IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 6, 2021, accepted April 3, 2021, date of publication April 7, 2021, date of current version April 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3071450

Android Ransomware Detection Based on a
Hybrid Evolutionary Approach in the
Context of Highly Imbalanced Data

IMAN ALMOMANI“'3, (Senior Member, IEEE), RANEEM QADDOURA 2, MARIA HABIB?,
SAMAH ALSOGHYER %, ALAA AL KHAYER "', IBRAHIM ALJARAH "3, AND HOSSAM FARIS “>:6

!'Security Engineering lab, Computer Science Department, Prince Sultan University, Riyadh 11586, Saudi Arabia

2Department of Information Technology, Philadelphia University, Amman 11118, Jordan
3Altibbi.com, Amman 11118, Jordan
#King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia

SKing Abdullah II School for Information Technology, The University of Jordan, Amman 11118, Jordan

6School of Computing and Informatics, Al Hussein Technical University, Amman 11118, Jordan

Corresponding author: Hossam Faris (hossam.faris @ju.edu.jo)

This work was supported by the Prince Sultan University.

ABSTRACT In recent years, Ransomware has been a critical threat that attacks smartphones. Ransomware
is a kind of malware that blocks the mobile’s system and prevents the user of the infected device from
accessing their data until a ransom is paid. Worldwide, Ransomware attacks have led to serious losses for
individuals and stakeholders. However, the dramatic increase of Ransomware families makes to the process
of identifying them more challenging due to their continuously evolved characteristics. Traditional malware
detection methods (e.g., statistical-based prevention methods) fail to combat the evolving Ransomware
since they result in a high percentage of false positives. Indeed, developing a non-classical, intelligent
technique to safeguarding against Ransomware is of significant importance. This paper introduces a new
methodology for the detection of Ransomware that is depending on an evolutionary-based machine learning
approach. The binary particle swarm optimization algorithm is utilized for tuning the hyperparameters of
the classification algorithm, as well as performing feature selection. The support vector machines (SVM)
algorithm is used alongside the synthetic minority oversampling technique (SMOTE) for classification. The
utilized dataset is collected from various sources, which consists of 10,153 Android applications, where
500 of them are Ransomware. The performance of the proposed approach SMOTE-tBPSO-SVM achieved
merits over traditional machine learning algorithms by having the highest scores in terms of sensitivity,
specificity, and g-mean.

INDEX TERMS Ransomware, evolutionary algorithms, imbalanced, particle swarm optimization, support
vector machines, SMOTE, ADASYN.

I. INTRODUCTION

Recently, the market share of Android mobile operating sys-
tem (OS) has approximately reached 72.97% by Q4 2020.!
However, this rapid evolution of the Android market has
attracted many attackers to gain illegal access to Android
devices and data using malware applications. Malware is
a malicious application that is developed to cause harmful

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa M. Fouda
1 https://gs.statcounter.com/os-market-share/mobile/worldwide

57674

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

attacks on mobile devices. Many forms of malware applica-
tions can infect the victim’s device, including but not limited
to Trojans, Spyware, and Ransomware. Among the afore-
mentioned types, Ransomware has been recording a dramatic
increase by recent studies [1]-[3]. Ransomware intrudes the
device’s OS by using a malicious code that blocks the access
of the victim’s data unless a ransom is paid [4]. Ransomware
developers have diversely created well-established methods
to cause monetary damages to their victims. Consequently,
this type of malware has constituted as one of the most threat-
ening attacks targeting both individuals and organizations

VOLUME 9, 2021

https://orcid.org/0000-0003-4639-516X
https://orcid.org/0000-0003-4093-9349
https://orcid.org/0000-0002-1970-8864
https://orcid.org/0000-0001-7685-2689
https://orcid.org/0000-0002-9265-9819
https://orcid.org/0000-0003-4261-8127
https://orcid.org/0000-0003-1790-8640

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

IEEE Access

with financial losses to billions of dollars, which harmed one
million Android users in one month [5], [6]. Additionally,
Ransomware’s recent success results in the manifestation of
new families [4].

Several approaches have been proposed to enforce the
security on the Android platform, including malware detec-
tion, vulnerability detection, and application reinforcement
[7]. Among the suggested security protection approaches,
malware detection is broadly implemented to prevent mali-
cious applications from being published in the Android mar-
ketplace. Several malware detection approaches have been
suggested that can be classified into three main categories:
static analysis approaches, dynamic approaches, and hybrid
approaches [8]. The static analysis identifies the malware
application by scanning the source code of the application
without running it. It uses reverse engineering techniques to
retrieve the source code of the Android application package
(APK). Based on the implemented reverse engineering tech-
nique, various static features can be extracted (e.g., the per-
missions and API calls features) and further utilized in the
malware detection process [9]. On the other hand, in the
dynamic approach, the APK is executed and equipped to
examine the app’s behavior and create executions and data
flows of the application. However, executing the malware
has to be performed in a virtual environment to mitigate
the influence of any external factors that might affect the
malware behavior [10]. To improve the malware detection
efficiency, the hybrid detection approach can be implemented
since it combines a variety of run-time and application fea-
tures. Indeed, in the hybrid approach both static and dynamic
techniques are utilized in the classification process [11].

Generally, malware detection approaches can be classified
into signature-based, and anomaly-based approaches. The
former, depends on a database of predefined characteristics
of such threats in order to identify the malicious behaviours.
However, even this approach can identify accurately the pre-
viously known malware, but it lacks the ability to recog-
nize new unseen malicious behaviours. Whereas, the latter,
attempts to identify the malicious behaviours by continuously
measuring any deviations in the network from the known
normal behaviours. As the anomaly-based approaches do not
require a predefined knowledge of malware, they are more
efficient in detecting novel unseen malware. In comparison to
classical (i.e., statistical, and knowledge-based) techniques,
the performance of malware detection algorithms that are
based on machine learning-approaches surpass the traditional
methods [12]-[15].

A key aspect when developing a machine learning model
is to utilize a set of relevant, non-redundant features, since
the quality of the features might promote or deteriorate the
performance of the algorithm [16], [17]. Primarily, having a
number of n features leads to a search space of size of 2".
Selecting the optimal set of features from such search space
demands the adoption of search algorithms that optimize
and maximize the performance, while finding the optimal
solution in reasonable amount of time. A well-regarded type

VOLUME 9, 2021

of search algorithms is the metaheuristic algorithms. Meta-
heuristics are stochastic search algorithms that integrate a
randomization process and consist of two major components;
the exploration and exploitation.

Evolutionary algorithms are type of metaheuristics that
are inspired by different natural phenomena, such as the
Darwinian principles of evolution and natural selection,
as well as, the collective swarming behaviour of birds,
insects, or other living organisms in ecological systems.
Evolutionary algorithms are classified into population-
based, and trajectory-based algorithms. Population-based
methods are more exploration-oriented, while the trajectory-
based are more exploitation-oriented. Particle swarm opti-
mization (PSO) is an evolutionary, population-based, and
swarm-intelligence algorithm. It is attributed to Kennedy and
Eberhart [18], which is developed to mimic the social and
collective behaviour of bird flocking. The potential solutions
are known by particles that also play the role of birds, where
each particle has a velocity and position components. This
paper utilizes the PSO algorithm to search for the optimal set
of features, as well as to optimize several hyperparameters of
the classification algorithm.

The proposed approach aims to detect the Ransomware
by developing an evolutionary machine learning-based
approach. The proposed method utilizes the support vector
machines (SVM) algorithm [19] for identifying the Ran-
somware, while the PSO is to optimize the search process by
optimizing the number of features and other hyperparameter
coefficients. The integrated data was collected from different
tools, such as: the Google play, VirusTotal, Ransomware-
Proper, and Koodous. The collected data was decompiled
into Smali files, which then parsed to extract different types
of features (e.g., the permissions and API calls). Certainly,
the collected set of data is imbalanced dataset, where the
normal (non-Ransomware) is the dominant class. This poses
challenges for the classification algorithm during the learn-
ing to not bias toward the major class and results in over-
fitting, but to have a balanced performance at each class.
Hence, different oversampling algorithms were adopted and
experimented, such as the synthetic minority over-sampling
technique (SMOTE) [20], borderline-SMOTE [21], and the
adaptive synthetic (ADASYN) sampling [22]. Overall, iter-
atively, the PSO algorithm searches for the optimal set of
features, the optimal number of nearest neighbors, and the
sampling ratio of the oversampling method, in addition to
the cost (C) of the linear SVM. The proposed model is
assessed by the sensitivity, the specificity, and the g-mean,
which achieved outperforming results and merits over classi-
cal machine learning algorithms.

The objective of this paper is to achieve a high performance
malware detection with an immensely imbalanced dataset.
As in Android market store, the percent of Ransomware
applications is low in comparison to the benign applications
[23]. Accordingly, the collected dataset simulates the status
of the current market by creating an imbalanced dataset. The
main contributions of the paper are summarized as follows.

57675

IEEE Access

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

1) Present a comprehensive discussion on the state-of-the-
art in Ransomware detection systems.

2) Provide an up-to-date dataset of the permissions and
API calls of Android OS by considering the latest
Android release (version 11, API level 30). This will be
conducted by mimicking the real-market status by cre-
ating an imbalanced dataset of benign and Ransomware
applications.

3) Proposing a swarm-based machine learning detection
system that combines PSO with SVM and an oversam-
pling technique for performing classification, feature
selection and data balancing, simultaneously.

4) The proposed approach automatically tunes the param-
eters of SVM and the incorporated oversampling tech-
nique to overcome any effort needed for this task.

5) In addition to its detection power, the proposed
approach will help in identifying the most influencing
features in the detection process.

The rest of the paper is organized as follows. Section II
presents a comprehensive survey of the related work.
Section III discusses preliminaries and the theories of the
utilized algorithms in the proposed approach. Section IV
outlines the creation of the imbalanced dataset including the
parsing and decompiling phases. Section V describes the
proposed classification approach for Ransomware detection.
In Section VI, the model evaluation metrics are presented.
Section VII discusses the experiments and results. Finally,
Section VIII concludes the paper and points out potential
future works.

Il. RELATED WORKS

Several studies have investigated the impact of utilizing
machine learning approaches in detecting Android Ran-
somware. This section highlights recent studies that applied
machine learning in their solutions.

Static-based detection approaches applied different
machine learning to enhance the accuracy of their detection
systems. The authors in [24] conducted a deep analysis of
Android APIs for benign and Ransomware apps. The objec-
tive was to determine the list of APIs that significantly impact
identifying Ransomware. Consequently, using them to build
a detection system based on the selected feature set. In [25],
the authors extracted the opcodes in native instructions. They
computed the opcodes’ frequency information from Android
applications and used them as features that are then forwarded
to a classifier for evaluation. Whereas the authors in [26]
detected a locker-based Ransomware using a feature set
that combines the displayed text and background operations.
Such operations include admin, window, system, priority, and
permissions. Then they evaluated the extracted features on
different machine learning algorithms.

