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ABSTRACT Cellular to air communication is critical for the booming aerial package delivery and transporta-
tion business. Detecting cellular signals in airborne applications is challenging because it requires receiving
and processing waveforms that are subject to significantly more interference than those experienced in
terrestrial settings. This paper highlights and tackles the complexity of 4G Long Term Evolution (LTE) signal
synchronization in high altitude applications, e.g., cell access onboard an aircraft. Specifically, we design
a novel cell detector that operates efficiently under high interference levels found in airborne applications,
maintains a constant false alarm rate using an optimized threshold implementation for Zadoff Chu sequences,
andmonitors multiple towers with different time delays simultaneously.We validate our cell detector through
simulation and experimentation. Lastly, the cell detector is used to estimate the interference in livewaveforms
taken from an aircraft at 2 to 2.5 km altitude and velocities of 200-400 km/h. Our cell detection model can be
adapted to support 5G New Radio (NR) synchronization signals as NR deploys aerial support in the future.
The threshold implementation to handle correlation spurs can be applied directly to other Zadoff Chu based
signals such as random access signals found in both LTE and NR.

INDEX TERMS Detection algorithms, 4G, long term evolution (LTE), 5G, new radio (NR), aircraft,
unmanned aerial vehicles, mobile communications correlation, radio frequency, signal detection, cellular
networks, synchronization.

I. INTRODUCTION
Cellular signal detection and synchronization for ground-
based applications have been thoroughly investigated [1], [2].
The main challenges with synchronization include line
of sight limitations, co-channel interference, and Doppler
effects [3], [4]. The severity of these challenges increases in
higher altitude applications. In the past, cellular infrastructure
has not supported non-terrestrial applications for two main
reasons. First, in the United States, the FCC and FAA have
historically restricted airborne access to cellular infrastruc-
ture to avoid reception of airborne transmissions by multiple
base-stations, resulting in degraded communication quality
and capacity for terrestrial users. Second, such access restric-
tion has discouraged investors and driven the market for
non-terrestrial cellular applications down to around less than
1% [5]. Nonetheless, it is expected that the non-terrestrial
cellular market will increase with the rapidly growing interest
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in unmanned aerial vehicles (UAVs), changing regulations,
and improvements in the cellular standard to mitigate multi-
cell uplink activation [6]. Therefore, optimized cellular signal
detection and synchronization for airborne applications is
indeed necessary.

Some airborne co-existence measures are being imple-
mented in the cellular standard and by researchers in the short
term. The third-generation partnership project Release 15,
which also covers the next increment of the cellular standard
referred to as NR, supports co-channel frequency reuse [6],
directional antennas, beamforming, antenna steering [7], [8],
and coexistence with legacy telemetry [5], [6]. Subsequently,
Release 17 will bring about improvements for non-terrestrial
devices including timing and acquisition augmented by
ephemeris, random access cell-to-cell handover, and general
physical layer and medium access layer support [6].

Though NR will improve airborne cellular support, NR is,
in essence, supplementing rather than replacing the existing
LTE network [9]. NR will coexist with LTE in a hierarchy to
add more capabilities for advanced applications such as aerial
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cellular devices. Airborne NR development will be more
practical once future adaptations of the standard support air-
borne coexistence. This paper focuses on currently deployed
LTE signals, while the NR infrastructure and releases are
rolling out. However, the approach in this work can act as
a guideline for future work with NR by updating sequences
and the physical layer receive algorithm [10].

With the existing LTE infrastructure, the majority of non-
terrestrial research and testing has been conducted with UAVs
at altitudes of 30 to 150meters and velocities of 30 to 50 km/h
[11]–[14]. At these speeds and low altitudes, many of the
challenges in establishing and maintaining synchronization
do not manifest fully as compared to those encountered at
higher altitudes (e.g. 2 – 2.5 km) and speeds (e.g. 200 –
400 km/h). While some existing studies address airborne
access to LTE, they do not attempt to optimize the synchro-
nization process itself for an airborne application and detect
multiple synchronization sources. Moreover, there is no study
of cellular synchronization in aircraft at higher altitudes and
faster velocities.

This paper opts to fill the technical gap by making the
following key contributions:

• Provide an in-depth comparison of cellular synchroniza-
tion methodologies found in literature.

• Develop an optimized primary signal synchronization
(PSS) algorithm for high interference scenarios with a
constant false alarm rate.

• Propose a PSS threshold implementation for detect-
ing multiple signal sources to create a ‘‘cell detector’’
instead of the traditional ‘‘cell search’’ which only con-
siders the most detectable signal.

• Characterize interference experienced by an airborne
LTE receiver based on the PSS correlation results from
both live and simulated waveforms.

The rest of the paper is organized as follows. Section II
highlights the increased challenges of receiving signals from
airborne platforms and the motivation for detector optimiza-
tion. The various synchronization signals in LTE and com-
mon synchronization methods are compared in Section III.
Section IV describes our novel design for an optimized PSS
cell detector. Section V presents and processes live high
altitude airborne waveforms. The proposed detector is used to
characterize the interference levels found in the live airborne
waveforms in Section VI. Section VII concluded the paper
with a summary of the contribution and future work. A table
of all used acronyms is provided in the Appendix for easy
access.

