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ABSTRACT Spectral computed tomography (CT) is extension of the conventional single spectral CT
(SSCT) along the energy dimension, which achieves superior energy resolution and material distinguish-
ability. However, for the state-of-the-art photon counting detector (PCD) based spectral CT, because the
emitted photons with a fixed total number for each X-ray beam are divided into several energy bins,
the noise level is increased in each reconstructed channel image, and it further leads to an inaccurate material
decomposition. To improve the reconstructed image quality and decomposition accuracy, in this work,
we first employ a refined locally linear transform to convert the structural similarity among two-dimensional
(2D) spectral CT images to a spectral-dimension gradient sparsity. By combining the gradient sparsity in the
spatial domain, a global three-dimensional (3D) gradient sparsity is constructed, then measured with L1-, L0-
and trace-norm, respectively. For each sparsity measurement, we propose the corresponding optimization
model, develop the iterative algorithm, and verify the effectiveness and superiority with real datasets.

INDEX TERMS Refined locally linear transform, structural similarity, sparsity construction, spectral-
dimension gradient sparsity, constrained optimization, iterative reconstruction, spectral CT, material decom-
position.

I. INTRODUCTION
X-ray computed tomography (CT), as a nondestructive
inspection technique, has been widely used in many fields,
such as medicine, industry, biology, exploration, security, and
so on [1]–[3]. Although the specific equipment design, scan
protocol, and utilization purpose are greatly diverse, the fun-
damental image-forming principle is consistently based on
the Beer–Lambert law, which describes the relation between
X-ray and the object as an exponential attenuation model,

I (E) = I0(E) exp
(
− P(µ(E, x))

)
, (1)

where µ(E, x) is the linear attenuation coefficient for energy
E at the position x [4], P(·) a line integral operator (the
ray transform and especially the Radon transform for 2D
cases [5]), I0(E) the emitted photons, and I (E) the collected
photons. Actually, the validity of (1) is confined to a set
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of ideal imaging conditions, such as the X-ray energy is
monochromatic, there is no scattering in the imaging process,
and so on. However, in practical applications, the energy E
obeys an emitted spectral distribution called S(E), i.e., poly-
chromatic. Thus, (1) should be changed to

I =
∫
E
S(E) exp

(
− P(µ(E, x))

)
dE .

After the logarithmic transformation, we can obtain the
commonly known projection as follow,

P = ln
[ ∫

E S(E) dE∫
E S(E) exp

(
− P(µ(E, x))

)
dE

]
. (2)

The problem of CT reconstruction is to determine an approx-
imate distribution of µ from a set of (2).

Over the last 40 years, 5 major innovations were made
in the development of CT technology, which contribute to
improve the scan efficiency and practicability, i.e., spatial-
domain modification, but never touch the spectral scope.
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In other words, these generations just develop different pat-
terns to construct P(·) mappings. Recently, spectral CT
is proposed by extending the conventional single-spectral
computed tomography (SSCT) along the energy dimen-
sion [6]. And the state-of-the-art implementation technique
is employing a photon-counting detector (PCD), a kind
of energy-selective detector [7], [8], which can divide the
X-ray photons into different energy channels with appropri-
ate post-processing steps and then obtain multiple energy-
dependent projection sets [9]. Thus, comparedwith the SSCT,
spectral CT is superior in energy resolution and material
distinguishability. It has great potential in both medical and
industrial applications [10]. Mathematically, spectral CT can
be described by introducing a window function to (2), i.e.,

Pc = ln
[ ∫

E S(E)Wc(E) dE∫
E S(E)Wc(E) exp

(
− P(µ(E, x))

)
dE

]
. (3)

Here

Wc(E) =

{
1, E ∈ ωc,
0, otherwise,

is a window function of the channel c, 1 ≤ c ≤ C , ωc
indicates the energy interval, and C is the channel number.
By denoting the inverse operator of P(·) as P−1(·), we can

obtain the channel-wise image as follow,

Fc(x)

= P−1(Pc)

= P−1
{
− ln

[∫
E S(E)Wc(E) exp

(
− P(µ(E, x))

)
dE∫

E S(E)Wc(E) dE

]}
.