Moreover, [27] investigated the appearance of some infor-
mation that is related to Ransomware operations. The authors
examined 48 permissions, 4 intents and 34 APIs in inspected
applications before integrating some supervised machine

57676

learning models to classify the applications. Kim et al. [28]
utilized also static features to reflect malware and benign
apps’ properties. They used a multimodal deep learning
method, which was designed to deal with various kinds of
feature types. Additionally, Pektas and Acarman [29] ana-
lyzed applications to construct a flow graph, then extract-
ing features. After that, building a deep neural network for
malware detection. On the other hand, the research done by
[30] extracted the system APIs information through pack-
ages, classes, and methods. Then, the authors employed
the detection model using different classifiers. Moreover,
Singh et al. [31] identified malware using Latent Semantic
Indexing as an information retrieval technique with a lower-
dimensional representation of opcodes.

The work in [4] compared the permissions frequency
obtained by Ransomware/benign apps by analyzing the
AndroidManifest.xml file. Wheareas, Alsoghyer and Almo-
mani [32] conducted a deep analysis of permissions requested
by apps. They proposed a permissions-based Ransomware
detection system and evaluated it using different classifi-
cation algorithms. On the other hand, in [33] and in [34],
the classification of Android apps into malware/benign was
done by examining both the permissions and API calls
frequency distributions. The approach in [33] in specific
detected Ransomware apps using a proposed hybrid swarm-
intelligent machine learning approach to optimize the hyper-
parameters and perform feature selection.

Dynamic-based detection approached have also applied
machine learning techniques in their systems. Chen et al. [35]
recognized user interface differences between benign and
Ransomware apps with coordinates of the user’s finger
movements. The authors used user interface and information
entropy of files before and after the encryption. Where the
dynamic mechanism in [36] was comprised of preprocessing
and detection. The preprocessing phase was included with
the extraction of important features using eight machine
learning filtration techniques. Additionally, the detection
phase detected malicious behavior of application using deep
learning algorithm. 19 important features related to network
packets and headers were selected through a simple majority
voting process by comparing all feature filtration techniques.

In other context, the dynamic detection system in [10]
was based on selecting the most significant system calls that
were used by a classification algorithm to discriminate Ran-
somware from benign app. Besides, a hybrid static/dynamic
solution proposed in [37] distinguished Ransomware by com-
paring the structural similarity of an app and known Ran-
somware. Threatening text and images were traced in this
regard.

Table 1 summarizes and compares different Ransomware
detection systems. The comparison was conducted in terms
of the type of detection system whether static or dynamic or
hybrid, the used features list, the applied machine learning
approach(s), the accuracy of the detection system, the source
of the studied Android apps, the resulted dataset size and
whether this dataset was balanced or not.

VOLUME 9, 2021

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

IEEE Access

As can be observed from the table, most of the related
works have considered balanced datasets. Even in the limited
studies that considered imbalanced datasets in their Ran-
somware detection solution, the imbalance ratio was low
except in work [21]. But, in this work the authors have
focused only on the Chinese market and the locker-based
ransomware. Additionally, when the authors compared their
approach with other related study, they have chosen only
1500 benign apps. They mainly compared their work with
R-PackDroid, which we already compared within our previ-
ous research work [19]. Moreover, the existing methods have
considered different datasets from different sources with also
different features set.

In this study, an imbalanced dataset with only 5% of
Ransomware apps are included in the overall dataset of apps.
Consequently, making it even more challenging to detect
Ransomware with high accuracy. As shown in Table 1, most
of the existing methods have applied standard and well-
known classifiers and compared their detection performance.
This was also implemented by our research while considering
more appropriate evaluation metrics in case of imbalanced
datasets to examine the proposed Ransomware detection
system’s performance, including g-mean, sensitivity, and
specificity.

lll. PRELIMINARIES
In this section, we describe the algorithms utilized in the
proposed approach for ransomware detection.

A. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a swarm-based and
naturally-inspired algorithm that is created by Kennedy and
Eberhart in the 90s [18]. PSO is a stochastic optimization
and metaheuristic algorithm inspired by the collective social
behavior of bird flocking. As the birds search in swarms
for the food, the PSO searches stochastically for the optimal
solutions in the search space of an objective function in a
similar approach. The PSO algorithm consists of a swarm
of random particles, where each particle is characterized by
two components: the velocity and position. Each particle
might represent an optimal solution, while simultaneously
the algorithm adjusts and assess the particles in order to
find the best solution (particle) that maximizes the learning
performance. The velocity and position of a particle depend
on the experience of the particle itself (the cognitive compo-
nent), and the other particles’ experiences (the social compo-
nent). Mathematically, the particles adjust their velocities and
positions and move toward the optimal region. The particle
that is in the optimal region is an optimal solution, thereby
the algorithm evaluates the particles iteratively during the
learning process. Equation 14 represents the velocity of a
particle, while Equation 15 represents the position.

Via(t +1) = wxvig(t) + r1 * c1 * (Pig(t) — xia (1))
+ra ®cp ok (ga(t) — xia(t)) (D
Xig(t + 1) = xiq(t) +vigt + 1))

VOLUME 9, 2021

For which, the d is the d"* dimension, where d € D. The
parameter w is the inertia weight of a particle that tunes the
balance between the cognitive and the social components, r;
and ry are two random numbers in the range from O to 1.
c1 and cp are the acceleration constants, which control the
influence of the personal and global best particles. The p;q is
the personal best position of a particle (pbest), and g4 is the
best global particle (gbest) [18].

Algorithm 1 present the implementation of a typical PSO
algorithm.

Algorithm 1 Basic PSO Algorithm

1: procedure PSO Algorithm

2: Initialize the population POP

3: for each particle do

4: Initialize the particle

5: end for

6: while maximum iterations is not satisfied do
7 for each particle do

8 Evaluate the fitness value (v)

9: if v is better than the best fitness value (pBest) then
10: set v as the new pBest
11: end if
12: Choose the particle with pBest and set it as gBest
13: end for
14: for each particle do
15: Calculate particle velocity as in equation 14
16: Update particle position as in equation 15
17: end for
18: Increment the loop counter

19: end while
20: end procedure

In essence, the classical PSO algorithm developed to deal
with continuous problems that have continuous variables
[50]. However, handling problems of discrete search spaces
demands transforming the optimization algorithm into a dis-
crete problem. The PSO algorithm can be considered as a
binary search algorithm when it represents the values of the
positions of the particles as binary values, while the velocities
of the particles represent the probabilities of a position to
have a value of 1. The earlier implementation to transform
the PSO algorithm into binary algorithm was the in [51],
which utilized a kind of transfer function that is known by the
Sigmoid function. The Sigmoid function (S1) is represented
in Equation 3, in which the v;4(¢) is the velocity of particle i
at dimension d and iteration ¢.

T(via(1)) =

1

1+ e—2xvia(1) A

If a randomly generated number is greater than 7'(vi4(t)),
the position holds a value 1, and O otherwise (as shown in
Equation 4).

1 if rand > T (vig(t
xatr+ 1= | L 1rand = T0a() @
0 ifrand < T (viq(1))
The analysis of the time complexity of the PSO algorithm
is based on Algorithm 1. The time complexity for lines 2-5 to
initialize N particles with D number of dimensions equals

57677

IEEE Access

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

TABLE 1. Summary and comparison among different Ransomware detection systems.

Related Type Feature set ML approach! Accuracy Apps’ source Dataset Balanced
work size?
[38] Dynamic User Interface and info entropy ~ Not stated 99% HelDroid [39] and own col- 9,238 B No
of files lected samples 2,721 R
[37] Static/ Threatening text/image Not stated 91% ID-Rans [40],thezoo 200 B No
Dynamic [41],Contagio [42] 100 R
[24] Static API calls frequencies RE, DT, SMO and NB 97% Koodous [43], RProber [38], 500B Yes
and VirusTotal [44] 500 R
[25] Static A dictionary contains unique RF, SVM, KNN and ANN 99.80% AMD dataset [45] 15126 B No
opcodes present 2418 R
[26] Static Text and background opera- SVM, RF, DT and LR 99.98% ransomware-transaction QQ 15751 B No
tions [admin, window, system, groups [46] 301 R
priority, permissions]
[27] Static 48 Permissions, 4 Intents and KNN,LR,SVM, XGBoost, 97.62% Contagio [42], Kharon [47] more than No
34 APIs and RF 200 B 259 R
[28] Static String, opcode, Multimodal 98% VirusTotal [44] 19,747 B No
APLpermission, and envi. learning,SVM, and RF 13,075 M
features
[29] Static Sequence of opcodes proposed deep learning 91.91% AMD dataset [45] 25,000 B Yes
model 24,650 M
[30] Static API packages, classes and RF 97% HelDroid [39], VirusTotal 18396 B No
methods [44] 3017 R
[36] Dynamic Network packets and headers LST™M 97.08% CI-CAndMal2017 dataset 1048574 B No
[48] 460976 M
[31] Static Opcodes, permissions and in- RF, SVM, KNN and LR 93.92% CIC_ 1147 B No
tents InvesAndMal2019 [49] 905 M
[33] Static Permission requests and API RF, J48, RT, KNN and NB F-measure AndroZoo, Contagio 14,172 B No
calls of 94.3% [42],MalShare,VShare 13,719 M
and VirusTotal [44]
[4] Static Permissions N/A N/A RansomProber [38] dataset 2,050 B Yes
2,050 R
[32] Static Permissions RFEJ48, SMO, and NB 96.9% Alsoghyer & Almomani [24] 500 B Yes
500 R
[10] Dynamic System calls RF, J48, and NB 98.31% VirusTotal [44] 400 B Yes
400 R
[34] Static Permissions and API calls SSA,PSO,NB,J48, 98% Alsoghyer & Almomani [24] 500 B Yes
RF,Adaboost, Bagging 500 R
and XGBoost.

NB:Naive Bayes, RF:Random Forest, DT:Decision Tree, SMO:Sequential Minimal Optimization, SVM:Support Vector Machine, KNN:K-Nearest Neighbors,
ANN-:Artificial Neural Network, LR:Logistic Regression, LSTM:Long Short-Term Memory, RT:Random Tree, J48:Decision Tree C4.5,SSA:Salp Swarm
Algorithm, PSO:Particle Swarm Optimization, B: Benign, R: Ransomware, M: Malware

O(N x D). The loops in lines 7-13 and 14-17 have the time
complexity of O(N x D) for each iteration in /. Line 18 is of
constant time. Thus, the time complexity of the binary PSO
is ON x D x I) [52].