II. INTERFERENCE IN AIRBORNE APPLICATIONS
The main challenges that affect a user of cellular networks
on the ground are the Doppler effect [15], line of sight [16],
and co-channel interference [3]. These challenges are even
more impactful for airborne receivers, as illustrated in Fig. 1.
First, many airborne receivers will be traveling at high speeds.
A Piper PA-18, Boeing 747, and F22 Raptor have top speeds

FIGURE 1. Illustrating the challenges faced by an airborne LTE receiver.

of 200, 1000, and 2400 km/h, respectfully. At these velocities,
the max Doppler frequency shift at cellular frequencies is
roughly 500, 2500, and 6000 Hz, respectfully. Estimating and
correcting the effect of Doppler shifts improve synchroniza-
tion performance and are considered essential steps [15].

Second, the base-station antennas are directional and
may be tilted toward the ground which means that air-
borne receivers will have worse signal coverage [11]; it
has been shown in [7] that approximately 90% coverage
loss is observed above 50 meters. Additionally, receivers at
150 meters can be outside of the main lobe of the closest
tower and instead connect to neighboring towers that would
not be considered at 35 meters and below [7]. As a receiver’s
altitude increases, it will become even more likely to connect
to thesemore distant towers instead of the closest one. At high
altitudes, receivers also process indirect reflections of towers
that do not have a direct line-of-sight (LOS), which leads to
additional interference.

FIGURE 2. Classification and comparison of the types of co-channel
interference.

Finally, aerial units experience more co-channel interfer-
ence than ground-based devices; such an increase can be
attributed to three different reasons, as seen in Fig. 2. The
higher altitude increases the number of sightlines and exposes
the receiver to more signals from multiple base-stations.
Many of these signals can be indirect reflections off the
ground, buildings, or other objects, yielding significantly
degraded telemetry and reception. For ground transceivers,
the tilt of base-station transmitters and the surrounding
terrain limits the geographic overlap of channels operating
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FIGURE 3. Highlighting LOS differences in terrestrial and aerial
applications.

on a single frequency carrier to only neighboring sectors,
as seen in Fig. 3. Towers only overlap on the edges of cells
where the different base-stations are fairly equidistant to
the receiver. A higher level of co-channel interference for
an airborne receiver is expected as many base-stations can
overlap at different distances from the receiver on the same
frequency carrier. Understandably, such channel overlap in
time and frequency constitutes interference for the airborne
receiver [3], [17].

Meanwhile, applying orthogonal frequency division mul-
tiple access (OFDMA) on the downlink can only support a
finite delay between signals. For LTE and 5G, the guard inter-
val is the cyclic prefix (CP); if the delay between base-station
signals exceeds the CP, inter-symbol interference (ISI) will
occur and symbols will interfere with subsequent symbols
of other base-stations in the time domain. Additionally,
the signals will become non-orthogonal to each other, which
inherently breaks the basic functionality of OFDMA [18].
In OFDMA, subcarriers are designed to be tightly grouped
and spaced such that their frequency response is zero at neigh-
boring subcarriers as seen in Fig. 2. This relationship requires
the symbol time to equal the inverse of the subcarrier spacing.
When the delay between base-station signals at the receiver
is too large, inter-carrier interference (ICI) would then cause
additional interference between the subcarriers of multiple
base-station signals at the receiver. The maximum difference
in delay 1τ between time-aligned transmitting base-stations
that preserves orthogonality at the receiver comes from the
CP guard interval TCP and the maximum excess delay1τmax
of 2.5 µs [18]. TCP is based on subcarrier spacing and for
this work is set to the most common case of 4.7 µs for
15 kHz subcarrier spacing. After converting to distance using
the speed of light, the orthogonal path difference (OPD)
between any two base-stations and the receiver is 656 meters
as derived from (1).

OPD = c(TCP −1τmax) (1)

In the air, the line of sight isolation is not present and
can cause the receiver to capture multiple downlink signals
with time delay differences and corresponding path length
differences between base-stations and the receiver larger than
the OPD [5].

FIGURE 4. Loss of orthogonality between (a) interference signal and
(b) measured signal showing (c) ICI interference on the measured signal
with various delays on the interfering signal.

ICI occurs even in non-overlapping frequencies when
the delay between two signals is large. In Fig. 4, two
randomly-generated 5 MHz OFDMA signals have been
mixed. The interference signal: (a) occupies only the middle
resource blocks, and (b) is delayed with respect to the mea-
sured signal. The measured signal only occupies the resource
blocks on the edge of the signal so that both signals do not
overlap in frequency and will not interfere with one another
if they are time-synchronized, i.e., at zero respective delay
from one another. The respective delay for the interferer
grows, as seen in Fig. 4(c). After exceeding the OPD possible
between the two signals at the receiver, ICI interference can
be seen in the difference between the measured signal and the
interferer, averaged across each subcarrier. After this critical
maximum delay, all subcarriers lose orthogonality and cause
ICI to all neighboring subcarriers even in non-overlapping
frequencies. In summary, the higher and more complex inter-
ference found in airborne applications is inherently difficult
to characterize and degrades the ability to synchronize and
detect cellular towers [19].