Denote the size of Fc(1 ≤ c ≤ C) as M × N . By stack-
ing up all the channel images along the spectral dimension,
we can obtain a volumetric spectral image F with the size of
M × N × C . Same strategy can be used for channel-wise pro-
jection data to achieve the corresponding volumetric spectral
projection P.

Apparently, (2) can be treated as a special case of (3)
when the only energy window is extended to fully cover the
whole spectrum. And (3) represents the local performance
of (2) with a truncated spectrum. Meanwhile, it is obvious
that the emitted photons for a channel c are just a frac-
tion of the originally emitted photons in an X-ray beam.
Thus, in practical applications, the decreased channel dose
inevitably increases the noise level of the corresponding pro-
jection. Thus, the fundamental problem of CT, i.e., how to
reconstruct high-quality images from noisy projections, will
be more challenging for spectral CT.Moreover, it may further
have adverse consequences on the decomposition accuracy
and damage the native material distinguishability.

To overcome the ill-posedness in spectral CT reconstruc-
tion, prior knowledge needs to be greatly concerned and
effectively incorporated. The features of spectral CT images
can be classified into two categories, which lie in the spa-
tial and the spectral domains, respectively. The spatial fea-
ture can be ascribed to a sparsity in the spatial domain

itself [11], an appropriate transform domain [12], [13], or a
high-dimensional space [14]–[16]. The spectral feature is a
correlation among channel images, more specifically, a struc-
tural similarity [17]–[20]. Most existing methods for spec-
tral CT employ different measurements to directly describe
both or either the aforementioned features.

Different from directly employing the correlation among
channel images, in our previous study [21], we developed a
locally linear transform based gradient L0-normminimization
method for spectral CT reconstruction. As a natural con-
tinuation and deeper investigation, in this work, we inno-
vatively refine the proposed locally linear transform with
a Gaussian kernel to improve the edge preservation, when
converting the spectrum-related structural similarity to a
gradient sparsity. Then, we propose a general optimization
framework with a global three-dimensional (3D) sparsity
constraint. We also concretize the 3D constraint with gradient
L1- and L0-norm, and spatial total-variation with spectral
trace-norm (TVLR) [14], respectively. Moreover, we perform
experiments to verify the effectiveness and superiority of
the proposed methods comparing with the previous versions
(2D L1- and L0-norm minimization and TVLR method).
The remainder of this paper is organized as follows.

In section II, we briefly review the locally linear transform
based 3D gradient L0-norm minimization method for spec-
tral CT. In section III, we present the refining strategy for
the locally linear transform, establish a general optimization
framework with 3D sparsity constraint, and develop con-
critized optimization models with gradient L1- and L0-norm,
and TVLR. We perform real experiments to verify the effec-
tiveness of the proposed method in section IV. In last section,
we conclude this work.

II. THEORY
In this section, we review how to construct a 3D gradient
sparsity by employing the locally linear transform, and how to
incorporate this sparse constraint into an optimization model.

A. LOCALLY LINEAR TRANSFORM BASED 3D
GRADIENT SPARSE CONSTRAINT
Comparing all the reconstructed channel images, the struc-
tural similarity and quantitative difference are obvious.
By employing locally linear transform, we convert this fea-
ture to a gradient sparsity along the spectral direction. Assum-
ing the current target channel is c, we fix Fc as the filtered
input image, choose Fi (1 ≤ i ≤ C) as a reference image, and
obtain a filtered output Fci satisfying

Fci (x) = aci (k)Fi(x)+ b
c
i (k), ∀x ∈ �2(k), (4)

where x and k indicate pixel positions, �2(k) represents
an image patch with a center position k .

(
aci (k), b

c
i (k)

)
is a

pair of constant coefficients for the patch �2(k), which are
determined by a quadratic optimization model as follow [22],

min(
a(k),b(k)

) ∑
x∈�2(k)

[(
aci (k)Fi(x)+b

c
i (k))−Fc(x)

)2
+ε
(
aci (k)

)2]
.