B. SUPPORT VECTOR MACHINES

The support vector machines algorithm is a statistical and
supervised machine learning algorithm that is attributed to
Vapnik who coined itin 1992 [19] by the research community.
Originally, it was developed to address binary classification
problems, where it uses support vectors and hyperplanes
to create decision boundaries that separate the classes by
maximizing the marginal distance between them. As it is
known by the large margin classifier, the objective of SVM
is to maximize the distance between the data points of the
different classes. The maximum distance between the data
points (support vectors) from the two classes is known by

57678

the margin. Whilst, the support vectors are the points that are
closer to the decision boundaries and used to distinguish the
classes.

Loosely speaking, the SVM has been adopted into various
real-world problems [53]-[55], however, not all problems
are linearly separable. Though, the SVM algorithm maps the
data into higher-dimensional spaces (the feature space) in
order to make such non-linear input data linearly separable.
As the SVM algorithm can handle the linear and non-linear
problems; having a linearly-separable dataset can be handled
by a linear hyperplane that is formulated as in Equation 5,
where w is a weight parameter, and b is a threshold value
between the hyperplane and the origin plane.

f@):w-x+b=0)

The objective of SVM is to maximize the marginal-distance
by minimizing an objective function which represents the

VOLUME 9, 2021

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

IEEE Access

cost. Equation 6 describes the objective of the SVM. In which,
C is a regularization parameter, A is the objective function
that is formulated in Equations 7, and B represents the regu-
larization function as in Equation 8, where n is the number of
features, and m in Eq. 7 is the number of training instances.

MinC-A+B ©)

m
A=Y "[yeosti@TxD) + (1 — yN)costo(@Tx)] (7)

i=1
1 n
B=3 > 67 ®)
j=1

Even that SVM had shown very successful results in classi-
fication over the literature [56], but its performance is highly
sensitive to various hyperparameters. Mainly, the cost (C)
which is the regularization parameter, and the (y) parameter
in the case of a non-linear SVM. Since the improper settings
of the C and y degrades the generalization power of the algo-
rithm, tuning them is a critical issue while training an SVM
algorithm. In other words, initializing the C parameter with
a large value; results in a low bias and high variance, which
leads to overfitting. Meanwhile, initializing the C parameter
with a small value; increases the bias and minimizes the vari-
ance, which is prone to underfitting. Therefore, optimizing
the hyperparameters of C and y has a significant influence
on the performance of the SVM algorithm.

The time complexity of the SVM algorithm is
O(max(n, m) x min(n, m)*) [57] where n is the number of
points and m is the number of dimensions.

C. OVERSAMPLING TECHNIQUES

Until recently, the problem of imbalanced data has been
studied widely and several approaches have been proposed to
address it, including data-oriented, and algorithmic-oriented
methods. Various approaches of algorithmic-oriented meth-
ods have been developed, such as SMOTE [20], SVM-
SMOTE [58], borderline-SMOTE [21], and ADASYN [22].

1) SMOTE

The synthetic minority over-sampling technique is an
approach to overcome the imbalanced data problem by cre-
ating artificial data points that are analogous to the real
one. SMOTE is one of the early proposed techniques, which
is developed by Chawla in 2002, and used over various
domains, such as the medical [59], the industrial [60], and
others [61].

Assuming an imbalanced dataset d with n examples,
where, C is a major class, and ¢ is a minor class. Primarily,
SMOTE balances the distribution of classes by increasing the
ratio of the minority examples by synthesizing new interpo-
lated examples from the existing data. Iteratively, for each
data example i, of the minority class, SMOTE selects a k
nearest points from the minor class to the example i.. For
which, the shortest path between any two points is calculated
based on the euclidean distance. Relying on a sampling rate

VOLUME 9, 2021

defined based on the imbalanced ratio, a number of the &
nearest neighbors is randomly chosen. Thus, each of the
nominated nearest examples creates a line that links it with the
example i.. Subsequently, from every formed link, a random
example is picked to be the new synthetic point.

However, a serious drawback of SMOTE is that the synthe-
sized minority examples do not consider the majority classes
during the oversampling process, especially, when there is a
strong correlation between them [20].

2) BORDERLINE-SMOTE

Borderline-SMOTE is an evolved version of SMOTE, which
is proposed in 2005 [21] as an extension minority-based over-
sampling method. The comparison of Borderline-SMOTE
with its precedent (SMOTE) shows more powerful per-
formance at different learning approaches [62], [63]. Two
variants of borderline-SMOTE were proposed to overcome
the original difficulty of the imbalanced data problem
of identifying the correct border that distinguishes two
classes. The two variants are the borderline-SMOTE! and
borderline-SMOTE2.

Borderline-SMOTE performs two operations: first, classi-
fies the examples into three types of regions (i.e., safe, danger,
and noise) to recognize the borderline examples. Second,
synthesizes new examples. In Borderline-SMOTEI, the new
data examples merely created from the recognized borderline
data points. For a given data point i from the minority class,
a k number of nearest neighbors is selected regardless of
whether the neighbors are from the major or the minor class.
The ratio of the neighbors that belongs to the majority class
decides to which region the point i should be classified. If all
neighbors belong to the majority class, then the point i is
classified into the noise region. If the number of the majority
examples of the neighbors is greater than a./2, where a, is
the number of the minority examples, then i belongs to the
danger region. Otherwise, when the number of the majority
examples is less than a./2, then i is in the safe region. Upon
this, all minority examples that are classified into the danger
region form the borderline examples.

To synthesize new examples; for each point in the danger
region iganger, @ k number of nearest neighbors which belongs
to the minor class is selected. From which, an s random
examples were picked. The difference between all points in s
and the corresponding point in the danger region is computed
and denoted by diff;. Hence, the new point is synthesized
based on Equation 9, where r; is arandom number in the range
from 1 to s.

i_new = iganger?j X diff; ©)]

In Borderline-SMOTE?2, the neighbors of the points that are
in the danger region are considered from the major and minor
classes and not just from the minor class as in the first version
(Borderline-SMOTEL1).

Further, SVM-SMOTE is a variant of SMOTE that is pro-
posed by Hien in [58]. SVM-SMOTE balances the class dis-
tribution by oversampling the minority class instances which

57679

IEEE Access

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

are located at the borderline between the two classes. The
SVM algorithm can ameliorate the performance by identify-
ing the separating decision boundary and then predict new
minority instances.

3) ADAPTIVE SYNTHETIC SAMPLING

The ADASYN method was proposed to reduce the learn-
ing bias by adaptively adjusting the decision boundary
of the minority data points that are hard to learn. Considering
the major class C with a number of instances a (a©), and the
minor class ¢, with the number of instances b (b¢). The ratio of
the minority points to the majority points is used to compute
the number of synthetic points S for the minority class c, as in
Egq. 10.

S=0—a")x B, Bel0,1] (10)

For each minority point, a number of k£ of neighboring
points is selected which is known by the neighboring set.
Each minority point has a density distribution based on its
neighbors of the majority class from the neighboring set.
Identifying the density distribution of the points assists in
computing the number of required synthetic data points,
as described by Equation 11. Where the density distribution
(r}) is a normalized version of %

aC
gi=r xS, whererl-’=7 (11)

For each minority point x;, a randomly-selected minority
point from the neighboring set is selected x; to create the
synthetic data g;. The data created based on Equation 12,
where diff; is the difference between the points x; and x;, while
the lambda is a random number in the range from O to 1.

Xnew = Xi + diff; X A (12)

IV. IMBALANCED DATASET CREATION

The dataset used in this research was built based on
10,153 Android application samples (500 malicious (Ran-
somware) applications and 9653 benign applications). This
dataset is publicly accessible on the Security Engineering
Lab (SEL) website.> The process began by collecting the
applications (benign and ransomware) from different market
stores. After that, the collected files were decompiled to
extract the original code. Finally, the code parsing phase was
applied and then resulted in creating the imbalanced dataset.
Figure 1 displays the process of creating the dataset.

A. DATASET COLLECTION PHASE

In this paper, four data sources have been used to collect
Android applications. The Android applications were down-
loaded as Android Packages (APK). The APK file is a zipped
file that contains all the application’s code including assets,
resources and the manifest file. The APK files of Ran-
somware samples were collected from several repositories

2https://sel.psu.edu.sa/ReSearch/datasets/2020_RansIm-DS.php

57680

HelDroid
G I ¢ | Data collection
;&39 VirusTotal | |RansomProper Koodous phase
APK files —_
|~ Decompiling
Decompile phase
the APK files
Smali files

Count the
occurrence of features

Extracted features
(removing duplicates) Parsing

phase

Imbalanced dataset of
features of Android
apps

FIGURE 1. The process of creating the imbalanced dataset.

including Koodous, RansomProper Project and VirusTotal.
Whereas, the APK files of benign samples were downloaded
from Google Play store.

RansomProper Project: Categorizes the Ransomware apps
chronologically based on their malicious features. The dataset
of RansomProper Project contains of 2,721 ransomware
applications that represent fifteen different families [38].
Furthermore, the project provides a real-time scanning by
executing the Ransomware application’s user interface (UI)
widgets.

Koodous: Is an Android malware platform that provides
online analysis services and a large-scale repository for
Android malicious apps with over 65 million APKs [64].
To collect Ransomware families from Koodous database,
the hashes of the APK files were captured from HelDroid
project [24]. Afterward, the APK files were retrieved using
the searching services of koodous platform. Further, addi-
tional Ransomware samples were captured by searching
the tag (fag:ransomware). Then, they have been tested on
VirusTotal’s scanning tools to ensure they are identified as
Ransomware.

VirusTotal: Is an online malware scanning engine which
uses over 70 security vendors to conduct malicious detection
services [65]. In addition, it provides an API service to upload
and scan APK files without the need for the web-interface.
However, VirusTotal lacks of the presence of labelling stan-
dardization, which makes it challenging to precisely classify
a Ransomware family [66]. Consequently, to overcome this

VOLUME 9, 2021

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

IEEE Access

challenge, the obtained samples from the VirusTotal database
have been filtered and labeled manually to accurately build
the Ransomware database.

Google Play: Is the official Android market store which
can be accessed using a browser or the Play Store of Android
applications. Google Play developed a Bouncer that is a secu-
rity mechanism aims to automatically detect malware appli-
cations [67]. Furthermore, Google Play introduced a security
event called Google Play Protect which provides continuous
running scans ensuring the harmless of the installed applica-
tions [68]. Based on the aforementioned mechanisms applied
by Google play, it has been chosen as the main source of
benign apps of this study. The total number of downloaded
apps is 12,036 applications that are chosen from the top-
ranking applications of main categories in Google Play store.
These main categories are Kids (41%), Game (28%), and
others (31%).

B. DECOMPILING PHASE

In this phase, the executable code of the APK file is converted
to an intermediate readable language [8]. The main file to
be extracted is the AndroidManifest.xml file which contains
the application’s metadata and all the defined permissions by
the applications. This file can be extracted using APKtool?
that decompiles the zipped APK file to the manifest file
and.smali files. Each smali file represents a defined class in
the original code of the application. All the required features
of the application can be extracted by parsing the manifest
file and theses smali files.