III. SYNCHRONIZATION SIGNALS AND METHODS
To highlight the challenges of signal localization in air-
borne applications, we use LTE as an example technology.
The following discussion of LTE synchronization details
the processing that occurs on a specific LTE frequency
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FIGURE 5. LTE downlink synchronization channels within the downlink
time/frequency frame.

carrier called an E-UTRA Absolute Radio Frequency Chan-
nel Number (EARFCN) after acquisition. The acquisition
process involves identifying all the center frequencies of
active EARFCNs in the LTE operating band(s). Fig. 5 shows
the important channel locations for synchronization within
the LTE downlink time/frequency frame structure, includ-
ing the primary synchronization signal (PSS), secondary
synchronization signal (SSS), and master information block
(MIB) [20]. The reference symbols (RS) are also shown;
RS can be used for synchronization, though their intended
purpose is for channel equalization and measuring channel
quality [20].

A device must synchronize to an LTE base-station to
allow for the decoding of messages and data. Synchronization
includes time, frequency, code, and antenna alignment to the
LTE downlink. Time and frequency alignment is required to
correctly access resource elements on symbols and subcar-
riers. Cell alignment is the process of finding an LTE base-
station’s physical cell identity (PCID) that is a value in the
range [0, 503], and is traditionally found using the PSS and
SSS. This value is required to decode channels and messages.
Lastly, antenna alignment is the process of finding how many
transmit antennas are in use on a particular LTE cell. This
information is required to determine the location of certain
channels in the time/frequency frame structure and decode
messages properly [20].

There are three different potential options for obtaining the
required synchronization information based on processing
different portions of the LTE downlink, as illustrated in Fig. 6.
Discussing these options is important to understand the scope
and related work built upon in our approach. Processing of
various sequences are shown as correlations performed in
the ‘‘t’’ time domain or ‘‘f’’ frequency domain, but any of
these sequences can be processed in the time and/or frequency
domain with varying levels of complexity and performance.
The scores are displayed in Fig. 6 as sensitivity (S), memory
cost (M), and execution time (E) based on sequence sizes,
required data rates, and performance testing. Typically, mem-
ory and execution time increase and decrease simultaneously
and are grouped together. Execution time can indirectly boost
the detector’s sensitivity through processing more diverse
spectral waveforms within the same period.

The LTE standard traditionally addresses synchroniza-
tion using several correlations [15] as seen in Option A in
Fig. 6. This process involves establishing time alignment and

FIGURE 6. Comparison of the various LTE Synchronization Methods.

determining the sector ID (SID) with a PSS correlation. Then
a cyclic prefix correlation removes any fractional frequency
offset to provide frequency alignment. An SSS correlation
then finds the group ID (GID), which is combined with the
SID to find the PCID. At this point, time, frequency, and
code alignment has been achieved, allowing the MIB to be
decoded to determine the number of transmit antennas for
the base-station as well as the system frame number. The
system frame number is important for larger scheduling deci-
sions in the LTE super-frame, which consists of 1024 frames.
Option A is predominantly used because the PSS and SSS are
compact and grouped in the center of the LTE carrier, which
allows detectors to run at low sampling rates.

Fig. 6 also shows an alternative synchronization process
(Option B) using the CP for time alignment [21] and the
PSS for frequency alignment [22]. Option B also notes that
the RS can be used to find the PCID as well [23]. This
option removes the need for performing the SSS and could be
supplementary to finding the SID from the PSS. This option
requires higher processing because RS are spread across
frequency and time as compared to the centrally located
SSS within the LTE downlink. Using reference symbols does
provide time and frequency diversity, which can improve
the signal detection performance. Finally, Option C, referred
to as frequency offset detection, assumes that any of these
sequences can be shifted in frequency in a scan-like fashion
by the receiver. Shifting each sequence at multiple frequency
steps requires much more processing and memory, but allows
for frequency offset correction and better sensitivity [24].

Each of these synchronization strategies chooses the top-
most detection for every stage of alignment and creates a
‘‘cell search’’ as only the topmost cell is found andmonitored.
Instead, in this paper, we seek tomonitormultiple cells, which
are likely to be reachable in airborne applications. Each step
in the synchronization process needs tomonitor multiple cells
to create a ‘‘cell detector’’. We focus on the creation of a
cell detector using the PSS sequence, as it is the first step
in all three synchronization options presented above. The
objective is to design a detector with a low sampling rate and
complexity. Unlike the CP [15], the detector should recognize
the presence of multiple towers simultaneously. The next
section describes our proposed PSS cell detector.
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FIGURE 7. High-level description of the traditional PSS correlation for a
cell search.

IV. OPTIMIZED PSS DETECTOR FOR AIRBORNE
APPLICATIONS
In this section, we present our PSS detector that tackles the
aforementioned challenges of airborne applications. We first
discuss the design challenges and trade-offs.

