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ABSTRACT Sentiment analysis using stemmed Twitter data from various languages is an emerging research
topic. In this paper, we address three data augmentation techniques namely Shift, Shuffle, and Hybrid
to increase the size of the training data; and then we use three key types of deep learning (DL) models
namely recurrent neural network (RNN), convolution neural network (CNN), and hierarchical attention
network (HAN) to classify the stemmed Turkish Twitter data for sentiment analysis. The performance of
these DL models has been compared with the existing traditional machine learning (TML) models. The
performance of TML models has been affected negatively by the stemmed data, but the performance of
DL models has been improved greatly with the utilization of the augmentation techniques. Based on the
simulation, experimental, and statistical results analysis deeming identical datasets, it has been concluded
that the TML models outperform the DL models with respect to both training-time (TTM) and runtime
(RTM) complexities of the algorithms; but the DL models outperform the TML models with respect to the
most important performance factors as well as the average performance rankings.

INDEX TERMS Data augmentation, deep learning, machine learning, neural networks, sentiment analysis,
Turkish, Twitter.

PROPOSED ACRONYMS
ACC = Accuracy
AUC = Area Under the ROC Curve
CNN = Convolution Neural Network
DECT = Decision Tree
DL = Deep Learning
F1S = F1 Score
HAN = Hierarchical Attention Network
MAXE =Maximum Entropy
RANF = Random Forests
ROC = Receiver Operating Characteristic
RNN = Recurrent Neural Network

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Wei Tsai .

RTM = Runtime
RSVM = Random Forest + Support Vector Machine
SVMs = Support Vector Machines
TML = Traditional Machine Learning
TTM = Training-time.

I. INTRODUCTION
As social media encompasses a wide range of interactive
applications for allowing users to create and share content
with the public, it plays an important role in modern life [1].
There are numerous social media applications, which can be
used for various purposes. For instance, there are dating apps
(e.g., Tinder, Bumble, and Zoosk), multi-purpose messaging
apps (e.g., WhatsApp, WeChat, and Facebook Messenger),
online news apps (e.g., Yahoo News, Google News, and
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Flipboard), video chatting apps (e.g., Skype, IMO, and Zoom
Meetings), and micro-blogging apps (e.g., Twitter, Tumblr,
and FriendFeed) [2]. These apps include both immense
advantages and extreme risks associate to the exposure of
privacy aspects [3]–[5].

Currently, Twitter is one of the best-known channels in the
micro-blogging world allowing tweeple (TWitter pEEPLE)
publicly to post their views and opinions on various topics
using the hashtag topic ‘‘#topic’’. For instances, #football,
#security, and #networking hint to talk about football, secu-
rity, and networking, respectively. Twitter allows tweeple to
read and send messages that consist of up to 280 characters.
These messages are called tweets. Tweets are widely used
for expressing views on certain topics [6]. Twitter includes
short posts, graphics interchange formats, article links, and
videos. The huge amount of data found on Twitter make it a
very compulsive medium for performing data analysis related
researches. One of the most common approaches to analyze
Twitter data is via sentiment analysis [7]–[19]. Sentiment
analysis is the computational study of people’s emotions,
attitudes, and opinions towards an entity. It could be an
event, organization, individual, or a topic [20]. Sentiments
have been expressed via social media through text-based
messages and images [21]. In sentiment analysis, stemming
is a commonly used method applied to textual data to find
their roots as part of a pre-processing operation [22]–[27].
The stemming rather reduces the information gained from
the data in many languages. In fact, the stemming improves
accuracy (ACC [28]) achieved by various methods in dif-
ferent languages including not only English [29], [30] but
also Arabic [26], [27], [31], [32], Indonesian [23], [33], [34],
Japanese [25], [35] French [36]–[38], Portuguese [37], [39],
German [37], [40], [41], Hungarian [37], [42], [43], Span-
ish [44]–[47], and Turkish [48]–[50].

The Turkic language [51] as one of the world’s fundamen-
tal languages are a language family of at least 35 documented
languages [52]–[54], spoken by the Turkic peoples of Eurasia
fromSouthern Europe, Eastern Europe, the Caucasus, Central
Asia, Western Asia, North Asia, and East Asia [51]. The total
number of the Turkic language speakers is over 200 mil-
lion [55]. Turkish as one of the Turkic language has the
greatest number of speakers, spoken mainly in Anatolia and
the Balkans; its native speakers account for about 40% of all
Turkic speakers [56]. Based on the estimation of Worldome-
ters [57], in 2019 the world population was approximately
7.7 billion and the native Turkish speakers were estimated
as 79.4 million, i.e., 1.08% of the total world population.
Roughly, at present Turkic-speaking population is 2.6% of
the total world population.

There are many text-based studies found in the literature
on sentiment or opinion analysis in English language [29].
However, only a handful number of studies were found to
be in Turkish [54], [58]–[62]. This is due to its inherent
complexity. The hidden suffix of the Turkish makes a word
negative within words or a negative word might have a dis-
similar message in a sentence. Negations of the Turkish must

TABLE 1. Example of the Turkish root words extended to produce new
meaning.

TABLE 2. Example change in polarity of a word due to an added suffix.

TABLE 3. Example of words negated due to a hidden suffix.

be carefully taken into consideration. The key differences
between the Turkish and the English [63] have been sum-
marized in TABLEs 1, 2, 3, and 4; where root words can
be extended by many suffixes to produce new meanings, an
added suffix may change the polarity of a word, words can
be negated by suffix hidden within the words, a word that
appears to be negative may change its polarity to have a
different meaning when used in a sentence, respectively.

Moreover, the existing sentiment analysis methods devel-
oped for English rarely possess productive outcomes when it
comes to Turkish [64]. For instance, the application of stem-
ming on textual data increases the achieved good accuracy on
textual data in English [30] or other languages; but this might
not always be the case in Turkish. Besides, sentiment analysis
is extremely difficult on Turkish over English texts [63].

We know from our previous work [54], [61], [62], that
while the produced words after stemming helps improve the
accuracy of the method using polarity lexicon, the achieved
accuracy is relatively lower [54] using the traditional machine
learning (TML) algorithms such as Naive Bayes (NB), Max-
imum Entropy (MAXE), Decision Tree (DECT), Random
Forests (RANF), and Support Vector Machines (SVMs).
Anecdotally, this is because by chopping the end of the
tweets, the stemming reduces the amount of information
gained from these tweets.