(5)
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Equation (5) also suggests Fci can be viewed as a copy of Fc.
Considering each pixel x is covered by several patches (∀x ∈
�2(k)), we adopt an averaging strategy for

(
aci (k), b

c
i (k)

)
,

i.e.,
(
āci (x), b̄

c
i (x)

)
is a pair of averaged coefficients in all the

patches covering the pixel x. Thus, (4) is converted to

Fci (x) = āci (x)Fi(x)+ b̄
c
i (x), ∀x ∈ �2. (6)

By performing the patch-wise parameter average, the locally
linear transform in (4) is converted to the point-point linear
transform in (6).

When we employ all the channel images as references,
we can repeatedly perform (5) to obtain the corresponding
filtered outputs. By stacking them up along the spectral direc-
tion, we can get a volumetric image Fc, of which the i-th
channel image is Fci (1 ≤ i ≤ C). Same operation can be
performed to āci and b̄

c
i (1 ≤ i ≤ C), and we can also obtain

the volume-based āc and b̄c. Thus, we further represent (6) in
a volume version as follow,

Fc(x) = āc(x)F(x)+ b̄c(x), ∀x ∈ �3.

Here �3 indicates the 3D spatial domain. The filtering input
volume is represented as V c, which is a simply duplicate
extension of Fc in the spectral dimension.

B. OPTIMIZATION MODEL AND ITERATIVE ALGORITHM
To measure the 3D gradient sparsity of Fc by L0-norm,
we employ a counting function C(·) as follow,

C(Fc) = #
{
x ∈ �3

∣∣|∂xFc(x)| + |∂yFc(x)| + |∂zFc(x)| 6= 0
}
.

Incorporating the data constraint and considering the relation-
ship between Fc and F , we propose the following optimiza-
tion model,

min
Fc

{
‖P(F)− P‖2L2 + λC(F

c)
}
,

s.t. Fc(x) = āc(x)F(x)+ b̄c(x), (7)

where λ>0 is a parameter to control the importance of the
regularization term. By relaxing the constraint, Eq. (7) is
converted to the following unconstrained model,

min
F,Fc

{
‖P(F)− P‖2L2 + λC(F

c)

+τ
∑
x∈�3

[
Fc(x)−

(
āc(x)F(x)+ b̄c(x)

)]2}
, (8)

where τ > 0 is a parameter controlling the relaxation degree.
Then, for each target channel c (1 ≤ c ≤ C), we split (8) to
the following sub-problems,

min
F

{
‖P(F)−P‖2L2+τ

∑
x∈�3

[
Fc(x)−

(
āc(x)F(x)+b̄c(x)

)]2}
,

(9a)

min
Fc

{
λC(Fc)+ τ

∑
x∈�3

[
Fc(x)−

(
āc(x)F(x)+ b̄c(x)

)]2}
.

(9b)

Equation (9a) is a quadratic optimization problem, which
can be iteratively solved by using the POCS scheme [23].
Equation (9b) can be viewed as a 3D generalization of the 2D
gradient L0-norm minimization, and the solution approach
can be achieved by extending the 2D method in [24]. Finally,
by averaging Fc along the spectral dimension, we can obtain
the searched-for channel image. Furthermore, the decom-
position method [25] can be employed to obtain material
percentage images.

III. METHOD
In this section, we first refine the construction of the 3D
gradient sparsity, i.e., refined locally linear transform. Then,
we propose a general optimization framework with 3D gradi-
ent sparsity, and concrete it with three different regularizers
(gradient L1- and L0-norm, and TVLR).

A. REFINED SPECTRAL-DOMAIN GRADIENT
SPARSITY CONSTRUCTION METHOD
The correlations among channel images are conspicuous. For
one fact, all the slices contain the same structures and tex-
tures, i.e., structural similarity. For the other fact, the gray
value and contrast vary a lot, i.e., quantitative diversity.
When employing the locally linear transform to establish
the 3D gradient sparsity, we perform a patch-wise average
operation for the coefficient pair

(
aci (k), b

c
i (k)

)
, which mean-

while may cause edge deformation. To overcome this draw-
back, we introduce a Gaussian kernel to refine the transform,
i.e., replacing the average weight with a radial basis function.
Thus, we revise (6) as

Fci (x) = ãci (x)Fi(x)+ b̃
c
i (x), ∀x ∈ �2, (10)

where the tilde symbol indicates a weighted average
operation. Be giving the central pixel more weight, and the
edge pixel less weight, the edge distortion can be effectively
suppressed.