A. DESIGN CHALLENGES
To create an optimized PSS cell detector we first consider
the sequence type and properties inherent to PSS correla-
tions. The PSS is one of three Zadoff Chu sequences with
different roots. Zadoff Chu sequences have strong correlation
properties that assist with the synchronization process [20].
The traditional time-domain PSS correlation process is sum-
marized in Fig. 7, where all three Zadoff Chu sequences are
cross-correlated with an incoming signal.

Commonly, as in [25], [26], only the maximum PSS cor-
relation from all three sequences and a single time alignment
are considered in a cell search. This is typical when looking
for just a single cellular sector. To create a cell detector,
a threshold is required to determine if multiple PSS correla-
tions on the three Zadoff Chu sequences and at different time
offsets are valid. Most PSS detectors that use a threshold skip
the development entirely by saying that it is predetermined
[27]. Commonly as in [23], [28], a detector uses a threshold
based on the mean of the correlation results. However, this
does not account for spurious correlations found when doing
correlations with Zadoff Chu sequences [20], [29] that are
amplified in the presence of carrier frequency offsets (CFO).
CFO manifests because of the Doppler effects and oscillator
drift [30].

Furthermore, CFO causes the spurious correlations to grow
with increasing frequency shift and is expected in airborne
applications. To illustrate the CFO effect on correlation spurs,
we have simulated an LTE signal with PSS (sequence 0), SSS,
RS, and MIB at different frequency offsets. The simulation
is conducted using the LTE and signal processing toolboxes
from Matlab 2020b to develop a platform for signal creation
and interference testing. Fig. 8(a) shows the correlation result
of the time domain for the known Zadoff Chu sequence of
zero and without a frequency shift. The true correlation peak
that will align the detector to the tower is shown with four
spurious correlation peaks. In Fig. 8(b) the true peak and
four spurious correlations are tracked with frequency shifts to
simulate a CFO. Increasing frequency shifts increase the cor-
responding spurious peaks in the correlation. While the mean
of the other time samples (or non-peaks) remains relatively

FIGURE 8. Spurious PSS correlations: (a) in the time domain with zero
frequency shift and (b) at different frequency offsets.

low. This further demonstrates the need for our optimized cell
detector in airborne applications where spurious peaks are
expected to increase under Doppler’s effect and are present
at even small frequency shifts within a subcarrier.

B. AIRBORNE CELL DETECTOR
To support airborne applications, our PSS detector com-
bines multiple existing performance-enhancing digital signal
processing elements. A block diagram description of our
proposed detector is shown in Fig. 9 in an airborne sce-
nario. Fig. 9 captures the flow and detailed steps of our
approach. Our signal detection scheme considers spurious
correlations inherent to Zadoff Chu sequences to create a
constant false alarm rate over other approaches and allows
for the detection of multiple towers. Our resulting correlation
to noise ratio (CNR) can then be used to estimate the inter-
ference on the PSS sequence itself. Our detector can correct
for large frequency shifts by repeating the design in Fig. 9 at
multiple frequency steps as shown in the ‘‘scanning’’ method
in Fig. 6. These improvements to the cell search type detector
shown in Fig. 7 allow for detection and characterization in
airborne applications.

First, cross-correlation is performed between incoming
received waveform (y) and known conjugated PSS sequences
(x∗µ) for each PSS SID (µ) zero, one, and two, which cor-
respond to Zadoff Chu roots 25, 29, and 34. The received
signal (y) is separated into sections (γ ) whose size is flexi-
ble. Equation (2) shows the cross-correlation operations and
power delay profile of the received sequences as:

z(l, µ) =

∣∣∣∣∣
NFFT∑
n=0

γ (n+ l)x∗µ(n)

∣∣∣∣∣
2

, l = 0, . . . ,NFFT − 1 (2)

For LTE, the known sequence (x∗µ) contains the 63 length PSS
sequence padded to the DFT size of 128 reference elements
(NP) at the lowest rate of 1.92 MS/s. x∗µ is then padded with
(NFFT−NP) zeros tomatch the length of the received segment
(NFFT ). To utilize the DFT the cross-correlation is performed
in the frequency domain as follows:

Z [k, µ] = Y [k]X∗µ[k] k = 0, . . . ,NFFT − 1 (3)

z(l, µ) =
∣∣IDFT {Y [k]X∗µ[k]}∣∣2 l = 0, . . . ,NFFT−NP−1

(4)
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FIGURE 9. Block diagram design of our PSS cell detector for airborne applications.

Each cross-correlation with receive segment (γ ) must have
the last NP samples removed from the result because the
DFT creates a circular cross-correlation. NFFT can be set to
any value that is larger than NP. This flexibility and opti-
mization is an important distinction from fixed-sized DFT
approaches in other works [15], [31]. A similar approach is
applicable with any synchronization signal, including 5GNR,
by modifying sequence values, lengths, and sampling rate.
Such an LTE/5G signaling feature allows for the optimization
of the DFT correlation size on a particular receiving system
where the optimal DFT size can vary based on the hardware.
Executing the cross-correlation with the DFT and optimizing
the DFT size is not only important for execution time but
also indirectly increases the detector’s sensitivity by allowing
more diverse waveforms to be processed.