Both DL and TML algorithms can be used to analyze
sentiment from Turkish textual data. However, it is unknown
if DL or TML algorithms will achieve a better performance
on sentiment analysis of stemmed Turkish textual data.

This research aims to use a deep learning algorithms to
analyze the sentiment of Turkish Twitter texts. Contrary to the
traditional machine learning techniques that trained directly
on the reduced data, the research proposed three data aug-
mentation techniques (Shift, Shuffle, and Hybrid) to improve
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TABLE 4. Example of a word changing its meaning when used in a sentence.

TABLE 5. Summary of research efforts on sentiment analysis of Turkish Twitter texts carried out in recent years.

the diversity of the data during training in order to improve
the accuracy on stemmed data. These techniques improve
the number of the training set in a dataset. Subsequently,
we used three supreme types of DL models namely recurrent
neural network (RNN), convolution neural network (CNN),
and hierarchical attention network (HAN) to analyze the
sentiment from the stemmed Turkish Twitter data. Moreover,
as using accuracy as performance measure might be bias,
we used four different types of performance metrics namely
runtime (RTM), ACC, area under curve (AUC), and F1 Score
(F1S) to evaluate the algorithms.

Although the training-time (TTM) and RTM complexities
of TML algorithms are significantly lower than those of the
DL algorithms (see Fig. 4), our applied DL algorithms have
achieved state-of-the-art performance (see Figs. 5 and 6).
This is due to the fact that our proposed augmentation tech-
niques have improved the accuracy on the stemmed data that
potential improvement reflects on the performance of the
DL algorithms. Consequently, the performance of the DL
algorithms yields better than that of the TML algorithms. The
obtained results of the DL algorithms have been compared
with the existing results of TML algorithms on the identical
datasets. On the same ground, the DL algorithms outper-
formed the TML algorithms with a significant difference.
As a matter of fact, stemming minimizes the information
picked up from the Turkish data [48] and the TML algorithms
are trained directly on the reduced data. Henceforth, the per-
formance of TML algorithms is negatively affected by the
stemmed data.

The rest of the paper is organized as follows: Section II
highlights the influential work carried out on sentiment analy-
sis of the Turkish Twitter text; Section III explains how tweets
are harvested from Twitter, the pre-processing operations is

applied to convert the data into a usable format, and the
stemming operations applied to find the stems (root word)
of the tweets. Section IV introduce the proposed data aug-
mentation techniques alongwith the DLmodels (RNN, CNN,
and HAN) used in this research. The section also presents
the performance evaluation metrics used as well as the
time-space complexities of numerous algorithms accompa-
nying their corresponding simulated results; Section V shows
experimental results, comparison, and discussion; Section VI
presents results from statistical tests and discussion; and
finally, Section VII concludes the paper and hints future
studies.

II. LITERATURE REVIEW
Much research had been carried out to analyze the sentiment
of tweets from English data. However, only a limited number
of studies have been carried out to analyze the sentiment of
tweets in other languages (e.g., the Turkish). Table 5 presents
a summary of recent works carried out on sentiment analysis
of Turkish texts in recent years.

A detailed explanation of few of the influential works
carried out to analyze the sentiment of Turkish texts are
highlighted in this section. The existing works can roughly be
categorized into two groups: (i) Sentiment analysis of Turkish
texts, and (ii) Sentiment analysis of the stemmed Turkish
data.

A. RATING THE TURKISH TEXTS
Kaya et al. [65] studied sentiment in the Turkish political
news. They used articles from different news sites to con-
struct a dataset consisting of political news. They used a
dataset that was constructed with a machine learning-based
approach. Besides, that dataset was domain-dependent as it
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only consist of data from the political domain. It was found
in their studies that the MAXE and N-Grams language model
outperformed SVMs and NB. All the approaches used in
their study achieved accuracy between the range of 65% to
77%. Nevertheless, their study was rather a domain-specific.
As such, it is unclear if the same or similar accuracy will
be achieved if the study would be performed on a different
domain.

A year following that, the same group [58] performed
another research on the same domain, where they determined
the sentiment classification of the Turkish sentiment columns.
They applied transfer learning from an unlabelled Twitter
to labeled political columns to enhance the performance of
their methods. Their key aim was to determine whether the
whole document was positive or negative regardless of its
subject. Different techniques (e.g., SVMs, NB, andN-Grams)
were used as machine learning classifiers in their study,
which added up to 26% further accuracy. As an extra factor,
questions remain as to whether the achieved accuracy will
remain the same if each sentence in a document is considered
separately. In a different direction, Kirelli et al. [11] per-
formed sentiment analysis of shared Turkish tweets on global
warming and climate change with data mining methods.

Önder et al. [59] performed sentiment analysis to ana-
lyze the customer satisfaction of a particular transportation
company. The analysis was performed with the tweets of
the company’s customers found on the Twitter. Their study
was performed in binary method to determine whether the
tweet was positive or negative. Initially, 20000 data were
harvested from the Twitter to perform the analysis. But only
14777 tweets remained after a pre-processing operation was
performed to remove the un-useful tweets. Different methods
(e.g., SVMs, NB, Multinomial NB, and k-Nearest Neighbor)
were used to determine the performance of the analysis, out
of which the Multinomial NB algorithm produced the best
accuracy result with an ACC of 66.06%. In normal circum-
stances, high precision and high ACC are expected from the
algorithms [28]. Nonetheless, considering that the analysis
was performed to classify the data to be either positive or
negative, the achieved accuracy was not very encouraging
since even the random guessing has a chance of achieving
a 50% ACC.

TML methods have been used to analyze sentiment [58],
[59], [65] of Turkish Twitter data. However, using the TML
algorithms to analyze sentiment from tweets require explicit
feature engineering as these algorithms cannot extract fea-
tures on their own. This is anticipated to increase the work-
load required to implement these algorithms. In this paper,
we aimed to address this problem by using the three different
DL models to analyze the sentiment of stemmed Turkish
Twitter data.

B. RATING THE STEMMED TURKISH DATA
Several research to analyze sentiment fromTurkish texts have
been carried out specifically on stemmed data [63], [66],
[54], [62].