When the reference image traverses all the energy chan-
nels, we can stack up the corresponding filtering outputs
along the spectral direction to form a volume Fc, of which
the i-th channel image is Fci (1 ≤ i ≤ C). Thus, we further
represent (10) in a volume version as follow,

Fc(x) = ãc(x)F(x)+ b̃c(x), ∀x ∈ �3.

The corresponding filtering input volume is represented as
V c, which is a duplicate extension of Fc along the spectral
dimension. It is emphasized while Fc represents a 2D chan-
nel image, Fc is the corresponding 3D extension along the
spectral dimension. It is worth noting that the channel images
of Fc successfully overcome the shortcoming of quantitative
diversity, and well maintain the structural similarity at the
same time. Thus, its 3D gradient volume is globally sparse,
i.e., 2D spatial sparsity and 1D spectral sparsity.
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B. REFINED LOCALLY LINEAR TRANSFORM BASED
GENERAL OPTIMIZATION FRAMEWORK
Considering the gradient sparsity of Fc (1 ≤ c ≤ C),
we employ it as a constraint by performing a general mea-
surement noted as 8(·). Combining the data fidelity term,
we propose the following optimization framework,

min
F,Fc

{
‖P(F)− P‖2L2 + λc8(F

c)
}
,

s.t. Fc(x) = ãc(x)F(x)+ b̃c(x), 1 ≤ c ≤ C . (11)

Here F is the spectral CT reconstruction volume by stacking
up all the channel images Fc (1 ≤ c ≤ C) along the spectral
dimension. Fc is a duplication volume of the searched-for
c-th channel image along the spectral dimension. ãc(x) and
b̃c(x) are determined by the following quadratic optimization
model,

min
ac(x),bc(x)

{ ∑
t∈�2(x)

[(
ac(x)F(t)+bc(x)−V c(t)

)2
+ε
(
ac(x)

)2]}
.

Similar to II-B, (11) can be relaxed and splitted into two sub-
problems. The corresponding pseudo-codes are summarized
in Algorithm 1.

Algorithm 1 Algorithm of the Refined Locally Linear
Transform Based Optimization Framework
F (0)
= 0;

for i = 0 to Itermax − 1 do
for c = 1 to C do

Calculate
(
ã(i)
)c

and
(
b̃(i)
)c

F (∗c) = argminF

{
‖P(F) − P‖2L2

+ τ
∑
x∈�3

[(
F (i))c(x) −((

ã(i)
)c
(x)F(x)+

(
b̃(i)
)c
(x)
)]2}

end for
F (∗)
=

1
C
∑C
c=1 F

(∗c)

for c = 1 to C do
Calculate

(
ã(∗)

)c
and

(
b̃(∗)

)c(
F (∗+1))c

= argminFc
{
λ8(Fc)+τ

∑
x∈�3

[
Fc(x)−

((
ã(∗)

)c
(x)F (∗)(x)+(

b̃(∗)
)c
(x)
)]2}

F (i+1)
c =

1
C
∑C
k=1

(
F (∗+1))c

k
end for
i = i+ 1

end for

C. CONCRETIZED 3D REGULARIZERS
Many measurement methods can be used to concretize the
general regularizer 8(·), such as L1-, L0-norm. However,
the commonly employed version is 2D, which should be
modified to a 3D extension to meet the sparsity feature in this
problem.
• 3D gradient L1-norm:

81(Fc) =
∑
x∈�3

|∂xFc(x)| + |∂yFc(x)| + |∂zFc(x)|,

where �3 is the spectral volume range.
• 3D gradient L0-norm:

80(Fc) = #
{
x ∈ �3

∣∣|∂xFc(x)| + |∂yFc(x)|
+ |∂zFc(x)| 6= 0

}
,

FIGURE 1. Scan settings for real experiments.