Next, we combine a series of conditioning steps in Fig. 9 to
improve the traditional PSS cell search found in Fig. 7. Each
receive segment is appended to previous segments and aver-
aged non-coherently over 160 ms for maximum sensitivity in
high interference, as recommended by [32]. This creates an
output correlation result with a length of the PSS period (half
a frame) represented from hereafter by z. A moving average
takes oversampled input waveforms by a factor of two or the
smallest rate, which is 1.92 MS/s for LTE and 3.84 MS/s for
5G. Using a moving average helps in accounting for phase
misalignment. By incorporating digital processing elements
to expedite the execution, our detector can better sense signals
under high interference found in airborne applications.

The maximum of each PSS sequence is found with respect
to the time sample offset 1, as seen in (5).

{MAX (µ), 1(µ)} = maximum(z), µ = 0, 1, 2 (5)

A threshold factor (T ) can be created using the desired
false alarm probability and cumulative distribution function

as described by [28]. The threshold, however, assumes that
additive white Gaussian noise (AWGN) variance is one and in
practice must be adjusted with a modifying factor m to create
the detection threshold Tdet, as seen in (6).

Tdet = T · m (6)

Typically the modifying factor only targets the noise level by
finding the mean of the correlation, as shown in (7). This
has been done for Zadoff Chu [15], [28] as well as other
sequences [23].

mC (µ) =
1
N

∑
n6=1

zµ(n), n = 0, . . . ,N − 1 (7)

However, to account for false detection from PSS spurs we
adapt the modifying factor to primarily target correlation
spurs and secondarily target the noise envelope.

C. DETECTION THRESHOLD
In our design, we create a threshold that targets the inherent
Zadoff Chu correlation spurs. To better understand these
correlations spurs we investigate their effects. Fig. 10 shows
the correlation of a high and low signal-to-noise ratio (SNR)
for each PSS sequence against a known baseline (Sequence
0) normalized between zero and one. The correlation peak
for high SNR occurs at around 88% and the correlation
peak for the low SNR occurs at around 36%. Spurious false
correlations occur in the duration of a symbol around the
true PSS correlation peak. These spurious correlations occur
as the known PSS is swept across the transmitted PSS and
even occur in PSS sequences that do not match. The spurious
correlations are the highest in sequence 2, with a maximum
peak at around 12.5% for the high SNR and around 7.5%
for the low SNR signals. The spurious correlations diminish
with added noise so they occur most prominently in high
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FIGURE 10. Spurious PSS correlations in the time domain at (a) high
and (b) low SNR.

SNR or high CFO. Our detector targets the correlation spurs
when creating a threshold to maintain performance under
high and low SNR.

To create the spur-based modifying factor ms, first, the
correlation output is sorted, ←z = sort(z), in descending order,
and then an adaptable range is set to target the correlation
spurs in (8). To allow for multiple true peaks within a single
PSS sequence the modifiable range can be set based on the
number of true peaks P#, and size of peaks p in samples.
Then, the same range covers the spurs by averaging over a
range considering the number of spurs S#, and size of spurs
s in samples. For our simulations, p was set to three, P# was
set to two, s was set to two, and S# was set to three based on
approximation of spur sizes seen in Fig. 10.

ms(µ) =
1
Ns

(p·P#+·s·S#)∑
n=p·P#

←zµ(n), n = 0, . . . ,N − 1 (8)

Then, the updated threshold is compared with the correlation
for every (µ) sequence as seen in (9).

z(l, µ) ≥ T · ms(µ), thus, the tower is detected at location l

z(l, µ) < T · ms(µ), thus, no detections (9)

The correlation can be scaled to create an CNR and corre-
sponding threshold CNRT that can be modified to fit a proba-
bility of false alarm, as shown in (10). The CNR represents
the peak height of the PSS correlation peak over the new
modifying factor expressed in decibels.

CNR(l, µ) =
z(l, µ)
ms(µ)

, CNRT = T (10)

The CNR weighs each potential PSS peak over the expected
spurious correlations foremost and then the varying noise
envelope. Our cell detector is seen in Fig. 9 can then pre-
vent false positives from correlation spurs while maintaining
high sensitivity, create a fixed threshold on the CNR that
represents the confidence of each PSS peak, and allows for

multiple sequences and time offset detections expected in
airborne applications. The CNR can be used to estimate the
channel conditions based on the PSS, instead of the traditional
RS based channel estimation, which requires time and fre-
quency averaging that cannot be done on the PSS. RS channel
estimation generally requires larger sampling rates leading
to increased detector complexity [15]; such shortcoming is
avoided by our approach.