Vural et al. [63] presented a framework for unsuper-
vised sentiment analysis in the Turkish text documents. The
study customized sentiment analysis library called the Sen-
tiStrength for the English to the Turkish by translating its
polarity lexicon. The SentiStrength [67] is a sentiment anal-
ysis library that assigns a positive and a negative score to
English text. The polarity was then assigned to each sen-
tence after segmenting the text to sentences by translating
the polarity lexicon from English to Turkish. Zemberek [68]
library was used for pre-processing to perform an operation
including spell checking, negation extraction, and ASCII
(American Standard Code for Information Interchange) to the
Turkish conversion. The library was also used to convert the
data to stemmed data before applying the polarity lexicon
method for analyzing the positive and negative polarity of the
data with an ACC of 76%. They also assigned the polarity
of an English dictionary directly to the translated Turkish
words. Nonetheless, the polarity of a translated word from
one language might not align with the polarity of the word
in the original language. As such, questions remain as to
whether the result obtained using this dictionary would yield
a similar result, assuming the polarity was assigned based on
the Turkish language, independent of the original language.

Tocoglu et al. [66] gathered data from individuals to form a
new dataset. The gathered dataset was divided into two, form-
ing two datasets namely raw dataset and validated dataset.
Furthermore, two different stemming methods, the fixed pre-
fix stemming (FPS) [69], which was proven to give bet-
ter accuracy after the fifth character, and Zemberek or the
dictionary-based Turkish stemmer [68] were applied to each
dataset to make a total of four different datasets. Several TML
algorithms including NB, DECT, RANF, and updated SVMs
were used to analyze the sentiment of the gathered datasets.
It was concluded that the SVMs classifier yielded a higher
accuracy result. It was also found that the model trained with
a validated dataset gave a higher result than the model trained
with a nonvalidated dataset. This study set a sub-standard for
other researchers by comparing the two stemming methods
developed for the Turkish language.

In our previous study [54], [62], we analyzed the sentiment
of Turkish Twitter data on different datasets. We harvested
data from Twitter and applied pre-processing operations
(e.g., removal of punctuations and special characters to clean
the data). The data were converted to a stemmed data by
chopping off the end of the data to produce their root words.
Subsequently, four different TML algorithms namely DECT,
RANF, MAXE, and SVMs were employed. A dictionary
of 6800 was also manually translated from the English to
the Turkish to be used as a method of polarity lexicon.
While the ACC of the method obtained using polarity lexicon
increased from 48.2% if the used data were in raw form to
57% after stemming had been applied, the accuracy of the
TML algorithms (e.g., RANF, MAXE, and DECT) had all
been decreased.

Research to analyze sentiment from Turkish texts has been
carried out on stemmed data [54], [62], [63], [66]. While
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FIGURE 1. The word cloud of (a), (b), and (c) represents the first dataset, whereas the word cloud of (d), (e), and (f) indicates the second dataset [54].

converting the data to stemmed data yielded a positive result
in case of the polarity lexicon method to analyze sentiment.
The achieved accuracy on the stemmed data was relatively
less as compared to when the data were in their raw or a
tokenized form. Anecdotally, this had occurred due to the
fewer data available in the tweets after the data had been
stemmed. Besides, many classifiers (typically deep models)
give a better classification accuracy as more data become
available. In this study, we aim to address the issue of having
fewer data in tweets by proposing three data augmentation
techniques (e.g., Shuffle, Shift, and Hybrid) to increase the
number of training data available in tweets. As the augmen-
tation technique increase the diversity of stemmed data, it is
anticipated that this will lead to an increase in the accuracy
achieved by the DL model.

III. DATA COLLECTION TECHNIQUES
A. HARDWARE SPECIFICATION
An 8GB Graphical Processing Unit (GPU) device GeForce
RTX 2080ti with Compute Unified Device Architec-
ture (CUDA) version 10.2 has been employed in this research.

B. DATASET
The Turkish tweets are harvested from the Twitter using
the Twitter searched API (Application Program Interface)
implemented in R version 3.4.3. Below is an example of raw
tweets harvested from Twitter.

1) ‘‘username: @Twitteruser: SADECE BÜYÜK
ACILAR ÇEKENLER #merhamet IN ANLAMINI
BILIRLER. . .VATANABAYRAGAMILLETEHAIN-
LIK YAPANLARA’’

2) ‘‘USERNAME: @Twitteruser: Bizim insanimiz mer-
hamet sahibidir, Hayirli Haftalar #anladimki #BuYaz
#kafes #Merhamet #ramazan #Canli https://t.co/
CGZ. . . ’’

Two different datasets1 were harvested and manually
labelled. A dataset that consists of 3000 data with equal
distribution from each class (1000 of positive, negative, and
neutral tweets), which we refer to as the first dataset and a
dataset with 10500 data with equal distribution from each
class (3500 of positive, negative, and neutral tweets), that
we refer to as the second dataset. To test the generalizability
of the proposed method, we performed all analyses on both

1The datasets are available on request for academic use (Email: haris-
ushehu@ecs.vuw.ac.nz). Researchers wanting to use the dataset will have
to agree with the terms that they will cite our work.

datasets. The word cloud present in Fig. 1 provides a sum-
mary of the harvested tweets [54].

C. DATASET MODIFICATION
Since certain tweets directly harvested from the Twitter are
not in a usable format, various pre-processing methods such
as removal of punctuation marks, user identification (Id),
and tweet Id, and so on have been applied to clean the
tweets. Retweeted tweets and stopwords or the commonly
used words have also been removed from the tweets as part of
the pre-processing methods. Furthermore, words have been
converted to lower case and tokenization has been applied
to convert tweets into tokens. The two sentences in the
below subsection III-B show an example of how tweets are
transformed after the aforementioned operations have been
applied.

1) ‘‘sadece, büyük, acilar, çekenler, #merhamet, in,
anlamini, bilirler, vatana, bayraga, millete, hainlik,
yapanlara’’

2) ‘‘insanimiz, merhamet, sahibidir,, hayirli, haftalar,
#anladimki, #buyaz, #kafes, #merhamet, #ramazan,
#canli’’

A notable change here is that the words have all been
converted to lower cases and tokenized. Another important
change is the absence of stopwords like ‘‘bizim’’ in the sec-
ond part of section III-B which is removed here. The pro-
duced information obtained after these operations are called
the stopword data. Finally, we find the stem i.e., the root form
of the data by chopping the end of words in the tweets. Below
is an example of the stemmed data.