TABLE 1. Quantitative comparison of decomposition accuracy for solid
water in real experiment 1 (Soft Tissue Group of Fig. 4).

TABLE 2. Quantitative comparison of decomposition accuracy for solid
water in real experiment 2 (Water Group of Fig. 12).

where #(·) counts the number of pixels satisfying
|∂xg(·)| + |∂yg(·)| + |∂zg(·)| 6= 0.

For the TVLR method [14], the trace-norm measurement is
performed on a directly unfolded channel image according
to the spectral domain. Theoretically, the trace-norm mea-
surement describes a low-rank feature, which fits sparsity
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FIGURE 2. Reconstructed channel images of real experiment 1. The
display window is [0,0.3] for channel 1, [0,0.26] for channel 2, and [0,0.22]
for channel 3.

better than similarity. Thus, we modify the TVLR method by
performing the trace-norm measurement on the unfolded Fc

instead of F .
• Modified trace-norm:

8∗(Fc) = ‖Fc(3)‖∗ =
∑
γ

σγ (Fc(3)),

where σγ (Fc(3)) is the γ -th largest singular value, F
c
(3) =

unfold3(Fc) ∈ RD3×D1D2 , D3 is the spectral dimension,
and D1 × D2 represents the spatial domain.

FIGURE 3. Zoomed-in patches of Fig. 2, which are marked by red boxes.

For each concretized 8(·), we develop the corresponding
optimization model and perform experiments to verify the
effectiveness.

IV. RESULTS
We perform two real experiments to verify the effective-
ness of algorithm 1 concretized with the L1- and L0-norm
and TVLR, respectively. We visually compare reconstructed
channel images and decomposed material images among
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FIGURE 4. Decomposed material images of real experiment 1. The display
window is [0,1] for all the results.

conventional filtered backprojection (FBP) method, TV-class
methods, L0-class methods, and TVLR-class methods. The
TV- and L0-class methods include 2D version, 3D ver-
sion, locally linear transform (LLT-) based version and
refined locally linear transform (ELLT-) based version. The
TVLR-class methods include TVLR, locally linear transform
(LLT-) based version and refined locally linear transform
(ELLT-) based version. For all the aforementioned meth-
ods, we consistently fixed the iteration number to 20 for

FIGURE 5. Zoomed-in patches of Fig. 4, which are marked by red boxes.

fair comparisons. We used an image-domain material
decomposition method for all the experiments [26].
To quantitatively compare the decomposition accuracy, for
each experiment, we calculated the mean value and standard
deviation of the decomposed solid water for all the compari-
son methods.

The experiments are with a same X-ray source (YXLON
225 kV micro-focus tube) operated at a tube voltage
of 140 kV and a tube current of 100 µA. The detector is
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FIGURE 6. Reconstructed channel images (channel 1-3) of real
experiment 2. The display window is [0,0.6] for channel 1, [0,0.6] for
channel 2, and [0,0.5] for channel 3.

a 4-channel PILATUS3 PCDs by DECTRIS. The source-
object distance is 35.27 cm and the source-detector distance is
43.58 cm. 720 views are collected by the detector consisting
of 515 cells with 0.15 mm length. The reconstructed and
decomposed results are with 512×512 pixels. For each pixel,
the physical dimension is 0.122mm× 0.122mm.
In the first real experiment, we perform a one-time scan

with an equal photon ratio setting. To reduce the scattering

FIGURE 7. Reconstructed channel images (channel 4-6) of real
experiment 2. The display window is [0,0.5] for channel 4, [0,0.4] for
channel 5, and [0,0.3] for channel 6.

influence, we just employ 3 energy bins with higher ener-
gies. The examined specimen, shown in Fig. 1 (upper row),
is consist of chicken upper wing, titanium and solid water.
The channel reconstructions and material decompositions
are shown in Figs. 2 and 4. We magnify a local patch for
visual comparisons in Figs. 3 and 5. To verify the decom-
position accuracy, in Table 1, we quantitatively compared the
decomposed solid water with mean and standard deviation
measurements.
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FIGURE 8. Zoomed-in patches of Fig. 6, which are marked by left red
boxes.