Lastly, in airborne scenarios, the cell detector can operate
over a frequency correction scanning range and step sizes,
and consequently our design has to account for CFO. As dis-
cussed in Section III and shown in Fig. 8, correlation spurs
increase with increased CFO. Our threshold accounts for
these spurs and reduces the dependency on CFO correc-
tion. However, the cost of CFO estimation and correction
may be worthwhile depending on the degradation of the
PSS sequence under the expected Doppler shift. Multiple
algorithms address CFO detection and correction to handle
Doppler effects and frequency mismatch between the trans-
mitter and receiver. The fractional frequency offset (FFO)
refers to the CFO that occurs within a subcarrier, +/−
7.5 kHz where the integer frequency offset (IFO) denotes
CFO that is greater than a subcarrier. To compensate for the
Doppler effects, the CP is typically used [22]. This is possible
because the CP auto-correlation compares a known piece of
an LTE/NR symbol with the copied portion at the beginning
of the symbol. The angle between these correlations can be
used to find the FFO that can then be compensated for to
improve the rest of the synchronization process. Additionally,
the PSS itself can also be used to compensate for the Doppler
effects [33], because the PSS repeats the same sequence
in both the time and frequency domain. The partial PSS
sequence is time-reversed when it repeats and provides a
repeated signal that can be used to measure the change in
phase and estimate the FFO as well. Moreover, IFO can be
handled using the scanning detector, as described in Option
C from Section III. How necessary and over what frequency
range to scan depends on the expected velocity of the aircraft;
the degradation of the PSS sequence and expected varia-
tions in correlation spurs. Regardless, our threshold approach
increases the detection performancewhen spurs occur in CFO
estimation and correction. The results in Fig. 10 use the same
simulated waveforms as Fig. 8 with added noise to create
different SNR as described in the next section.

The cell detector described in this section overcomes infer-
ence and correlation spurs found in airborne applications.
Any LTERF receiver and processor on board an aerial system
can run the detector as seen in Fig. 9. This includes both
manned and unmanned aircrafts such as UAVs. The detector
could be adapted to other applications involving fast moving
objects such as satellite and high speed trains where interfer-
ence is severe.

V. SIMULATION-BASED VALIDATION
In this section, we validate our PSS cell detector through
simulation and compare its sensitivity under poor SNR,
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FIGURE 11. Receiver operating curve for PSS detector with varying SNR
values.

thresholding approach, and CFO correction to alternative
techniques. Simulated waveform, y, has been created using
(11) by modulating an LTE signal (ψ) containing RS, PSS,
SSS, MIB, user data including control channels, and mixing
in AWGN with noise gain, η, and randomized vector, r . The
simulated model included varying network loads, yet such
variations did not cause meaningful changes in the valida-
tion or comparison. Multiple different PCID have been tested
showing similar results; however, only signal processing for
Zadoff Chu sequence PSS group ID zero is illustrated.

y = ψ + η · r (11)

The noise gain as shown in (12) is added before OFDM
demodulation and must be scaled to normalize the SNR at
the receiver, where snr is a linear SNR. To scale the noise
gain, the square root of the FFT size (NFFT ), the number of
transmit antennas (α), and the average modulation magnitude
(1
/
sqrt(2)) must be used.

η =
1

snr
√
2 · α · NFFT

(12)

Fig. 11 shows the receiver operating curve for our opti-
mized PSS algorithm using simulation-produced signaling
waveforms at different SNR levels. Signal detection is only
deemed successful if both the PSS sequence and location
in time are detected correctly. Any signal with an SNR of
−9 dB or higher had perfect detection performance. The
performance began to deteriorate between SNR values of
−10 dB to −13 dB with almost no signal detectability at
−18 dB and below. Such performance of our PSS cell detec-
tor is comparable to other highly sensitive PSS cell search
algorithms [25], [34]. However, our design enables detecting
multiple towers at different time offsets down to this sensitiv-
ity and not just a single tower and time offset.

Using a mean correlation threshold [15], [23], [28], [35]
does not account for the spurious correlation peaks from
Zadoff Chu sequences. The probability of false alarm changes
with varying SNR values of the incoming signal as seen
in Fig. 12(a) and can also lead to improper detection. For
example, to maintain a low probability of false alarm the
threshold has to be set up at 20 dB CNR based on Fig. 12(a).
This limits the region of operation for a high probability of

FIGURE 12. Comparison of the probability of detection and false alarm
for cell detector using (a) mean-based threshold versus (b) spurious
threshold.

FIGURE 13. Comparison of Doppler Effect and frequency offset detector.

detection to −7 dB. These spurious correlations create an
opportunity and a challenge in setting a detection threshold.
Our threshold implementation is targeting the spurious corre-
lations as seen in Fig. 12(b), which creates a flatter probability
of false alarm. A lower probability of false alarm can be
maintained by setting the threshold mostly based on the spu-
rious correlations foremost while factoring in the top portion
of the correlation noise secondarily. Once noise correlations
are higher than the spurious correlations the threshold will
be determined by the correlation noise instead of the spurs.
Using the spurious correlation aware threshold allows for
a lower CNR threshold of around 7 dB, extends the high
probability of detection to lower SNR by about 4 dB.