1) sadece sade sade ek ek merhamet in in bil vat an millet
mil mil hain hain yap

2) insani merhamet sahip sahip hafta hafta hafta haf kafes
merhamet ramazan

As was pointed out in the introduction, this study will
focus on improving the accuracy of stemmed data. Therefore,
having discussed how the data is transformed, the next sub-
section (III-D) provides more information on the stemming
process.

D. STEMMING PROCESS
The stemming is a heuristic process that chops off the end of
words. Stemming algorithms have been studied in computer
science since the 1960s. The stemming algorithms are typi-
cally rule-based. They often include the removal of deriva-
tional affixes. For example, a stemming algorithm would
reduce the words fishing, fished, and fisher to the stem fish.
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FIGURE 2. Examples of shift, shuffle, and hybrid augmentation techniques applied to the data.

TABLE 6. Example of stemming on Turkish text.

TABLE 7. Example of words with more than one stem.

In this paper, the stemming process is performed with
the help of Zemberek [68], which is an open-source natural
language processing (NLP) library developed for the Turkic
languages. TABLE 6 shows an example of the Turkish words
and how they are changed after stemming has been applied.
However, since certain words might havemore than one stem,
the stemming operation is performed to include all possible
stems of a word. An example of words with more than one
stem is presented in TABLE 7. Moreover, the stem of a word
might be written more than once based on the plurality of
the word and depending on how it is used in a context. For
instance, the stem of certain words ending with the suffix
‘‘ler’’, which indicates plural in the Turkish are written three
times; whereas the stem of words ending with the suffix
‘‘luk’’ or ‘‘lik’’ are written two times. This is due to the
emphasis of the plural in ‘‘ler’’ is more as compared to ‘‘luk’’
and ‘‘lik’’. Few examples of words, which are written more
than once have been provided on TABLE 8.

TABLE 8. Example of words that are rewritten more than once.

IV. OUR METHODS
The DL models are computationally intensive and training
samples need heavy computations due to their large number
of layers. Moreover, training these models requires a lot
of training data. Conversely, we also know that stemming

minimizes the size of data needed to train/evaluate models,
however, augmentation techniques might help overcome the
problem by artificially expanding the size of the training data
through creating modified versions of texts in the datasets.

A. PROPOSED DATA AUGMENTATION TECHNIQUES
The data augmentation technique is closely related to over-
sampling in data analysis. It is performed with the aim of
increasing the size of the data used for training so as to
increase the diversity of the data available for training. It acts
as a regularizer. It helps reduce overfitting when training a
machine learning model [70]. While the data augmentation
technique is a commonly used method when training image
data, there are only a limited number of studies carried out on
data augmentation on textual data. Therefore, in this paper,
we aim to develop a similar method used for augmenting
training data in images on textual data to analyze its effect
on the accuracy of deep models.

As collecting more data is a tedious and expensive process,
we try to make data more diverse by using data augmentation
techniques. Each time a sample is processed by the model,
it is presented in a slightly different way. This is beneficial as
it will make it harder for the model to learn all the parameters
of the training samples, which in turn prevents the model
from overfitting. Here, we have proposed three different data
augmentation techniques to improve the diversity of the data.
Fig. 2 illustrates examples of shift, shuffling, and hybrid
augmentation techniques.

1) Shift Technique ⇒ The width_shift and height_shift
augmentation method in images is using a threshold
value to extend the width and height of a particular
image as an augmentation technique. Similar to the
width_shift and height_shift augmentation method in
images, this method used a copy of the first and last
word of a sentence and add it to the beginning and the
end of the same sentence to produce a new sentence in
the same class. Fig. 2 (a) shows an example of a sen-
tence generated by the shift augmentation technique.

2) Shuffle Technique ⇒ Similar to crossover [71],
the shuffle technique swaps and concatenates words of
the same sentence to produce a new sentence of the
same class. Fig. 2 (b) exhibits an example of a sentence
generated by the shuffle augmentation technique.

3) Hybrid Technique ⇒ The hybrid data augmenta-
tion technique combines the two (shift and shuffling)
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FIGURE 3. Architecture of our used DL models.

approaches to produce a new word that is added to
the original training data. The aim is to analyze the
impact the two proposed methods combine together,
will have on the accuracy of the deep models. Fig. 2 (c)
demonstrates an example of a sentence generated by
the hybrid augmentation technique.

B. OUR PUT IN DL MODELS
Akin to how an infant learns to recognise objects, the DL
models needs to be trained with a huge amount of data to
be able to generalize on data it has never-seen before. These
models are based on neural networks. They take input, which
are then processed in hidden layers manipulating weights.
The weights are updated during training process. Subse-
quently, the model expectorates a prediction. The weights are
adapted to detect patterns for making better predictions.

In this research, three different types of neural networks
that forms the basis for most pre-trained models namely; the
RNN, the CNN, and the HAN are used. Fig. 3 depicts the DL
models used.

In all the experiments conducted with these three DL mod-
els, the dataset was split in to two such that 90% of the data
was used for training and 10% was used for testing. The
training set was further divided into two using 90-10 split
and the 10% was used as the validation set to evaluate the
performance of the models. Due to the stochastic nature of
processes, all experiments were run 30 times and the results
provided are an average of the 30 runs.

1) RNN ARCHITECTURE
The RNN architecture is a type of DL algorithm that
processes variable sequence of inputs using their internal

states [72]. It allows a dynamic behavior derived from
a feed-forward neural network, which allows them to be
applicable in miscellaneous tasks including speech [73],
handwriting recognition [74], tumour detection with
classification [75], network traffic analysis [76]–[78], text
classification [79]–[82], and sentiment analysis [83]–[89].

In this paper, we aim to use the RNN model because
its outputs are not only influenced by the weights but also
by a hidden state vector representing the context on prior
inputs. This is beneficial as it helps the network remember
things learned from prior input, which might increase the
accuracy of the model. Besides, its learning of high prevalent
content [90], [91] and its proven performance [92], [93] made
us more inclined to its use for our current sentiment analysis
problem.

Fig. 3(a) demonstrates the RNN architecture from the cell
package used in this paper. The model is set up to run with
bidirectional gated recurrent units (Bidirectional GRU) as the
type of the RNN architecture, number of hidden GRU cells
(an RNN unit) of 200, an attention context or the size of
hidden layer in the attention mechanism is set to 300, and a
dropout rate of 0.5. Themodel uses Adam [94] optimizer with
an initial learning rate of 0.0002 and the exponential decay
rate for the first and second momentum estimates were set to
0.900 and 0.999 respectively. Finally, the softmax function is
used at the last layer to perform the classification task.