C. PARSING PHASE

Constructing a well-designed features set has a major influ-
ence on the efficiency of malware detection. The used fea-
tures set of this paper includes 389 features; 228 API pack-
ages, and 161 permissions belong to the most recent release
of Android (API level 30). The occurrences of these fea-
tures have been counted on the collected samples using a
Python script by extracting the features from the.smali files
and the manifest file. Algorithm 2 illustrates the parsing
procedure. The Parsing algorithm scans all the applications’
folders allocated in the Root Directory. For each application,
the scanning is performed in two stages, first is parsing
the manifest file to count the defined permissions, and sec-
ond is parsing the.smali files to count the used API pack-
ages. Finally, the overall parsed features is stored in the
database.

The extracted features of the parsed applications have
to be serialized for further analysis. The representation
of the serialized features can be implemented using the
U — dimensional format where U represents the feature set
[69]. As shown in Figure 5, all the features under investigation
(F) are stored in one list of length | F'|. Then each application’s
decompiled APK file is represented as a record of length |F|.
The entries of these records are filled with a value of O if the

3 https://ibotpeaches.github.io/Apktool/

VOLUME 9, 2021

Algorithm 2 Parsing Algorithm

1: procedure Parsing Algorithm

2: Input: Android applications

3: Output: Feature parsing records
4: Initialisation:

5: Initialize the API_packages set
6: Initialize the Permissions set
7 Initialize the Root_Directory
8: for each application_folder in Root_Directory do
9: get Manifest_File
10: for each element in Permissions set do
11: Find_Occurrence (Manifest_File)
12: permissions_count <— Total occurring
13: end for
14: for each smali_file in smali_Directory do
15: for each element in API_packages set do
16: Find_Occurrence (.smali file)
17: API _Packages_count < Total occurring
18: end for
19: end for
20: Total <—permissions_count+ API_Packages_count
21: Store Total number of features in the database

22: end for
23: end procedure

Permission API Packages
Set Set
......................... T EEEEY CEETEEEPEETEY EEE TR
| + :
Manifest file ! . 1
! & b c Combined |
__LB ! Feature Set
1
1
1
1
| <> — > a File 1 '
P !
1 1
i Smali files 1 '
H 1
1
AN , > b File 2 '
{}}— |
1
| | . 1
' > b File 3 1
1
..........................
Decompiled
APK file A 4
a|b|ec
1 2 0 1

FIGURE 2. The feature serializing model.

application never uses these features. Otherwise, the Parsing
algorithm fills the application’s record with ¢, where c is the
total count of the usage of a specific feature [70].

Finally, different apps with same features (16% of the total
apps) were filtered and removed to avoid any duplication in
the dataset. Figure 3 shows the number of removed apps.

V. PROPOSED CLASSIFICATION APPROACH

The ransomware detection process of the proposed approach
is discussed in detail in this section. The proposed approach
is based on a hybrid evolutionary process of optimizing an
imbalanced data, an oversampling technique, and a classifi-
cation technique.

57681

IEEE Access

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

Kids- Ages 6-8
Maps & Navigation
Health & Fitness
Dating
Communication
Comics

Business

Books & References
Beauty

Auto & Vehicles
Augmented Reality
Food & Drink
Games

Kids- Agesup to 5

Art & Design

(=}

500 1000 1500 2000 2500 3000 3500 4000

Number of apps m After decompiling and scanning (after removing duplicates)

FIGURE 3. The total apps and the apps after removing duplicates.

BPSO €--=-=-=-=-=-===-=-= 1
optimization

Features flags !

Re & K ! Cost

Training |
dataset

Reduced training
dataset

\ 4

SMOTE
oversampling

[]
[] []
oo
° []
Oversampled Train SVM
training dataset

D i il

Fitness
evaluation

|

FIGURE 4. High-level description of the flow of the proposed approach.

Figure 4 illustrates the proposed approach, which we
refer to as ovr-rBPSO-SVM. The approach includes iterative
optimization of the classification process and an evaluation
process of the classification by a binary PSO optimization
algorithm. The main components of the proposed approach
as described in the figure are mainly the feature selection,
the oversampling technique, the classification technique,
the fitness evaluation, and the optimization technique.

In the feature selection component, not all features are
considered for classification, but rather, a selected set of

57682

features which are representing a reduced version of the
training dataset. Hence, features are selected according to
the flags generated by the optimization process based on a
transfer function, which results in a reduced training dataset.
This dataset reduces the computational cost and enhances
the performance of the classification. Regarding the over-
sampling technique, the Ransomware class is enlarged by
the SMOTE oversampling techniques to balance the dataset
for better evaluation of the performance. Thereby, an over-
sampled training dataset is generated from this process. For
the classification technique, the SVM algorithm is used to
generate a classification model that correctly identifies Ran-
somware instances from benign instances. Moreover, it is
also clear from the figure that the evolutionary algorithm
optimizes the k-neighbours and the sampling ratio parameters
of the oversampling technique. In addition, the cost parameter
of the SVM algorithm is further boosted by the evolutionary
algorithm to find an optimal fit of the model to the dataset
while avoiding overfitting. Finally, the generated model by
the optimization process is evaluated by the fitness function
for further enhancements of later iterations. The objective
function of the proposed algorithm is assessed by the fitness
evaluation criterion. For which, the classification model is
evaluated using the geometric mean score to promote the opti-
mization process at later iterations. Finally, the optimization
technique is implemented by the binary PSO algorithm that
is used to optimize the selection of features, the parameters
of the oversampling technique, and the cost coefficient of the
SVM algorithm.

A. STRUCTURE OF THE PARTICLE

As primarily the PSO algorithm developed to deal with con-
tinuous search spaces, adopting it to address discrete search
problems requires to transform its search space from contin-
uous into discrete (binary). This is implemented by utilizing
the (S2) transfer function. S2 is a sigmoidal function that is
given by Equation 13, which integrated to produce particles
represented by binary vectors.

1

At each iteration, several particles are generated by the pro-
posed approach presenting candidate solutions to the ran-
somware classification problem. Each particle consists of
three parts of binary values which are illustrated in Figure 5.
These parts reflect the following tasks:

« Feature selection: a set of features is selected from the
dataset for training and testing the model. This set is
selected according to a list of n binary values represented
by the first part of the particle. The list can be repre-
sented by Equation 14.

F=1[fi.fa...fal (14)

Each binary value in the list reflects the presence or
absence of the corresponding feature where a value of 0
represents the absence of the feature, while the value of 1

VOLUME 9, 2021

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

IEEE Access

Features

k-Nearest Neighbors

Sampling Ratio Cost

Reduced
Training Dataset

SMOTE
L I
v A
— Y PY
° [J
Linear SVM
Fitness
Oversampled Evaluation

Training Dataset

FIGURE 5. An illustration of the adopted structure of the particle in the proposed classification approach, where Rs
is the ratio of oversampling, and K is the number of nearest neighbors.

represents the presence of the feature. Thus, the number
of selected features for a particle is the number of the 1s
of the first part of the particle.

« SMOTE oversampling technique parameters optimiza-
tion: the number of neighbours and the oversampling
ratio for the SMOTE oversampling technique are rep-
resented by the second part of the particle. The number
of neighbours is used to synthesise new instances of the
Ransomware class by considering the neighbours of the
class. It is represented by four binary digits of a decimal
value between O and 15 reflecting a binary range of
numbers between 0000 to 1111, respectively. The list of
digits is represented as in Equation 15.

K = [ky, ko, k3, k4] (15)

On the other hand, the oversampling ratio represents the
number of oversampling instances of the Ransomware
class divided by the number of instances of the benign
class. It is represented by six binary digits of a float
value between 0.0 and 0.63 reflecting a binary range of
numbers between 000000 to 111111, respectively. The
list of digits is represented by Equation 16.

r=[r1,r, 3,714,715, ¥l (16)

o The optimization of the cost parameter of the linear
SVM: the cost parameter value of the linear SVM classi-
fication technique is represented by the third part of the
particle. This reflects the extent to which the model is
fitting the training data where a low value of the cost
parameter indicates a more fitted model and a small
number of misclassifications on the training instances,
while a high value indicates a less fitted model and
a large number of misclassifications of the training

VOLUME 9, 2021

instances. A trade-off between fitting the model on the
training data and fitting it on possible upcoming unseen
data must be taken into consideration when choosing the
value of the cost parameter to avoid overfitting. The cost
parameter is represented by eight binary digits of a float
value between 0.0 and 2.55 referring to a binary range
of numbers between 00000000 to 11111111. The list of
digits is represented as in Equation 17.

C =[Cy, (2, C3,Cy, Cs, Cg, C7, Cg] an

B. FITNESS FUNCTION (INTERNAL EVALUATION)

Each particle in the proposed approach is evaluated internally
by a fitness function to measure its quality in leading the algo-
rithm toward optimality and avoiding the stagnation in local
regions. The utilized fitness function is a single-objective
optimization problem that aims to maximize the performance
by minimizing the fitness. Essentially, the internal evaluation
of the candidate particles determine the global best and the
local best at each iteration. Hence, this guides the search pro-
cess of the algorithm toward the optimal regions of the search
space gradually over the course of iterations. The fitness is
given by Equation 18, which is the geometric-mean (g-mean)
of classification subtracted from 1. The g-mean measure is
the square root of the product of class-wise sensitivity, which
equals the square root of the multiplication of sensitivity and
specificity in the case of binary classification. The sensitivity
and specificity are based on the confusion matrix, where the
sensitivity is defined by TP/(TP+ FN), and the specificity by
TN /(TN 4 FP). The TP is the true-positive, the TN is the true-
negative, the FP is the false-positive, and the FN represents
the false-negative.

Fitness =1 — \/sensitivity X specificity (18)

57683

IEEE Access

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

C. PROCEDURE OF THE ALGORITHM
The procedure of the proposed ovr-tBPSO-SVM can be
described by the following steps:

1) Initialization: A set of particles are formed for the
first iteration of the PSO optimization technique, where
each particle includes binary values of the presence or
absence of features, k, sampling ratio, and the cost as
observed by Figure 5 and discussed in Section V-A.

2) Update: Through the course of iterations, particles
are evolved to explore better set of solutions for
the Ransomware data, which is further detailed by
Section III-A.

3) Particles mapping: As discussed in Section V-A, a set
of values are extracted from each particle and are used
to select features on one hand, and as an input to both
the oversampling and classification techniques on the
other hand.

4) Fitness evaluation: The g-mean score is used to assess
the evolved particles of each iteration according to
Equation 18.

5) End of procedure: The procedure terminates when a
predefined value of iterations is reached. As a result,
the fittest particle is retrieved having a combination of
selected features and optimized values of k, sampling
ratio, and cost parameters.