Comparing with channel images, the FBP-based results
suffers from serious noise influence. The 2D based meth-
ods (2D TV and 2D L0) perform inconsistently between
different channels. Some are still noisy (Fig. 3 Channel 1
2D TV and 2D L0) and some are over smoothed (Fig. 3
Channel 3 2D TV and 2D L0). The TVLR and 3D TV
methods also have the inconsistent performance, such as
Fig. 3 Channel 1 and 3. Because of the quantitative dif-
ference among different channel images, 3D L0 brings

FIGURE 9. Zoomed-in patches of Fig. 7, which are marked by left red
boxes.

obvious artifacts. Both LLT- and ELLT-based methods can
effectively denoise. However, the ELLT-based ones are supe-
rior in edge maintenance (comparing the patches marked by
yellow circles in Fig. 3). In Figs. 4 and 5, we can find the FBP,
2D and 3D L0 results are very noisy. Although the rest meth-
ods perform well in noise suppression, the ELLT-based ones
are more desirable in fine structure protection (comparing the
edges marked by red arrows in Fig. 5). Another characteristic
is the TV- and TVLR-class methods are good at smoothing
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FIGURE 10. Zoomed-in patches of Fig. 6, which are marked by right red
boxes.

the images because they penalize the gradient magnitude.
However, L0-class works more stiff, because it penalize the
gradient existence. Thus the edges are sharper than the TV-
and TVLR- classes. The numerical comparison in Table 1
shows superior decomposition accuracy of the LLT-involved
methods, where the mean value is very close to the ground
truth and the standard deviation is very small (below 0.06).

In the second experiment, we scan twice with different
energy thresholds. A 8 channel projection dataset is obtained.

FIGURE 11. Zoomed-in patches of Fig. 7, which are marked by right red
boxes.

And for each channel, the initially emitted photon number
is roughly the same. We employ 6 energy bins with higher
energy to weaken the scattering influence. The examined
specimen, shown in Fig. 1 (lower row), is consist of bone,
muscle, fat and solid water. The channel reconstructions
and zoomed-in patches are shown in Figs. 6-7 and 8-11,
respectively. We choose bone, muscle and solid water as
three basis materials to perform the material decomposi-
tion. The results and the magnified details are illustrated in
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FIGURE 12. Decomposed material images of real experiment 2. The
display window is [0,1] for all the results.

Figs. 12 and 13-14, respectively. The numerical comparison
of decomposition accuracy for solid water is summarized
in Table 2.

Comparing the bone material in Figs. 8-9 and 13,
the TVLR, 2D and 3D TV methods bring blurring effects
to the fine bone structures. Although the FBP, 2D and 3D
L0 methods well preserve the edges, they fail to effec-
tively remove the noise in soft tissue. Both the LLT- and
ELLT-based methods work well for the dual tasks and

FIGURE 13. Zoomed-in patches of Fig. 12, which are marked by left red
boxes.

perform consistent among all the channel images. However,
the ELLT-based methods are superior in fine structure preser-
vation (see the yellow and red arrows in Fig. 14). Comparing
the numerical results in Table 2, the LLT-involved methods
consistently achieve high mean value (larger than 0.98) and
low standard deviation (smaller than 0.04). For 2D and 3D L0
methods, the decomposed solid water had obvious bias with
the ground truth, and even the standard variation is greater
than 0.2. However, by introducing LLT, both of the evaluation
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FIGURE 14. Zoomed-in patches of Fig. 12, which are marked by right red
boxes.

metrics are dramatically improved, where the mean value is
enhanced to 0.99 from 0.82 and the standard deviation drops
to 0.04 from 0.20.

V. CONCLUSION
In this work, we mainly investigate a method to effectively
establish a sparsity feature in the spectral domain, and cor-
respondingly develop the potential applications, such as 3D
gradient L1- and L0-norm minimization and modified TVLR
method for spectral CT reconstruction. Comparing with the

previous work, we refine the sparsity construction method to
improve the edge preservation accuracy, propose a general
optimization framework, and develop three specific mini-
mization models. Real experiments are performed, and the
results confirm the effectiveness and superiority of our pro-
posed approaches for both image quality and decomposition
accuracy.
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