2) CNN ARCHITECTURE
The CNN architecture is a type of DL network that takes an
input and assigns an importance learnable weights to various
aspects of the input. Conventionally, these inputs are the
stemmed tweets. The CNN model has frequently been used
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to perform text classification [95]–[100], as well as sentiment
analysis task [89], [101]–[104].

In this research, we aim to use the CNN model because it
requires less pre-processing operation as compared to other
classification algorithms. Besides, it has the capacity to per-
form end-to-end learning.

The CNN architecture used in this paper is shown
in Fig. 3(b). The CNN architecture is designed to have three
layers of 100 channels (with window sizes of 3, 4, and
5 words) and a stride of one word. All words in a tweets are
first embedded before they are fed to the CNN, where impor-
tant features are extracted. Extracted features are passed to
the activation layer followed by a dropout rate of 0.10. The
resulting output is passed as an input to the fully connected
layer which outputs logits that are finally classified by the
softmax function.

3) HAN ARCHITECTURE
The HAN architecture is a type of DL model that considers
the hierarchical structure of sentences or words. It scruti-
nizes the hierarchical structure of documents (e.g., document,
sentences, and words) for text classification [105]–[107]
or sentiment analysis [108]–[114]. It includes an attention
mechanism that is able to find the key words and sentences
in a document.

The HAN architecture used in this paper is shown
in Fig. 3(c). It comprises of two hierarchies - a lower hierar-
chy and an upper hierarchy. The lower hierarchy takes a single
sentence and then it breaks down into words embedding.
Finally, it outputs weighted sentence embedding relevant to
the classification task. Conversely, the upper hierarchy takes
one document (tweet) and then breaks it down into sentence
embedding. Ultimately, it outputs document embedding rele-
vant to the classification task. A dropout rate of 0.10 is applied
to the final output from the upper hierarchy before passing the
output to the softmax function to perform the classification
task.

TheHANmodel has been chosen to be used in this research
because it includes an attention mechanism that finds the
most important words in a sentence while taking a particular
context into consideration. It returns the predominant weights
resulting from previous words.

C. PERFORMANCE EVALUATION METRICS
Performance evaluation of any machine learning algorithm is
an essential part. An algorithm may give a satisfying results
when evaluated using a metric (e.g., ACC), but it may give
poor results when evaluated against other metrics (e.g., F1S).
Usually, the classification accuracy is used to measure the
performance of machine learning algorithms. However, using
only the classification accuracy is not enough to evaluate the
performance of the model.

To truly judge any machine learning algorithm, different
types of evaluation metrics such as ACC, AUC, F1S, and RTM
can be used.

The ACC can be calculated using Eq. 1 as:

ACC =
tn + tp

tp + tn + fp + fn
(1)

where (tn) represents true negative, (tp) represents true
positive,(fp) represents false positive, and (fn) represents false
negative.

Sometimes, the word accuracy (ACC) is used interchange-
ably with percent correct classification (PCC).

The AUC is one of the most widely used metrics for eval-
uation [28]. The AUC of a classifier equals to the probability
that the classifier ranks a randomly chosen positive sample
higher than a randomly chosen negative sample. The AUC
has a ranges of 0 to 1. If the predictions of a model are 100%
wrong, then its AUC = 0.00; conversely, if the predictions
are 100% correct then its AUC = 1.00.

The F1S is the harmonic mean between precision and
recall. It is also called the F-score or F-measure. It is used
in machine learning [115]. It conveys the balance between
precision and recall. It also tells us how many instances are
classified correctly. The highest possible value i.e. 1 indicates
perfect precision and recall. However, the lowest possible
value i.e. 0 implies that the precision or the recall is zero.

The F1S can be calculated using the following formula:

F1S =
2

1
precision +

1
recall

=
tp

tp +
fp+fn
2

(2)

where precision is the number of correct positive results
divided by the number of positive results predicted with the
classifier, and recall is the number of correct positive results
divided by the number of all relevant samples.

Estimating the RTM complexity of algorithms is manda-
tory for many applications (e.g., embedded real-time sys-
tems [116]). The optimization of the RTM complexity of an
algorithm in an application is highly expected [117]–[119].
The total RTM can prove to be one of the most
important determinative performance factors in many
software-intensive systems.

D. TIME-SPACE COMPLEXITIES OF ALGORITHMS
The time complexity describes the amount of computer time
it takes to run an algorithm. It is not equal to the actual time
required to execute an algorithm. The space complexity, like
the time complexity, is often expressed as a function of the
input size. It specifies the amount of memory needed dur-
ing the execution of an algorithm. TABLE 9 compares time
and space complexities required by the numerous models
to predict their outputs. The complexity of the RANF [54]
algorithm increases with the number of DECTs. If there
exist a huge number of data with many features, multi-core
processing can be used for parallelizing the RANF [54] to
train different DECTs. During training, each stand learner
can be trained on the dissimilar core of the computer. The
theoretical complexities suggest that when we have large data
with low dimensionality, the DECT [54] can be used. The
MAXE [54] model suits the best for applications (e.g., [120]),
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TABLE 9. Theoretical time and space complexity of various algorithms
considering d dimensional training data having n points; The symbols h,
m, r , and v indicate the maximum depth of tree, the number of decision
trees, the number of nodes in tree, and the number of support vectors,
respectively.

where the dimension of the data is small. It is like a logistic
regression, which is very suitable for low latency applica-
tions. The runtime and space complexities of SVMs [54] are
linear with respect to v.
Each layer of the neural networks, a matrix multiplication

and an activation (element-wise) function are computed. If a
matrix multiplication has an asymptotic runtime of O(n3),
an element-wise function has a runtime of O(n), the num-
ber of performed multiplications is counted as n, and the
element-wise function are applied n times; then the total
runtime becomes O(n(n3 + n)), i.e., we can estimate the
approximate runtime complexity of O(n4) for either RNN
or CNN or HAN. If there are n layers each with n neurons
and n number of iterations (epochs), we would estimate the
approximate TTM complexity of O(n5) for either RNN or
CNN or HAN. But these theoretical complexities do not
have significant effect on real world applications, if paral-
lel processing (e.g., a GPU) is used for running the matrix
multiplication. Merrill et al. [121] described a useful range
between narrow upper and lower bounds of the space com-
plexities for various models of neural networks. The space
complexity of RNN, CNN, and HAN is O(1) [121]. The
DL algorithms (e.g., RNN) can use hidden layer as memory
store to learn sequences. This also helps the DL algorithms
to capture semantics of text better than TML algorithms.
Normally, if any TML algorithm loads too much data into the
working memory of a computer, the TML code cannot run
successfully.