6) Testing: The testing instances are used to evaluate
the model generated from ovr-rBPSO-SVM algorithm
using several evaluation techniques including the sen-
sitivity, specificity, and g-mean, which are further dis-
cussed in the next section.

Figure 6 illustrates the process by which ovr-tBPSO-SVM
follows. It starts by dividing the dataset into training and
testing parts. Both parts are reduced by the selected features
but only the training part is oversampled and used to generate
a prediction model with the enhanced values of parameters.
In contrast, the testing part of reduced features is used to
evaluate the optimized model.

VI. MODEL EVALUATION METRICS
Various evaluation measures were utilized to assess the
performance of the proposed methodology for ransomware
prediction. The evaluation metrics are derived from the con-
fusion matrix, which are the true positive rate (sensitivity),
the true negative rate (specificity), and the g-mean. The con-
fusion matrix is represented in Table 2, where the positive
class corresponds to the ransomware, while the negative class
is the normal class. Hence, the TP represents the examples
that are actually ransomware and they are predicted ran-
somware. The TN indicates the examples that are predicted
normal and they are actually normal. Whereas the FP, rep-
resents the instances that are predicted ransomware but they
are actually normal, and the FN are the instances that are
predicted normal but they are ransomware.

The sensitivity also is known by the true positive
rate, the recall, and the likelihood of prediction rate.

57684

TABLE 2. Confusion matrix.

Actual
Ransomware | Non-Ransomware
Predicted Ransomware TP FP
Predicted Non-Ransomware FN TN

The sensitivity reflects the capacity of the classifier in rec-
ognizing the ransomware instances. It is computed as the
ratio of the recognized ransomware over the true ransomware
instances, as defined in Equation 19.

TP
sensitivity = TP—i——FN (19)

The specificity also known as the true negative rate. It repre-
sents the ability of the classification algorithm to recognize
the negative instances of data (Non-Ransom), which is the
ratio of the identified true negatives over the overall number
of actual non-Ransomware instances. It is described as in
(Eq. 20).
o IN 20

specificity = IN £ FP (20)
The g-mean metric corresponds to the ratio of balance of
classification performances from the ransomware and nor-
mal classes. Mathematically, the g-mean is calculated as the
square root of the multiplication of the recall of both classes;
the ransomware and the normal, as illustrated in Equation 21.

TP TN
G — mean = \/ X 2n
TP+ FN TN + FP

VII. EXPERIMENTS AND RESULTS

A. ENVIRONMENTAL AND PARAMETERS’ SETTINGS

All experiments were conducted on a workstation with the
following specifications: Intel core i7-1065G7 CPU and
1.30GHz / 16 GB RAM. For experiments Python 3.8 is used.
Scikit Learn [71] and imbalanced-learn [72] Python libraries
are used for the oversampling techniques, classification tech-
niques and the evaluation of the algorithm.

The experiments are repeated 30 times with different val-
ues of the population size and number of iterations which
have the values of 25, 50, and 100 for both the population
size and the number of iterations. The values of 6, 0.9, 0.6,
2, and 2 are determined for PSO parameters for the Vmax,
wMax, wMin, cl, and c2, respectively [73]. The parameters
settings are illustrated in Table 3. For the parameters of the
oversampling methods they are automatically tuned using the
PSO algorithm.

B. EFFECT OF OVERSAMPLING TYPE AND PARAMETERS
TUNING

In this experiment, the effect of the oversampling technique
on the performance of the proposed approach is investi-
gated for Ransomware detection in the context of imbalanced
data distribution. For this, five SMOTE variants were exper-
imented; the classic SMOTE, ADASYN, SVM-SMOTE,

VOLUME 9, 2021

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

IEEE Access

Ransomware
data

Train data

I e %Data preprocessing

Selected features

A

Test data)

e _o
[] ® [Training set with Oversampled Oversampling Testing based on
Py <= selected features training set < — by a SMOTE : reduced dataset with
o [) variant 1 only selected features
[] A :
Train a Linear _cost(C) BPSO = ! Rg&K
SVM optimization J*¢ --------mmmmmem e
l B
Evaluate SVM based on Optimized SVM . .
reduced and oversampled with a subset of | —> @ Final ?1":‘""':;::0“ btased <
training set features on testing se!

FIGURE 6. Flowchart describes the procedure of the proposed ovr-tBPSO-SVM.

TABLE 3. Parameters settings.

Parameter Value

Runs 30

Population size 25, 50, and 100
Iterations 25, 50, and 100
Vmax 6

wMax 0.9

wMin 0.6

cl 2

c2 2

Borderline-SMOTEI1, and Borderline-SMOTE2. Each tech-
nique was embedded in the proposed approach and experi-
mented under different settings of the swam size, and number
of iterations. The results of this experiment in terms of sensi-
tivity, specificity, and g-mean are shown in Table 4. The table
also presents the best values obtained for the cost parameter of
the SVM and the minimum number of selected features. It is
clear from the table that SMOTE obtained the best results in
comparison to the other oversampling methods. For instance,
when the population size is 50 and the number of iteration
is 50, too, SMOTE gained the best sensitivity, specificity,
g-mean, and the least number of features by having 96.4%,
98.7%, 97.5%, and 182, respectively. Yet, it achieved the
best specificity among all when the population size was 25,
and 100, gaining 98.3%, and 98.4%, respectively. However,
it is noticeable that Borderline-SMOTE2 can achieve out-
performing results in terms of sensitivity and g-mean when
the population size is 25 by holding 97%, and in terms of
sensitivity when the population size is 100, by having a
percentage of 95.8%. Additionally, ADASYN accomplished
the highest g-mean when the population size is 100 (96.3%),
and the minimum number of features (192) at a population

VOLUME 9, 2021

size of 25. Overall, the SMOTE method outperformed them
mainly when the population size is 50, and the number of
iterations is 50, where the best cost parameter also was 1.18.

Furthermore, Figures 7-9 show the convergence curves
of the PSO algorithm over different settings of the popu-
lation size, and the number of iterations. The convergence
curves present the capacity of the algorithm to reach the
optimal value of the objective (fitness) function during the
training period and over the course of iterations. Hence,
the curves were depicted with the fitness projected on the
y-axis, and the number of iterations on the x-axis. Figure 7
shows the convergence when the number of iterations and
the population size are 25. It is clear from the figure as the
proposed algorithm minimizes the fitness, that the oversam-
pling methods converge steadily over the iterations, where
markedly, the Borderline-SMOTE]1 exhibits the smoothest
convergence toward the optimal value. Whereas, the SVM-
SMOTE demonstrated the poorest convergence toward the
optimal.

Regarding Figure 8, it shows the convergence when the
population size, and the number of iterations are 50. All
of the methods converge gradually up to the 30" itera-
tion where they leveled out. Clearly, after the 30" itera-
tion, the Borderline-SMOTE]1 obtained the minimum fitness,
which is approximately 0.01. Even though, it is clear notic-
ing that SMOTE achieved slightly better than Borderline-
SMOTE2, ADASYN, and SVM-SMOTE, which obtained
nearly 0.018 of fitness after the 27" iteration.

Further, Figure 9 explains the convergence when the pop-
ulation size, and the number of iterations are 100. From the
figure, it is observed that Borderline-SMOTE]1, Borderline-
SMOTE2, and ADASYN demonstrated a premature con-
vergence where they had fallen down in a local optimal

57685

IEEE Access

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

TABLE 4. Results of the proposed approach with a comparison of different types oversampling techniques at different values of the swarm size and the
number of iterations. The values marked by the boldline style are indicating the best results.

Popsize Iters Sensitivity Specificity G-mean Cost No. of features
25 25 0.933 0.975 0.954 0.62 192
ADASYN 50 50 0.933 0.981 0.957 1.44 198
100 100 0.945 0.980 0.963 2.05 205
25 25 0.939 0.983 0.961 0.76 207
SMOTE 50 50 0.964 0.987 0.975 1.18 182
100 100 0.915 0.984 0.949 0.97 211
25 25 0.952 0.976 0.964 0.65 208
SVM-SMOTE 50 50 0.945 0.981 0.963 0.66 194
100 100 0.939 0.974 0.957 1.07 220
25 25 0.958 0.960 0.959 0.45 201
Borderlinel 50 50 0.933 0.986 0.959 2.51 219
100 100 0.933 0.977 0.955 1.25 187
25 25 0.970 0.970 0.970 2.55 197
Borderline2 50 50 0.952 0.959 0.955 1.55 226
100 100 0.958 0.964 0.961 1.02 198
0.0291 —— SMOTE 0.028 1 —— SMOTE
0.028 - SVMSMOTE SVMSMOTE
—— BorderlineSMOTE1 0.026 1 —— BorderlineSMOTE1
0.027 A —— BorderlineSMOTE2 —— BorderlineSMOTE2
—— ADASYN 0.024 1 —— ADASYN
0.026 A
a a
£ 0.025 - £ 00221
0.024 4 0.020 1
0.023 A 0018 \
0.022 4 \ ! —
0.016 1 L
(') ."> 1'0 1'5 2'0 2'5 (') 2'0 4'0 6'0 8'0 1(')0
Iterations Iterations

FIGURE 7. Convergence of different oversampling techniques for
25 iterations with a population size value of 25.

—— SMOTE
0.028 - SVMSMOTE
—— BorderlineSMOTE1
0.026 —— BorderlineSMOTE2
_\ —— ADASYN
0.024 4 -
[
S
* 0.022
0.020 A \
0.018 \ \\
0 10 20 30 40 50
Iterations

FIGURE 8. Convergence of different oversampling techniques for
50 iterations with a population size value of 50.

early in the iterations then remained constant. For instance,
Borderline-SMOTEI reached a minimal at the 177 iteration,
then could not converge any further. Similarly is for the
Borderline-SMOTE?2 that converged to a local at the 20

57686

FIGURE 9. Convergence of different oversampling techniques for
100 iterations with a population size value of 100.

iteration, while ADASYN converged at the 37" iteration.
On the contrast, SMOTE and SVM-SMOTE showed a better
convergence over the iterations, where both of them dropped
to an optimal after the 60" iteration achieving a fitness value
less than 0.018.

To sum up, the SMOTE oversampling showed the best soft
and steady convergence when the number of iterations and
the population size were 50. Therefore, it is considered the
baseline in the subsequent experiments.

C. COMPARISON WITH STANDARD ALGORITHMS

This subsection presents the experimental results of the
proposed ovr-tBPSO-SVM approach when compared with
standard and well-known classifiers. The best version of
ovr-tBPSO-SVM which is the SMOTE-tBPSO-SVM will be
used in the following comparison. The classifiers are includ-
ing the k-nearest neighbours (k-NN), Naive Bayes (NB),
MultiLayer Perceptron (MLP), and Random Forests (RF). k-

VOLUME 9, 2021

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

IEEE Access

TABLE 5. Comparison with standard classifiers.

