformDSPR. If the priority is constantly being updated and
the free capacity of the DSPR is insufficient, the data are set
to be allocated to the LMU with the worst performance. The
number of extracted non-shared data items was 25326, and
the number of shared-data items from MDX was 3530. The
existingmethod is difficult to manage because of the numbers
of shared and non-shared data items, which are allocated
randomly without a predetermined protocol. When applying
our memory optimization allocation technique, non-shared
data are locally shared and are allocated to the DSPR of
their own core. Since core 1 deploys only BSW, there are
no assigned data. The results of applying this allocation to
the engine ECU and analyzing the improvement effect are
the same as those shown in Table 4. The memory capacity is
as follows. {DSPR0 = 10% (shared data: 1821, non-shared
data: 11295), DSPR2 = 12% (shared data: 1709, non-shared
data: 14031)}. For example, a 5ms task has an Average CET
of 64.684us, which is calculated as an average core load
(= Average CET/Period => 64.684us/5000us) of 0.012936
(1.2936%). In comparison, our memory allocation algorithm
produced an average core load of 1.2565%, an improvement
in task performance by reducing the load by 0.0371%. The
access time of all tasks was reduced compared with those of
the existing method, as were the average CET and average
core load. The total load of all cores decreased by 2.406%
(0.2216 + 0.099 + 0.0371 + 1.5372 + 0.0798 + 0.0107 +
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TABLE 4. Average core load improvement of the memory allocation result.

FIGURE 6. Offset allocation result of all the periodic tasks (1ms, 2ms, 5ms, 10ms, 20ms, 50ms, 100ms, 200ms, 1000ms).

0.0798 + 0.0107 + 0.0798 + 0.1013 + 0.0106 + 0.0878 +
0.1289 + 0.012 2 = 2.406). To optimize task performance,
we also implemented offset optimization technology. The

offset results using above memory allocation results are
shown in Fig. 6. Since the offset is concluded using the CET
of each task, we divided the CET into offset avg and offset
max. Offset avg is the offset value assuming the CET of
all tasks will operate as an average value. In a similar way,
Offset max is the offset value considering the worst core
execution time (WCET). Compared with the conventional
method, we set the offset to 0, which is the situation where
there is no offset for any tasks. The results of our offset
technology are shown in Fig. 7 and Fig. 8. When applying
our offset technology, all the scheduling performances are
increased compared with those at offset 0. Further, it is more
efficient to use the offset avg than offset max, as shown
in Fig. 7 and Fig. 8.

After adapting this optimization technology, we verified
the schedulability of our multi-core-based engine ECU. HILs
transmit message frames of all the ECUs in an automotive
vehicle to our engine ECU. In [37], [38], h bound schedula-
bility is pessimistic in rate monotonic analysis. Also, it can
be lower than the actual achievable bound given a specific
system, and does not fit our concept. (A1: All processors
are allocated to single CPUs based on period, A3: There is
no data dependence among processes, A4: The execution
time for each process is constant) [39]. To reliably per-
form schedulability, we verified with the exact schedulability
method [40], [41] and determined it as the most accurate and
reliable method for rate monotonic verification. The real-time
exact schedulability is calculated in Equation 11.

CET i +
∑i−1

j=1
[
t ′

Pj
]CET j ≤ T (11)
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TABLE 5. Hils results using our migration technology.

FIGURE 7.
Measurement results of the Offset 0, avg, max. Average core load (Left), Peak load (Middle), Number of preemptions (Right).

FIGURE 8. Measurement results of the Offset 0, avg, and max. Total
average response time (Left), Total average start delay (Right).

• CET i = CET of Task i
• t ′ = period of of Task i
• Pj = period of of Task j
• T = Deadline of Task i
The CET of each task was analyzed through timestamps

at the beginning and end of tasks. The calculated CET
was substituted into the exact schedulability formula to
verify deadline meet in real-time. During HILs validation,
no tasks exceeded the range of exact schedulability. In addi-
tion, the worst case exact schedulability was verified by
substituting the measured worst case CET into the exact
schedulability equation. The results are described in Table 5.
Even in theworst case and real-time case, tasks did not exceed
the range of deadline. All tasks were performed on schedule,
and the engine ECU operated normally without malfunction
or erroneous information.

IV. CONCLUSION
In this paper, we identify the keymigration methodology nec-
essary for an actual multi-core-based engine. Our migration
technology includes core load balancing, shared data incon-
sistency, and optimization using memory and offset alloca-
tion. We apply it to the HYUNDAI engine ECU. Through
HILs, the performance of tasks increases, and all the tasks
work without missing deadlines. As a result, we showed
that a multi-core-based engine ECU using our migration
technology can be applied in an actual in-vehicle. We also
confirmed the performance improvement. In future work,
we will integrate the engine and transmission ECUs into
a multi-core MCU through our migration method. We will
also implement new prevention technology to thwart shared
resource invasions and failure propagation. Using this inte-
gration technology, the number of ECUs will be reduced,
leading to a reduction in power.
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