E. SIMULATED COMPUTATIONAL COMPLEXITIES
In statistics, dimensionality refers to the number of attributes
in a dataset. One column may indicate each dimension in a
real world data representation (e.g., spreadsheet). A mini-
mum of two support vectors are required for each decision
hyperplane in the model. Henceforth, the lowest v = 2,
irrespective of the number of dimensions or size of a dataset.
To make a good balance between AUC and processing time,
any RANF should have a number of trees between 26 =
64 and 27 = 128 trees [122]. The DECT [54] considers
all features (or variables) of an entire dataset, whereas the
RANF [54] randomly considers observations (or rows) along
with defined features (or variables) to make multiple deci-
sion trees and ends up with the averages results. In brief,

the RANF [54] combines the output of multiple randomly
createdDECTs tomake the final output. As a result, computa-
tional complexity of the RANF [54] is higher than that of the
DECT [54]. The computational complexity of the SVMs [54]
is much higher than that of the RANF [54]. This is due to
the fact that to train any SVM takes longer than to train any
RANF if the size of the training data goes higher. Fig. 4
depicts the simulated computational complexities of several
TML and DL algorithms. These simulated results support
our initial assumption related to the computational costs of
DL models.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. IMPROVEMENT BY AUGMENTATION TECHNIQUES
TABLE 10 demonstrates the result obtained by the RNN on
the first and second datasets before and after the different aug-
mentation techniques were applied to the data. In TABLE 10,
Original represents accuracy obtained from the originally
stemmed data; Shift indicates accuracy obtained from the
stemmed data after the width and height shift was applied
as data augmentation methods; Shuffled shows accuracy got
after shuffling was applied as data augmentation method; and
finally, hybrid acts for accuracy obtained after the width and
height shift, as well as, shuffling augmentation method was
applied to the data. Due to the stochastic nature of processes
and non-deterministic nature of the RNN, all experiments
were run 30 times. The results in TABLE 10 are the average of
the 30 runs with upper and lower bounds of a 95% confidence
interval.

TABLE 10. Accuracy obtained by RNN on the first and second datasets.
The * indicates the accuracy obtained from the best model after 30 runs.

Upon looking at the achieved accuracy on the first dataset,
the data augmentation method improved the achieved accu-
racy by the RNN model in all three cases, when shift, shuf-
fle, and hybrid augmentation techniques had been applied.
In statistics, a one-way ANalysis Of VAriance (abbreviated as
one-way ANOVA) is a technique that can be used to compare
means of two or more samples. The one-way ANOVA was
conducted to compare the effect of the different methods used
on the achieved accuracy. It was found that the used method-
ologies have a significant effect on the classification accuracy
for the four conditions [F(3, 116)] = 8.731, p < 0.001.
Post-hoc comparison of two-sample unpaired t-test with Bon-
ferroni [123] correction between three (t(58)= 14.0813, p<
0.001 (Shift), t(58)= 5.7440, p< 0.001 (Shuffle), and t(58)=
5.2925, p < 0.001 (Hybrid)) different groups at the level of
significance α = 0.017 comparing accuracy obtained by
each augmentation method to the accuracy achieved on the
original data (with no augmentation) on the first dataset all
showed that there was a significant difference (Original M=
69.2, Shift M = 74.5, Shuffle M = 71.5, Hybrid M = 71.8).
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FIGURE 4. Training-time (TTM) and runtime (RTM) complexities of various TML and DL algorithms.

TABLE 11. Runtime (RTM) in seconds and other performance factors obtained by various algorithms on the same datasets.

In contrast to the accuracy achieved on the first dataset
in which the augmentation method increased the accu-
racy achieved in the three cases, the augmentation method
increased the achieved accuracy on two of the three cases on
the second dataset. A two-sample unpaired t-test [124] with
Bonferroni [123] correction was conducted to test the signifi-
cance of the achieved accuracy on the two cases (Shuffle and
Hybrid) that outperformed the accuracy achieved from the
original data on the second dataset. However, only t(58) =
3.5165, p < 0.0009 (Hybrid) was found to be significant
(Original M = 87.5, Hybrid M = 88.8) whereas (t(58) =
2.0188, p < 0.0481 (Shuffle) showed that there was no sig-
nificant difference (Original M = 87.5, Shuffle M = 88.1).

B. MISCELLANEOUS METHODS
TABLE 11 and its associated Fig. 5 demonstrate the per-
formance factors of RTM in seconds, AUC, 1-AUC, ACC,
1-ACC, F1S and 1-F1S for the algorithms of RANF [54],
DECT [54], MAXE [54], SVMs [54], RSVM [61], RNN

[Ours], CNN [Ours], and HAN [Ours] using identical
datasets.

The experimental results demonstrated in TABLE 11 will
doubtless be much scrutinized, but there are some immedi-
ately dependable conclusions for the achieved results. It can
be seen from TABLE 11, the values of RTM obtained by the
TML algorithms of RANF [54], DECT [54], MAXE [54],
SVMs [54], and RSVM [61] are extremely lesser than those
of RNN [Ours], CNN [Ours], and HAN [Ours]. Conversely,
the achieved values of the performance factors forAUC,ACC,
and F1S obtained by the DL algorithms of RNN [Ours], CNN
[Ours], and HAN [Ours] is much higher than those of the
TML algorithms of RANF [54], DECT [54], MAXE [54],
SVMs [54], and RSVM [61]. The TML algorithms required
on the average 3.20 seconds, whereas the DL algorithms
needed on the average 8016 seconds. This implies that the
TML algorithms are 8016/3.20= 2504 times faster than
the DL algorithms. Like the simulation results in Fig. 4,
the practical results of RTM in Fig. 5 also support our initial
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FIGURE 5. Plotting of RTM, AUC, ACC, and F1S data from TABLE 11; where RTM exhibits in logarithmic scale but others are in 100 scale.

computational costs assumption of the DL models. The
TML algorithms showed the average performance of AUC=
66.26%, ACC = 0.6624, and F1S = 0.7954, whereas
the DL algorithms showed the average performance of
AUC =89.50%, ACC = 0.8996, and F1S = 0.9446.
This implies that on the average the DL algorithms can
obtain (89.50/66.26)-1=35.07% for AUC, (0.8996/0.6624)-
1=35.81% for ACC, and (0.9446/0.7954)-1=18.76% for F1S
better performance as compared to the TML algorithms.
In brief, the DL algorithms are highly recommended to use in
applications where accuracy is more important than the RTM
of the algorithm. Otherwise, the TML algorithmswill provide
quick results for analyzing sentiments in an online manner.