Specificity Sensitivity =~ G-mean
I-NN 0.997 0912 0.953
3-NN 0.997 0.882 0.938
5-NN 0.997 0.871 0.931
NB 0.95 0.935 0.943
MLP 0.999 0.894 0.945
RF 0.998 0.871 0.932
SMOTE-tBPSO-SVM 0.987 0.964 0.975

TABLE 6. Comparison with other feature selection metaheuristics.

Specificity Sensitivity G-mean
SMOTE-tBFFA-SVM 0.986 0.939 0.962
SMOTE-tBMVO-SVM 0.983 0.927 0.955
SMOTE-tBGWO-SVM 0.976 0.952 0.964
SMOTE-¢{BPSO-SVM 0.987 0.964 0.975

NN was applied with different number of neighbours (i.e.,
1, 3 and 5) and denoted as 1-NN, 3-NN, and 5-NN, respec-
tively. For the MLP algorithm, the number of hidden neu-
rons was set to 10, and for the RF algorithm, 100 trees
were used. The results of comparison are shown in Table 5.
The results exhibits that SMOTE-tBPSO-SVM achieved the
highest g-mean with a value of 97.5%, even that 1-NN
achieved relatively closely good results (95.3%). Regarding
the sensitivity, the proposed (SMOTE-tBPSO-SVM) also
obtained the best score of 96.4%, while the 5-NN, and
the RF algorithms achieved the worst results by having
87.1%. In terms of specificity, the MLP algorithm obtained
the best score of 99.9%. Even that the proposed SMOTE-
tBPSO-SVM method did not accomplish the best result
in terms of specificity, but it obtained slightly closely to
the MLP by having a score of 98.7%. Generally speak-
ing, the proposed (SMOTE-/BPSO-SVM) achieved better
than classical classification algorithms in terms of sensitivity
and g-mean.

D. COMPARISON WITH OTHER FEATURE SELECTION
METAHEURISTICS

This section compares between the results obtained from
using PSO for feature selection and using other fea-
ture selection metaheuristic techniques including the Fire-
Fly Algorithm (FFA), Multi-Verse Optimizer (MVO), and
Grey Wolf Optimizer (GWO). The same settings are con-
sidered for the different metaheuristic algorithms having
50 iterations and a population size value of 50. Table 6
shows the comparative results for these algorithms. The
results exhibits that SMOTE-tBPSO-SVM achieved the value
of 98.7%,96.4%, and 97.5% for the specificity, sensitiv-
ity, and g-mean, respectively, which are the highest val-
ues compared to the other feature selection metaheuristic
algorithms.

VOLUME 9, 2021

TABLE 7. Comparison with other feature selection metaheuristics.

Time (sec)
1-NN 39.01
3-NN 41.06
5-NN 42.03
NB 28.40
MLP 27.98
RF 27.34
SMOTE-tBFFA-SVM 177.15
SMOTE-tBMVO-SVM 145.36
SMOTE-tBGWO-SVM 287.03
SMOTE-¢tBPSO-SVM 157.48

E. TIME ANALYSIS WITH THE OTHER ALGORITHMS

This section shows the running time obtained by the proposed
approach and the other standard and metaheuristic algorithms
on the same workstation. Table 7 shows the running time
in seconds for these algorithms. It is observed that the stan-
dard algorithms have close values, and that K-NN takes more
time than NB, MLP, and RF. Metaheuristic algorithms, on the
other hand, also have close values, and GWO is consuming
increased amount of time compared to the other metaheuristic
algorithms.

At another level, the standard algorithms take a recogniz-
able smaller amount of time than any other metaheuristic
algorithms, but still, metaheuristic algorithms take a reason-
able amount of time. Since the complexity of finding the
best combination of features makes it impossible to search
for every possible combination, the aim is to find the best
combination of features with high quality results in rea-
sonable time, which can be achieved using metaheuristic
algorithms. It is well-known that metaheuristic algorithms
take reasonable amount of time to produce high quality of
results of the acceptable solutions [74]. Such high quality
results is observed and discussed in the previous sections,
which justifies the increased amount of time compared to the
standard algorithms.

F. FEATURE IMPORTANCE ANALYSIS
This part of the experiment identifies the most important
features in the process of ransomware detection according to
the proposed classification approach. An importance score is
given for each feature according to the number of times it
appears in the best solution over 30 independent experiments.
Table 8 presents the features that have an importance score
greater than 70%. It is clear from the table that the features are
divided evenly, where half of the features refer to permission
features, and the other half is API calls features. Moreover,
it can be deduced from the table that the highly scored fea-
tures are almost permission features more than they are API
call features, as will be justified in the following paragraphs.
Itis not surprising to see “SYSTEM_ALERT_WINDOW”
permission with a high score. Ransomware apps usually

57687

IEEE Access

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

TABLE 8. List of features that have importance score > 0.70.

Feature Score Feature Score
SYSTEM_ALERT_WINDOW 1.0 android/content/pm 0.7
READ_PHONE_STATE 1.0 javax/xml/namespace 0.7
android/os 0.9 WRITE_CALENDAR 0.7
ACCESS_NETWORK_STATE 0.9 RESTART_PACKAGES 0.7
KILL_BACKGROUND_PROCESSES 0.8 RECEIVE_SMS 0.7
android/system 0.8 MANAGE_DOCUMENTS 0.7
READ_CALL_LOG 0.7 INSTALL_LOCATION_PROVIDER 0.7
INSTALL_SHORTCUT 0.7 GET_TASKS 0.7
javax/microedition/khronos/egl 0.7 BROADCAST_PACKAGE_REMOVED 0.7
java/awt/font 0.7 java/util/jar 0.7
android/telephony/mbms 0.7 java/nio/charset/spi 0.7
android/opengl 0.7 java/lang/ref 0.7
android/hardware/camera2 0.7 android/speech 0.7
UNINSTALL_SHORTCUT 0.7 android/net/wifi/p2p/nsd 0.7
BLUETOOTH_ADMIN 0.7 android/hardware/camera2/params 0.7
BIND_VPN_SERVICE 0.7 android/graphics/fonts 0.7

abuse it either to display the ransom message or block access
to the device by overlaying the screen such that the victim
could not dismiss or circumvent. Moreover, many attack
scenarios require the permission “READ_PHONE_STATE”
to collect sensitive user information. Therefore, it is common
for ransomware apps to abuse this dangerous permission to
gather information, including phone state, cellular network
information, and contacts list. Additionally, this information
could be utilized by ransomware to send SMS messages to
the contacts list to spread itself to other devices.

“ACCESS_NETWORK_STATE” permission was in the
top list as well with 90% of importance score. Ransomware
could abuse this permission to monitor network connections
at the victim’s device to facilitate the communication with
Command and Control (C&C) server.

Moreover, “KILL_BACKGROUND_PROCESSES” is
another typical permission abused by attackers and is not
popular in benign apps. It had an importance factor of 80%
as the attacker could mistreat this permission to block pro-
cesses such as Anti-virus apps to prevent its detection. Sim-
ilarly, the ransomware application can terminate all other
background processes that belong to other apps using the
“RESTART_PACKAGES” permission or shut down the
app using “BROADCAST_PACKAGE_REMOVED” per-
mission. Further, it was expected to see “GET_TASKS”
permission in the list too. This permission permits the attacker
to retrieve details about all running tasks in the victim device,
which then allows the attacker to perform activity hijacking.

The permission “READ_CALL_LOG” is not supposed
to be requested by any app as attackers can use it
to access phone call records secretly. Some permis-
sions are usually exploited by ransomware applications
to gain root access to the victim’s device and monopo-
lize its resources, such as “INSTALL SHORTCUT” and

57688

“UNINSTALL_SHORTCUT” that enable an application to
add/remove shortcuts to the main screen without the user
involvement. Another permission provides root access is
“BLUETOOTH_ADMIN” which allows users to scan and
pair with other Bluetooth devices. However, the ransomware
utilizes it to gather technical information regarding the net-
work topology. Furthermore, “BIND_VPN_SERVICE” per-
mission is usually abused by many ransomware apps to create
VPN clients in the network. Consequently, the attacker can
manipulate the traffic by re-routing it to a remote VPN server.

In some scenarios, an attacker might send messages to
the victim’s contacts using “WRITE_CALENDAR” per-
mission, enabling the app to modify the calendar data and
send messages. Consequently, these messages are sent as
legitimate messages of the calendar owner. Additionally, the
requested ransom by the ransomware application may require
“RECEIVE_SMS” permission to receive and process SMS
messages to complete the online payment. To further force
its control, ransomware application could utilize ‘“MAN-
AGE_DOCUMENTS” permission, which can give access to
locations of documents that can be then read and encrypted;
mainly, it functions as a document picker.

In other scenarios, the ransomware application tries to
access the device’s location to retrieve further informa-
tion about the victim. However, if the victim uses Google
apps, the ransomware application might be prevented from
accessing the device’s location using a location provider
because it is not signed with the same key of Google
apps. In this case, the ransomware app has to request
“INSTALL_LOCATION_PROVIDER” permission, which
was in the list with 70% importance, to impose installing its
location provider into Android Location Manager.

On the other hand, API calls features had more influ-
ence in discriminating benign apps. Benign apps heavily

VOLUME 9, 2021

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

IEEE Access

used the listed API calls in comparison to Ransomware
apps. For example, ‘“android/system” package was used
by 73.35% of the benign apps and by only 0.6% of
the Ransomware apps. Furthermore, ‘“‘android/opengl” and
““android/graphics/fonts” were used by 80.84% and 74.82%
of the benign apps, respectively. However, ‘“‘android/opengl”
was requested by only 4% of Ransomware samples, and
“android/graphics/fonts” was never called by them. This
applies to the rest of the listed API calls features.

VIIl. CONCLUSION AND FUTURE WORKS

Ransomware attacks have been causing serious damages
across continents. This demands developing more resilient
intelligent methods for the detection of such malware. This
paper presented an evolutionary-based machine learning
approach for the detection of Ransomware. The proposed
approach (SMOTE-tBPSO-SVM) used the linear SVM for
the classification and detection, while the BPSO is the
optimization and search algorithm. The BPSO is integrated
to optimize the cost coefficient of the SVM, in addition,
to tune the k neighbors and the sampling ratio of the
oversampling method. The constructed dataset comprises
10,153 applications, where 500 of them are Ransomware,
which is covering various features of permissions and API
calls. Meanwhile, the created dataset is a highly imbal-
anced dataset which is imitating reality. Several oversampling
methods were adopted and compared, including SMOTE,
Borderline-SMOTE]1, Borderline-SMOTE2, ADASYN, and
SVM-SMOTE. The SMOTE accomplished the best in regard
to the sensitivity, specificity, and g-mean. Thereby, the per-
formance of the proposed SMOTE-tBPSO-SVM compared
with traditional machine learning algorithms, such as the
K-NN, NB, MLP, and RF. The results have shown the merits
of the proposed approach capacity in detecting Ransomware
efficiently (97.5% of g-mean), yet justified with smooth
convergence over the training iterations. Even though, this
research study can be extended into additional research by
utilizing more data as well as advanced models to handle the
obtained big data, such as the deep learning algorithms that
are more capable to infer accurate patterns of relationships.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of
Prince Sultan University for paying the Article Processing
Charges (APC) of this publication.