To determine to what extent frequency offset correction is
required in our PSS cell detector we look at how the PSS algo-
rithm performs under simulated Doppler effect for varying
velocities. Fig. 13 shows the change in PSS CNR from our
cell detector with different known frequency shifts for each
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FIGURE 14. Power Spectrum Density of Airborne Trial Waveform.

of the three PSS sequences. The Doppler range for the Piper
PA-18 (210 km/h), Boeing 747 (990 km/h), and F-22 Raptor
(2420 km/h) are shown to evaluate the potential effect from
Doppler for these aircrafts. The Doppler shift is directional,
which can result in a range of possible shifts depending
on the aircraft’s heading. The observed maximum Doppler
shifts using the LTE frequency carrier of 1955 MHz are 380,
1793, and 4384 Hz, for the Piper PA-18, Boeing 747, and
F-22 Raptor, respectively. Fig. 13 illustrates that Doppler and
frequency offsets do have some impact on the performance
of the PSS detector, but not enough to be considered for the
cruising speed of commercial aircraft (Piper PA-18). The fre-
quency correction methods previously described can account
for larger frequency shifts if operating at higher velocities.
Determining the need for frequency correction helps limit the
complexity and cost of the algorithm. Next, we look at how
the PSS algorithm performs in a live airborne experiment and
estimate the levels of SNR that are found within that scenario.

VI. EXPERIMENTAL RESULTS
We have evaluated the performance of the cell detector by
estimating the level of interference in waveforms collected
from an aircraft during flight over a suburban and rural area in
Frederick County, Maryland, USA, that is served by multiple
LTE towers. This tests against physical constraints found
in live airborne waveforms that are difficult to capture in
simulated data.

A. EXPERIMENT DETAILS
An airborne trial was performed in a low-speed aircraft
similar to the Piper PA-18 with an omnidirectional antenna
operating over a suburban to rural region. The IQ sampling
rate of the receiving system was set to 100MS/s and recorded
at 1950 MHz which is a mixed cellular band. The test was
performed at altitudes between 2 and 2.5 km, which is much
higher than what is found in the literature. At these alti-
tudes, receiving and synchronizing to LTE are challenging as
explained in Section II. Fig. 14 displays the power spectrum
density (PSD) of the trial waveforms. A null carrier found

FIGURE 15. DFT of airborne trial waveform for LTE carrier signals
(a) and (b).

in the center of LTE signals can be used to determine what
frequency carriers are for LTE. There are two LTE frequency
carriers visible in Fig. 14, at 1940 MHz and 1955 MHz. The
PSD averages power so the envelope for both of these signals
has a higher power level than at a given instant in time.

To estimate the SNR of the signal, we consider both fre-
quency carriers individually and the average power, as seen
in the DFT plots in Fig. 15. The SNR is measured from
the average inband power to the guard band power while
considering only the top portion of the inband power as not all
carriers have to be populated in LTE. The estimated SNR of
the frequency carriers centered at 1940 MHz and 1955 MHz
are found to be approximately 20 dB and 14 dB, respectfully.
Overall, Fig. 15 suggests that the power envelope of LTE
signals is high and that there is little concern for the ability of
the receiver to detect the channels within these signals.

B. CELL DETECTOR OUTPUT
We determine the success of our cell detector by measur-
ing how many towers are detected versus the standard cell
search. We also compare our threshold performance to those
done for low SNR ground [23], aerial navigation [15], and
satellite-based applications [28], and calculate the difference
in distance between the detected towers as an indication of
the complex interference scenarios discussed in Section II.
Fig. 16(a) and (b) show the results of our PSS cell detector for
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FIGURE 16. PSS Results for simulated waveforms with SNR of 30 dB in
(a), and airborne trial waveforms for two sample LTE carrier signals
(b) centered at 1940 MHz, and (c) centered at 1955 MHz.

the experimental airborne waveform collection. As a baseline
for comparison, we also show results from the simulation
in Fig. 16(c) from Section V, which reflects the detector
output under ideal conditions (SNR: 30 dB). In the simulation
results found in Fig. 16(c), the threshold for both constant
false alarms 0.2% and 2.0% are shown and the true sequence
(PSS 0) is the only sequence of the three PSS sequences to
pass the threshold.

Using the cell detector, the airborne trial LTE signal ‘‘A’’
from Fig. 16(a) centered at 1940 MHz has only one detection
from sequence 1, which is above both the 0.2% and 2%

FIGURE 17. PSS Interference Characterization for LTE Carrier Signals
comparing Simulated and Experimental Data.

probability of false alarm thresholds. This result indicates
that at least one tower is detected. More interestingly, LTE
signal ‘‘B’’ in Fig. 16(b) centered at 1955 MHz has all three
sequences pass the thresholds and at different time stamps.
Such a result implies that at least three sectors are present
on this carrier frequency. Alternatively, a cell search was
only able to detect sequence zero in signal B and missed
sequences one and two. Additionally, using the mean based
thresholds for low SNR ground [23], aerial navigation [15]
and satellite-based applications [28] applications results in no
tower detection for signal A and detection of only sequence
zero in signal B using a probability of false alarm of 2%.
Assuming the towers are time-aligned at the source of trans-
mission, the time difference between sequence zero and
sequence one in signal B indicates a path length difference
of 15 km, which is much larger than the maximum OPD
and the expected path length found in ground applications
(a few hundred meters). This path length difference is almost
the maximum cell size of 20 km, and thus strongly indicates
reception of non-neighboring towers at the same time at the
airborne receiver. Additionally, as stated earlier, there is no
guarantee that the strongest signal is the closest. All detected
correlations in the airborne waveforms have low CNR com-
pared to the simulated waveforms in Fig. 16(c) indicating that
there is high interference.