VI. RESULTS FROM STATISTICAL TESTS
Normally, multiple comparisons with a control algorithm are
applied to statistically present that the performance of one
algorithm is better than that of its alternatives in areas related
to computer science [71], [125]. The main reason of applying
the non-parametric tests [126] is that they do not make any
assumption regarding the underlying distribution of the data.

A. MULTIPLE COMPARISON WITH STATISTICAL TESTS
We have considered data of RTM in second, 1-AUC,
1-ACC, and 1-F1S from TABLE 11 as input parameters for
conducting tests for multiple comparisons along with a set
of post-hoc procedures to compare a control algorithm with
others (i.e., 1 × N comparisons) and to perform all possible

pairwise comparisons (i.e., N × N comparisons). For these
purposes, we have used the open source statistical software
applications from University of Granada [127].

1) MISCELLANEOUS NONPARAMETRIC TESTS
In the case of 1 × N comparisons, the post-hoc proce-
dures consist of Bonferroni-Dunn’s [128], Holm’s [129],
Hochberg’s [130], Hommel’s [131], [132], Holland’s [133],
Rom’s [134], Finner’s [135], and Li’s [136], procedures;
whereas in the case of N × N comparisons, they make
up of Nemenyi’s [137], Shaffer’s [138], and Bergmann-
Hommel’s [139] procedures. In the case of Bonferroni-
Dunn’s procedure [128], the performance of two algorithms is
considerably divergent if the corresponding mean of rankings
is at least as large as its discriminating divergence. A better
one is Holm’s procedure [129], which examines in a consec-
utive manner all hypotheses ordered based on their p-values
from inferior to superior. All hypotheses for which p-value
is less than α divided by the number of algorithms minus
the number of a successive step are rejected. All hypotheses
having larger p-values are upheld. Holm’s procedure [129]
adjusts α in a step-down manner. In the same way, both
Holland’s [133] and Finner’s [135] procedures adjust α in
a step-down method. Nevertheless, the Hochberg’s proce-
dure [130] works in the contrasting direction to the Hol-
land’s procedure [133]. It compares the largest p-value with
α, the next largest with α/2, and so on, until it encoun-
ters a hypothesis it can reject. The Rom [134] proposed
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TABLE 12. Average rankings using the nonparametric statistical procedures, statistics, and p-values.

FIGURE 6. Plotting of average rankings data from TABLE 12; where each value x is plotted as 1/x to visualize the highest ranking with the tallest bar.

a modification to Hochberg’s step-up procedure [130] to
enhance its power. In turn, Li [136] suggested a two-step
rejection procedure.

2) MULTIPLE COMPARISON NONPARAMETRIC TESTS
TABLE 12 exhibits the average ranking computed by using
Friedman [140], Friedman’s aligned rank test [141], and
Quade [142] nonparametric tests. To achieve the test results
Friedman [140], Friedman’s aligned rank test [141], and
Quade [142] non-parametric tests are applied to the data of
RTM in seconds, 1-AUC, 1-ACC, and 1-F1S from TABLE 11.
The sight of applying Friedman [140], Friedman’s aligned
rank test [141], and Quade [142] non-parametric tests
is to realize whether there are significant differences
among various algorithms considered over a given sets
of data [142], [143]. These tests give ranking of the algo-
rithms for each individual dataset, i.e., the best performing
algorithm receives the highest rank of 1, the second best

algorithm gets the rank of 2, and so on. The mathemati-
cal equations and further explanation of the non-parametric
procedures of Friedman [140], Friedman’s aligned rank
test [141], and Quade [142] can be found in Quade [142] and
Westfall et al. [143].

Based on the obtained results in the TABLE 12, HAN
[Ours] is the best performing algorithm of the comparison,
with average ranking of 2.50, 9.00, and 3.10 for Friedman
test [140], Friedman’s aligned rank test [141], and Quade
test [142], respectively. This indicates that HAN [Ours]
provides the greatest performance for sentiment analysis
from the stemmed Turkish Twitter data. Friedman statistic
considered reduction performance (distributed according to
chi-square with 6 degrees of freedom) of 8.500000. Aligned
Friedman statistic considered reduction performance (dis-
tributed according to chi-square with 6 degrees of freedom)
of 3.446236. Quade statistic considered reduction perfor-
mance (distributed according to F-distribution with 6 and
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TABLE 13. Results achieved on post-hoc comparisons for adjusted p-values, α = 0.05, and α = 0.10.

42 degrees of freedom) of 0.472669. The p-values computed
through Friedman statistic, aligned Friedman statistic, and
Quade statistic are 29.057%, 84.087%, and 84.340%, respec-
tively. Iman and Davenport [144] statistic considering reduc-
tion performance with distributed according to F-distribution
with 7 and 21 degrees of freedom is 1.200000. The p-value
computed by Iman and Daveport [144] test is 34.541%.
TABLE 13 demonstrates the results obtained on post-hoc
comparisons of adjusted p-values, α = 0.05, and α = 0.10.

3) POST-HOC PROCEDURES FOR 1× N COMPARISONS
In the case of 1 × N comparisons, the post-hoc proce-
dures consist of Bonferroni-Dunn’s [128], Holm’s [129],
Hochberg’s [130], Hommel’s [131], [132], Holland’s [133],
Rom’s [134], Finner’s [135], and Li’s [136] procedures.
In these statistical analysis tests, multiple comparison
post-hoc procedures considered for comparing the con-
trol algorithm HAN [Ours] with the other algorithms. The
results are shown by computing p-values for each compar-
ison. TABLE 14 depicts obtained p-values using the ranks
computed by the Friedman [140], Friedman’s aligned rank
test [141], and Quade [142] non-parametric tests, respec-
tively. Based on the computed results, all tests show signif-
icant improvements of HAN [Ours] over CNN [Ours], RNN
[Ours], RSVM [61], RANF [54], MAXE [54], SVMs [54],
and DECT [54] for all the post-hoc procedures considered.
Besides this, the Li’s [136] procedure does the greatest per-
formance, reaching the lowest p-values in the comparisons.