REFERENCES

[1] C. Bansal, P. Deligiannis, C. Maddila, and N. Rao, ““Studying ransomware
attacks using Web search logs,” 2020, arXiv:2005.00517. [Online]. Avail-
able: http://arxiv.org/abs/2005.00517

[2] M. Paquet-Clouston, B. Haslhofer, and B. Dupont, ‘“Ransomware pay-
ments in the bitcoin ecosystem,” J. Cybersecur., vol. 5, no. 1, Jan. 2019,
Art. no. tyz003.

[3] R. Fang, M. Xu, and P. Zhao, “Should the ransomware be paid?”’ 2020,
arXiv:2010.06700. [Online]. Available: http://arxiv.org/abs/2010.06700

[4] S.Sharma, R. Kumar, and C. R. Krishna, ‘“‘RansomAnalysis: The evolution
and investigation of Android ransomware,” in Proc. Int. Conf. IoT Inclu-
sive Life (ICIIL), NITTTR Chandigarh, India: Springer, 2020, pp. 33—41.

VOLUME 9, 2021

[5]
[6]

[7

—

[8

—

[9

—

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

N. Perlroth. (Aug. 2014). Android Phones Hit by Ransomware. [Online].
Available: https://www.nytimes.com

A. H. Mohammad, ‘“‘Ransomware evolution, growth and recommendation
for detection,” Mod. Appl. Sci., vol. 14, no. 3, p. 68, Feb. 2020.

K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review of Android
malware detection approaches based on machine learning,” IEEE Access,
vol. 8, pp. 124579-124607, 2020.

1. Almomani and A. Khayer, “Android applications scanning: The guide,”
in Proc. Int. Conf. Comput. Inf. Sci. (ICCIS), Apr. 2019, pp. 1-5.

Y. Pan, X. Ge, C. Fang, and Y. Fan, “A systematic literature review of
Android malware detection using static analysis,” IEEE Access, vol. 8,
pp. 116363-116379, 2020.

Z. Abdullah, F. W. Muhadi, M. M. Saudi, I. R. A. Hamid, and
C. F. M. Foozy, “Android ransomware detection based on dynamic
obtained features,” in Proc. Int. Conf. Soft Comput. Data Mining. Cham,
Switzerland: Springer, 2020, pp. 121-129.

M. N. Rajkumar, V. V. Kumar, and R. Vijayabhasker, ““A hybrid approach
to detect the malicious applications in Android-based smartphones using
deep learning,” in Handbook of Research on Machine and Deep Learning
Applications for Cyber Security. Hershey, PA, USA: IGI Global, 2020,
pp. 176-194.

P. Agrawal and B. Trivedi, “Machine learning classifiers for Android
malware detection,” Data Manage., Anal. Innov., vol. 1, p.311,
Mar. 2020.

A. Amouri, V. T. Alaparthy, and S. D. Morgera, ‘A machine learning based
intrusion detection system for mobile Internet of Things,” Sensors, vol. 20,
no. 2, p. 461, Jan. 2020.

M. S. Hussain and K. U. R. Khan, “A survey of IDS techniques in
MANETS using machine-learning,” in Proc. 3rd Int. Conf. Comput. Intell.
Inform. Singapore: Springer, 2020, pp. 743-751.

E. Mugabo and Q.-Y. Zhang, “Intrusion detection method based on support
vector machine and information gain for mobile cloud computing,” 1J
Netw. Secur., vol. 22, no. 2, pp. 231-241, 2020.

J. Long, S. Zhang, and C. Li, “Evolving deep echo state networks for
intelligent fault diagnosis,” IEEE Trans. Ind. Informat., vol. 16, no. 7,
pp. 4928-4937, Jul. 2020.

J. Long, J. Mou, L. Zhang, S. Zhang, and C. Li, “Attitude data-based
deep hybrid learning architecture for intelligent fault diagnosis of
multi-joint industrial robots,” J. Manuf. Syst., 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0278612520301436,
doi: 10.1016/j.jmsy.2020.08.010.

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Mach. Hum. Sci. (MHS), Oct. 1995,
pp. 39-43.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proc. 5th Annu. Workshop Comput. Learn.
Theory. New York, NY, USA: Association for Computing Machinery,
1992, p. 144-152, doi: 10.1145/130385.130401.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
pp. 321-357, Jun. 2002.

H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: A new over-
sampling method in imbalanced data sets learning,” in Proc. Int. Conf.
Intell. Comput. Berlin, Germany: Springer, 2005, pp. 878—887.

H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in Proc. IEEE Int. Joint
Conf. Neural Netw. (IEEE World Congr. Comput. Intell.), Jun. 2008,
pp. 1322-1328.

R. Oak, M. Du, D. Yan, H. Takawale, and I. Amit, ‘“‘Malware detection on
highly imbalanced data through sequence modeling,” in Proc. 12th ACM
Workshop Artif. Intell. Secur., 2019, pp. 37-48.

S. Alsoghyer and I. Almomani, ‘“Ransomware detection system
for Android applications,” Electronics, vol. 8, mno. 8, p.868,
Aug. 2019.

N. Lachtar, D. Ibdah, and A. Bacha, ““The case for native instructions in the
detection of mobile ransomware,” IEEE Lett. Comput. Soc., vol. 2, no. 2,
pp. 16-19, Jun. 2019.

D. Su, J. Liu, X. Wang, and W. Wang, “Detecting Android locker-
ransomware on Chinese social networks,” IEEE Access, vol. 7,
pp. 20381-20393, 2019.

A. Alzahrani, H. Alshahrani, A. Alshehri, and H. Fu, “An intelligent
behavior-based ransomware detection system for Android platform,” in
Proc. 1st IEEE Int. Conf. Trust, Privacy Secur. Intell. Syst. Appl. (TPS-
1SA), Dec. 2019, pp. 28-35.

57689

http://dx.doi.org/10.1016/j.jmsy.2020.08.010
http://dx.doi.org/10.1145/130385.130401

IEEE Access

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep
learning method for Android malware detection using various features,”
IEEE Trans. Inf. Forensics Security, vol. 14, no. 3, pp. 773-788, Mar. 2019.
A. Pektas and T. Acarman, “Learning to detect Android malware via
opcode sequences,” Neurocomputing, vol. 396, pp. 599-608, Jul. 2020.
M. Scalas, D. Maiorca, F. Mercaldo, C. A. Visaggio, F. Martinelli, and
G. Giacinto, “On the effectiveness of system API-related information for
Android ransomware detection,” Comput. Secur., vol. 86, pp. 168—182,
Sep. 2019.

A. K. Singh, G. Wadhwa, M. Ahuja, K. Soni, and K. Sharma, “Android
malware detection using LSI-based reduced opcode feature vector,” Pro-
cedia Comput. Sci., vol. 173, pp. 291-298, 2020.

S. Alsoghyer and I. Almomani, “On the effectiveness of application per-
missions for Android ransomware detection,” in Proc. 6th Conf. Data Sci.
Mach. Learn. Appl. (CDMA), Mar. 2020, pp. 94-99.

M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan, “Intel-
ligent mobile malware detection using permission requests and API calls,”
Future Gener. Comput. Syst., vol. 107, pp. 509-521, Jun. 2020.

H. Faris, M. Habib, I. Almomani, M. Eshtay, and I. Aljarah, “Optimizing
extreme learning machines using chains of salps for efficient Android
ransomware detection,” Appl. Sci., vol. 10, no. 11, p. 3706, May 2020.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 785-794.

1. Bibi, A. Akhunzada, J. Malik, G. Ahmed, and M. Raza, “An effective
Android ransomware detection through multi-factor feature filtration and
recurrent neural network,” in Proc. UK/China Emerg. Technol. (UCET),
Aug. 2019, pp. 14.

A. Alzahrani, A. Alshehri, H. Alshahrani, R. Alharthi, H. Fu, A. Liu, and
Y. Zhu, “RanDroid: Structural similarity approach for detecting ran-
somware applications in Android platform,” in Proc. IEEE Int. Conf.
Electro/Inf. Technol. (EIT), May 2018, pp. 0892-0897.

J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G.-]. Ahn, “Uncovering
the face of Android ransomware: Characterization and real-time detec-
tion,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1286-1300,
May 2018.

N. Andronio, S. Zanero, and F. Maggi, ‘“HelDroid: Dissecting and detect-
ing mobile ransomware,” in Proc. Int. Symp. Recent Adv. Intrusion Detec-
tion. Cham, Switzerland: Springer, 2015, pp. 382-404.

ID Ransomware. List of Ransomware. Accessed: Apr. 9, 2021. [Online].
Available: https://id-ransomware.blogspot.com/2016/07/ransomware-
list.html

theZoo. theZoo—A Live Malware Repository. Accessed: Apr. 9, 2021.
[Online]. Available: https://thezoo.morirt.com/

Contagio. Contagio Malware Dump. Accessed: Apr. 9, 2021. [Online].
Available: http://contagiodump.blogspot.com/

Koodous. Koodous APKs. Accessed: Apr. 9, 2021. [Online]. Available:
https://koodous.com/apks

VirusTotal. Analyze Suspicious Files and URLs to Detect Types of

Malware, Automatically. Accessed: Apr. 9, 2021. [Online]. Available:
https://www.virustotal.com/

F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis
of current Android malware,” in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment. Cham, Switzerland: Springer, 2017,
pp. 252-276.

Tencent. I'm QQ. Accessed: Apr. 9, 2021. [Online]. Available: https://
im.qq.com/

K. Project. Kharon Malware Dataset. Accessed: Apr. 9, 2021. [Online].
Available: http://kharon.gforge.inria.fr/dataset/

A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark Android malware
datasets and classification,” in Proc. Int. Carnahan Conf. Secur. Technol.
(ICCST), Oct. 2018, pp. 1-7.

U.-C. 1. for Cybersecurity. Investigation of the Android Malware (CICIn-
vesAndMal2019). Accessed: Apr. 9, 2021. [Online]. Available: https:/
www.unb.ca/cic/datasets/invesandmal2019.html

C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, ‘“Handling multiple
objectives with particle swarm optimization,” IEEE Trans. Evol. Comput.,
vol. 8, no. 3, pp. 256279, Jun. 2004.

J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Proc. IEEE Int. Conf. Syst., Man, Cybern. Comput.
Cybern. Simulation, vol. 5, Oct. 1997, pp. 4104-4108.

X.Zhang, D. Zou, and X. Shen, ““A novel simple particle swarm optimiza-
tion algorithm for global optimization,” Mathematics, vol. 6,no. 12, p. 287,
2018.