As expected and previously discussed in Section II, the air-
borne experimental waveforms are difficult to characterize
because there are so many different possible types of inter-
ference. However, our cell detector has a constant false alarm
rate and can operate over varying CFO and signal to inter-
ference plus noise (SINR). SINR conveys the unknown level
of interference in the experimental waveforms and is used for
the rest of the paper in place of SNR. Moreover, the threshold
used by our approach prevents spurs from creating false
alarms and gives higher sensitivity and credibility to peaks
found over the threshold.

C. CHARACTERIZATION
To better understand the level of interference within the LTE
frequency carrier, signals A and B in the collected airborne

55564 VOLUME 9, 2021



B. W. Stevens, M. F. Younis: Detection Algorithm for Cellular Synchronization Signals in Airborne Applications

TABLE 1. PSS Characterization SINR Estimation.

signals we have characterized them by comparison with sim-
ulated waveforms generated in Section V, whose SINR is
known. Fig. 17 shows the PSS correlation result for each
simulation-created SNR. The PSS correlation results are then
mapped from the live airborne waveforms to the simulated
waveforms to approximate and compare the interference seen
on the PSS sequences between simulated and experimental
results. Fig. 17 shows PSS correlation results in the range
of 9 to 11 dB; these results map to the simulated waveforms
at around −10 dB SINR. This allows us to estimate the
interference on the PSS sequences in the airborne signals as
an estimate SINR as seen in Table 1.

Table 1 shows that even though the received signals’ power
envelope is 15 to 20 dB for these LTE signals, the interference
within the signal on the PSS yields an effective SINR of
−9 to −7 dB. The power envelope to SINR difference and
the number of PSS sequences seen at different time offsets
indicates this high level of interference is most likely from
co-channel interference as described in Section II and that
there were likely multiple indirect propagation paths from
towers to the aircraft. Thus, our approach avoids the need to
use an additional RS estimation of the channel by creating
a PSS CNR that can characterize the channel. The spur and
envelope threshold-basedCNR enable useful characterization
for varying SINR. Additionally, by creating a cell detector
over a cell search we can detect multiple towers at different
time lags with high sensitivity.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have designed a PSS cell detector that
combines multiple digital signal processes to combat high
interference expected in airborne applications. Also, we have
defined a threshold andCNR for our detector based on Zadoff
Chu correlation spurs to provide a stable false alarm rate and
allow for multiple diverse cell detections. We have defined a
cell detector to find multiple towers at different time offsets,
unlike a cell search, which only requires the maximum corre-
lation. We have also devised guidelines for CFO correction
based on the velocities of the airborne objects and have
demonstrated how correlation spurs depend on the frequency
offset. Lastly, we have used this approach to estimate infer-
ence in waveforms taken by a propeller plane at 2 to 2.5 km in
altitude, which is much higher than conditions addressed in
literature. Using our approach, the PSS has been successfully
detected formultiple towers on a single LTE carrier frequency
and at different time lags within the airborne waveforms. The
PSS interference has been further characterized by comparing
PSS CNR values observed in the collected waveforms with
PSSCNR for simulated LTEwaveforms as a function of SNR.

The comparison has shown that though the PSD envelopes of
the LTE carriers appeared high in the experiment, co-channel
interference within the channel resulted in interference levels
of between 20 to 25 dB on the PSS sequence.

The DSP elements in our cell detector are directly applica-
ble to other synchronization sequences found in LTE and NR.
The threshold and CNR implementation are directly applica-
ble to other Zadoff Chu sequences such as the random access
procedures found in LTE and NR. The threshold implemen-
tation can be updated to support other sequences such as gold
codes and m-sequences found in LTE and NR. As the cel-
lular infrastructure improves aerial coexistence in upcoming
releases, further investigations on inference improvements
will be critical for optimizing cell detectors for NR. For future
live airborne cellular tests, a direction antenna could help
isolate specific towers and reduce co-channel interference by
placing angularly distributed cells into side lobes. At higher
altitudes, signal levels could become a problem and a direc-
tional antenna at the receiver could improve the receiver’s
gain. Additionally, tracking the cellular base-stations could
be implemented with known location data and compared.

APPENDIX: ACRONYM LIST
AWGN Additive White Gaussian Noise
CFO Carrier Frequency Offsets
CNR Correlation To Noise Ratio
CP Cyclic Prefix
DFT Discrete Fourier Transforms
EARFCN E-UTRAAbsolute Radio Frequency Channel

Number
FFO Fractional Frequency Offset
GID Group ID
ICI Inter-Carrier Interference
IFO Integer Frequency Offset
ISI Inter-Symbol Interference
LOS Line Of Sight
LTE Long Term Evolution
MIB Master Information Block
NR New Radio
OFDMA Orthogonal Frequency Division Multiple

Access
OPD Orthogonal Path Difference
PCID Physical Cell Identity
PSD Power Spectrum Density
PSS Primary Signal Synchronization
RS Reference Symbols
SID Sector ID
SINR Signal To Noise Ratio
SNR Signal To Noise Ratio
SSS Secondary Synchronization Signal
UAV Unmanned Aerial Vehicles
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