4) POST-HOC PROCEDURES FOR N × N COMPARISONS
In the case of N × N comparisons, the post-hoc proce-
dures consist of Nemenyi’s [137], Shaffer’s [138], as well as
Bergmann-Hommel’s [139] procedures. TABLE 15 presents
28 hypotheses of equality among the 6 different algorithms
and the p-values achieved. Using level of significance α =
0.05, Nemenyi’s [137] procedure rejects those hypotheses
that have an unadjusted p-value ≤ 0.179%. Holm’s [129]
procedure rejects those hypotheses that have an unadjusted
p-value ≤ 0.179% for α = 0.05. Bergmann’s [139] proce-
dure does not reject any hypotheses for α = 0.05. Using
level of significance α = 0.10, Nemenyi’s [137] procedure
rejects those hypotheses that have an unadjusted p-value ≤
0.357%. Holm’s [129] procedure rejects those hypotheses
that have an unadjusted p-value ≤ 0.357% for α = 0.10.
Bergmann’s [139] procedure does not reject any hypotheses
for α = 0.10. During the post-hoc methods over the results of
Quade [142] procedure, Bonferroni-Dunn’s [128] procedure
rejects those hypotheses that have an unadjusted p-value
≤ 0.714%; Holm’s [129] procedure rejects those hypothe-
ses that have an unadjusted p-value ≤ 0.714%; Hommel’s
[131], [132] procedure rejects those hypotheses that have an
unadjusted p-value ≤ 0.714%; Holland’s [133] procedure
rejects those hypotheses that have an unadjusted p-value ≤
0.730%; Finner’s [135] procedure rejects those hypotheses
that have an unadjusted p-value ≤ 0.730%; and Li’s [136]
procedure rejects those hypotheses that have an unadjusted
p-value ≤ 0.939%.
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TABLE 14. Adjusted p-values for various tests considering HAN [Ours] as control method.

TABLE 15. Adjusted p-values for tests for multiple comparisons among all methods.

In sum and substance, based on the aforementioned exper-
imental and statistical test results, it would be easy to make
an explicit conclusion that the HAN [Ours] outperforms
over CNN [Ours], RNN [Ours], RSVM [61], RANF [54],
MAXE [54], SVMs [54], and DECT [54]. Intuitively speak-
ing, it is observed that the performance of HAN [Ours]
surpasses those of other alternative algorithms for solving
deep sentiment analysis problems especially on the stemmed
Turkish Twitter data.

5) OUR FINDINGS
Ahead of this study, the evidence that the DL algorithms
will perform better than the TML algorithms those used in
our previous study was purely anecdotal. However, after a
comprehensive investigation that was made on this study,
we found that the mean performance of our used DL algo-
rithms (e.g., RNN, CNN, and HAN) outperformed than that
of the TML algorithms. One reason behind this fact includes
that the DL algorithms are powerful feature extractors and
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learning tool as they extract and learn features that are
increasingly complicated and detailed. Another reason could
be due to their ability to find patterns input data and their
nonlinear combination of the extracted features to predict the
output. The TML algorithms solely perform feature learning
during training, whereas the DL algorithms take a longer
time to train usually because of their large number of lay-
ers. Although the RTM of TML algorithms is almost zero
as compared to the DL algorithms, the performance of the
former algorithms is significantly lower than that of the later
algorithms. In effect, the performance of TML models has
been degraded by the stemmed data, whereas a higher perfor-
mance of DL models has been dignified by the augmentation
techniques. The optimized RTM is a desirable factor for any
algorithm. Nevertheless, the effectiveness is a great factor
than theRTM of an algorithm inmany real world applications.
The HAN [Ours] became the best performative algorithm
among our underlaid both TML and DL algorithms. In senti-
ment analysis, generally, not all words are equally important
as some words characterize a sentence more than others. One
possible reason why the HAN [Ours] performs better than
other networks could be hinted the fact that its utilization
of the sentence vector such that more attention is given to
‘‘important’’ words. In contrast to the other neural network
models (e.g., CNN [Ours] and RNN [Ours]), the HAN [Ours]
does not only performs end-to-end learning, but also it learns
the meaning behind the sequence of words as well as it
returns vector corresponding to each word. In other words,
it calculates the weighted sum of each vector.

VII. CONCLUSION
We proposed three data augmentation techniques to increase
the diversity of the training data, and then used three DL algo-
rithms (e.g., RNN, CNN, and HAN) for sentiment analysis of
the stemmed Turkish textual data obtained from the Twitter.
The obtained results of these algorithms had been compared
with the TML algorithms (e.g., RSVM [61], RANF [54],
MAXE [54], SVMs [54], and DECT [54]). Deeming simu-
lation (e.g., Fig. 4), experimental (e.g., Fig. 5), and statistical
(e.g., Fig. 6) results on the identical stemmed Turkish Twitter
datasets, it had been supported that: (i) In case of both TTM
and RTM complexities of the algorithms, the TML algorithms
outperformed the DL algorithms (see Fig. 4); (ii) In case
of cardinal performance factors (e.g., AUC, ACC, and F1S),
the DL algorithms outperformed the TML algorithms (see
Fig. 5); and (iii) On the average performance rankings, the DL
algorithms empowered by the augmentation techniques work
as powerful feature extractors, and henceforth, they took the
topmost rankings as compared to the TML algorithms (see
Fig. 6).

The DL algorithms possess high computational cost, but
they capture semantics of text better than the TML algo-
rithms. Prior to this study, the evidence of the accuracy of
the TML algorithms is reduced due to inadequate information
available in the data was purely anecdotal. But our simulation,
experimental, and statistical detailed study in this paper has

given us the idea that the application of the augmentation
method on the stemmed Turkish textual data might lead to
a significant increase in the achieved performance by DL
model. To the best of our knowledge, this is the first research
to apply the data augmentation technique to the stemmed
Turkish textual data. Although the DL algorithms used have
resulted a significantly better performance as compared to
our previously proposed TML algorithms on the stemmed
data, the generalisability of the obtained results is subject
to certain limitations. For instance, it is not known whether
the proposed algorithms will achieve a higher or at least an
equivalent result on the raw or the stopwords data. Therefore,
further investigation is important to know the effectiveness of
these algorithms on the raw and stopword data.
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