57690

(53]

(54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

(72]

(73]

(74]

A. M. Sarhan, “Brain tumor classification in magnetic resonance images
using deep learning and wavelet transform,” J. Biomed. Sci. Eng., vol. 13,
no. 6, p. 102, 2020.

M. Zulgarnain, R. Ghazali, Y. M. Mohmad Hassim, and M. Rehan, “Text
classification based on gated recurrent unit combines with support vector
machine,” Int. J. Electr. Comput. Eng. (IJECE), vol. 10, no. 4, p. 3734,
Aug. 2020.

A. Sentas, I. Tashiev, F. Kiiciikayvaz, S. Kul, S. Eken, A. Sayar, and
Y. Becerikli, “Performance evaluation of support vector machine and
convolutional neural network algorithms in real-time vehicle type and color
classification,” Evol. Intell., vol. 13, no. 1, pp. 83-91, Mar. 2020.

J. Cervantes, F. Garcia-Lamont, L. Rodriguez-Mazahua, and A. Lopez,
“A comprehensive survey on support vector machine classification: Appli-
cations, challenges and trends,” Neurocomputing, vol. 408, pp. 189-215,
Sep. 2020.

O. Chapelle, “Training a support vector machine in the primal,” Neural
Comput., vol. 19, no. 5, pp. 1155-1178, May 2007.

H. M. Nguyen, E. W. Cooper, and K. Kamei, “Borderline over-sampling
for imbalanced data classification,” Int. J. Knowl. Eng. Soft Data
Paradigms, vol. 3, no. 1, pp. 4-21, Apr. 2011.

Z. Xu, D. Shen, T. Nie, and Y. Kou, “A hybrid sampling algo-
rithm combining M-SMOTE and ENN based on random forest for
medical imbalanced data,” J. Biomed. Informat., vol. 107, Jul. 2020,
Art. no. 103465.

S. Matsukawa, T. Nakayama, C. Ninagawa, and J. Morikawa, ‘“Dynamic
SMOTE training of neural networks used in real-time pricing control
for building air-conditioners,” IEEJ Trans. Elect. Electron. Eng., vol. 14,
no. 11, pp. 1727-1728, 2019.

K. Chen and B. Liu, “Loan risk prediction method based on SMOTE and
XGBoost,” Comput. Mod., no. 2, pp. 26-30, 2020. [Online]. Available:
http://www.c-a-m.org.cn/EN/10.3969/j.issn.1006-2475.2020.02.006

H. Al Majzoub, I. Elgedawy, O. Akaydin, and M. K. Ulukok, “HCAB-
SMOTE: A hybrid clustered affinitive borderline SMOTE approach for
imbalanced data binary classification,” Arabian J. Sci. Eng., vol. 45,
pp. 3205-3222, Jan. 2020.

X. Zheng, “SMOTE variants for imbalanced binary classification: Heart
disease prediction,” Univ. California, Los Angeles, Los Angeles, CA,
USA, 2020.

G. Suarez-Tangil and G. Stringhini, “Eight years of rider measurement
in the Android malware ecosystem,” IEEE Trans. Dependable Secure
Comput., early access, Mar. 30, 2020, doi: 10.1109/TDSC.2020.2982635.
S. Zhu, J. Shi, L. Yang, B. Qin, Z. Zhang, L. Song, and G. Wang,
“Measuring and modeling the label dynamics of online anti-malware
engines,” in Proc. 29th USENIX Secur. Symp. (USENIX Secur.), 2020,
pp. 2361-2378.

A. Salem, S. Banescu, and A. Pretschner, ‘““Maat: Automatically analyzing
virustotal for accurate labeling and effective malware detection,” 2020,
arXiv:2007.00510. [Online]. Available: http://arxiv.org/abs/2007.00510
M. Ahmad, V. Costamagna, B. Crispo, F. Bergadano, and Y. Zhau-
niarovich, “StaDART: Addressing the problem of dynamic code updates
in the security analysis of Android applications,” J. Syst. Softw., vol. 159,
Jan. 2020, Art. no. 110386.

I. A. Dogru and M. Onder, “AppPerm analyzer: Malware detection system
based on Android permissions and permission groups,” Int. J. Softw. Eng.
Knowl. Eng., vol. 30, no. 03, pp. 427-450, Mar. 2020.

C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang, and H. Kinawi, “Android
malware detection based on factorization machine,” IEEE Access, vol. 7,
pp. 184008-184019, 2019.

A. Al Khayer, I. Almomani, and K. Elkawlak, “ASAF: Android static
analysis framework,” in Proc. Ist Int. Conf. Smart Syst. Emerg. Technol.
(SMARTTECH), Nov. 2020, pp. 197-202.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp. 2825-2830, Oct. 2011.

G. Lemaitre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning,”
J. Mach. Learn. Res., vol. 18, no. 17, pp. 1-5, 2017. [Online]. Available:
http://jmlr.org/papers/v18/16-365.html

M. Habib, I. Aljarah, and H. Faris, “A modified multi-objective particle
swarm optimizer-based Lévy flight: An approach toward intrusion detec-
tion in Internet of Things,” Arabian J. Sci. Eng., vol. 45, pp. 6081-6108,
Mar. 2020.

X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. U.K.: Luniver
Press, 2010.

VOLUME 9, 2021

http://dx.doi.org/10.1109/TDSC.2020.2982635

1. Almomani et al.: Android Ransomware Detection Based on a Hybrid Evolutionary Approach in Context of Highly Imbalanced Data

IEEE Access

IMAN ALMOMANI (Senior Member, IEEE)
received the bachelor’s degree from United Arab
Emirates, in 2000, the master’s degree in com-
puter science from Jordan, in 2002, and the Ph.D.
degree in wireless network security from De Mont-
fort University, UK., in 2007. She is currently
an Associate Professor in cybersecurity. She is
also the Associate Director of the Research and
Initiatives Centre (RIC) and also the Leader of the
Security Engineering Laboratory (SEL), Prince
Sultan Umversny (PSU), Riyadh, Saudi Arabia. Before Joining Prince Sultan
University, she has worked as an Associate Professor and the Head of
the Computer Science Department, The University of Jordan, Jordan. Her
research interests include wireless networks and security, mainly wireless
mobile ad hoc networks (WMANETS), wireless sensor networks (WSNs),
multimedia networking (VoIP), and security issues in wireless networks. She
is also interested in the area of electronic learning (e-learning) and mobile
learning (m-learning). She has several publications in the above areas in a
number of reputable international and local journals and conferences. She is
also a Senior Member of IEEE WIE. She is on the organizing and technical
committees of a number of local and international conferences. She also
serves as a reviewer and a member of the editorial board for a number of
international journals.

RANEEM QADDOURA received the Ph.D.
degree in computer science in the fields of machine
learning and data mining. She is currently an
Assistant Professor with Philadelphia University.
She combines both academic and industrial experi-
ence of a total of 14 years of experience. She is also
an active Research Member with the Evolution-
ary and Machine Learning Group, which focuses
on evolutionary algorithms, machine learning, and

£ their applications for solving important problems
in different areas. Her current research interests include evolutionary com-
putation and data clustering and classification.

MARIA HABIB received the bachelor’s degree in
computer engineering from the Faculty of Engi-
neering and Technology, The University of Jordan,
and the master’s degree in web intelligence from
the Department of Information Technology, King
Abdullah II School of Information Technology.
She was a Research Assistant with The University
of Jordan. She is currently a Data Science Engineer
and a Researcher with Altibbi, Amman, Jordan.
She is also a former Graduate Research Trainee

AN
in bioinformatics and big data analysis, the Bioinformatics Laboratory—
supervised by Jianguo (Jeff) Xia at the Parasitology Department, McGill
University. She is also a member of the Research Group. Her research
interests include machine learning and deep learning techniques, natural
language processing, evolutionary algorithms, multi-objective optimization,
as well as, in biomedical and bioinformatics applications.

SAMAH ALSOGHYER is currently a Researcher with the National Center
for Cybersecurity Technologies, KACST. Her research interests include
malware analysis as well as the identification and mitigation of cyberattacks.

VOLUME 9, 2021

ALAA AL KHAYER received the B.Eng. degree
in information technology engineering from SVU
/ University, Damascus, in 2017, and the bachelor’s
a degree in software engineering from Prince Sultan
University (PSU), Riyadh, Saudi Arabia, in 2018.

wf’/ She is currently a Research Engineer with the

- Security Engineering Laboratory (SEL), PSU. Her

"=, research interests include software engineering,

‘ ‘ networks security, malware analysis, multimedia
A /

networking, and computer vision.

IBRAHIM ALJARAH received the bachelor’s
degree in computer science from Yarmouk Uni-
versity, Jordan, in 2003, the master’s degree in
computer science and information systems from
the Jordan University of Science and Technology,
Jordan, in 2006, and the Ph.D. degree in computer
science from North Dakota State University, USA,
in 2014. He is currently an Associate Professor
of big data mining and computational intelligence
with the Department of Information Technology,
The University of Jordan, Jordan. He participated in many conferences in the
field of data mining, machine learning, and big data, such as CEC, GECCO,
NTIT, CSIT, IEEE NABIC, CASON, and BIGDATA Congress. Further-
more, he contributed in many projects in USA such as Vehicle Class Detec-
tion System (VCDS), Pavement Analysis Via Vehicle Electronic Telemetry
(PAVVET), and Farm Cloud Storage System (CSS) projects. He has pub-
lished more than 80 publications in refereed international conferences and
first and second quartile journals with more than 3500 citations and an H-
index of 32. His research interests include data mining, data science, machine
learning, opinion mining, sentiment analysis, big data, MapReduce, Hadoop,
swarm intelligence, evolutionary computation, and large-scale distributed
algorithms. He ranked amongst the top 2% scientists in the world and the one
of top ten scientists in Jordan in Artificial Intelligence and Image Processing
field, as per Stanford University Global Ranking 2020.

HOSSAM FARIS received the B.A. degree in
computer science from Yarmouk University, Jor-
dan, in 2004, the M.Sc. degree in computer sci-
ence from Al-Balqa’ Applied University, Jordan,
in 2008, and the Ph.D. degree in e-business from
the University of Salento, Italy, in 2011. He is cur-
rently a Professor with the School of Computing
and Informatics, Al Hussein Technical University;
and the Information Technology Department, King
Abdullah II School for Information Technology,
The University of Jordan. In 2016, he has worked as a Postdoctoral
Researcher with the Information and Communication Technologies Research
Center (CITIC), GeNeura Team, University of Granada, Spain. He co-
founded the Evolutionary and Machine Learning Research Group. His
research interests include applied machine learning, evolutionary compu-
tation, knowledge systems, and data mining. He was awarded a Full-Time
Competition-Based Scholarship from the Italian Ministry of Education and
Research for his Ph.D. degree.

57691

