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ABSTRACT The most pervasive segment of techniques in managing class imbalance in machine learning
are re-sampling-based methods. The emergence of deep generative models for augmenting the size of
the under-represented class, prompts one to review the question of the suitability of the model chosen
for data augmentation with the metric selected for the-goodness-of classification. This work defines this
suitability by using newly-sampled data points from each generative model first to the degree of parity,
and studying classification performance on a large set of metrics. We extend the investigation to different
proportions of augmented data points for identifying the sensitivity of the metric to the degree of imbalance,
leading to the discovery of an optimum proportion against the metric. The models used are GAN, VAE
and RBM and the metrics include Precision, Recall, F1-Score, AUC, G-Mean and Balanced Accuracy.
We offer a comparison of these models with the established class of data synthesizing counterparts on the
aforementioned metrics. Deep generative models outperform the state-of-the-art on 5 metrics on multiple
datasets and also comprehensively surpass the baselines. This work thereby recommends the following
model-metric mappings: VAE for high Precision and F1-Score, RBM for high Recall and GAN for high
AUC, G-Mean and Balanced Accuracy under various recommended proportions of the minority class.

INDEX TERMS Adversarial networks, anomaly detection, class imbalance, deep generative models,
density estimation, generative variational auto encoders, instance hardness threshold, machine learning best
practices, restricted Boltzmann machines.

I. INTRODUCTION
Class imbalance is a ubiquitous problem to machine learn-
ing tasks, where the class significant to a business or sci-
entific need contributes a smaller proportion of the total
data instances. Anomaly detection and its derivatives, namely
fraud detection and money laundering, medical diagnosis,
fault diagnosis, spam detection are major examples [20].
Extreme imbalance is common in financial fraud datasets,
where the minority class may represent even fewer than 0.5%
of the total instances [8]. To counter this, the most popular
methods lie in the category of over- and under- sampling,
which manage data volume so that classes are more equally
represented, [29], increasing the classifier performance [23],
[24], [25]. For the purpose of this document, the former is
referred to as data-augmentative which either resample or
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generate data points, and the later as data-reductive which
prune them away. Of the two, data-augmentative methods
have gained widespread adoption among industry practition-
ers as these exploit the entirety of the information in the data.
These can be broadly classified into 3 types, replicating (clas-
sic), synthetic (prevalent) and generative (novel). First one
augments via replication, second method produces instances
using locally-linear interpolation. The recently-introduced
third category generate new instances by learning the data
distribution. Instead of using an interpolation process these
employ a wide range of algorithms, from Gibbs sampling
and variational inference to game theory, [22]. This subtlety
raises the question of how well to study the contribution
or efficiency of the newly generated instances in terms of
performance metrics.

It is well known that each metric gauges performance
from a different perspective, which increases the signif-
icance of contextual metric selection. For instance it is
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inappropriate to select precision which measures model
exactness in lieu of recall which measures model complete-
ness where a strong restriction on false negatives is required.
This is to be followed by an optimal model selection and its
mapping onto the chosen metric, but a general absence of
guidance from open literature (an exception may be the over-
riding metrics definition for GAN performance assessment
on high dimensional data, Section III-A) compels this deci-
sion to be on intuitive or preferential bases. For the purpose of
this document, model selection refers to the type of generative
model (Section III), and not the classifier, degree of com-
plexity or hyper parameters. The high algorithmic variance
in generative models motivates the search for a behavioural
alignment of these with specific metrics and the following
drawbacks in synthetic methods impede further exploration
using the latter as a data-production base.
1) Synthetic instances may be not true data representatives

as these lack a guarantee of instance novelty, random-
ization that may mimic the level of noise in data, [28].

2) These methods do not address the problem from
probabilistic perspective. Therefore, obtained without
a learned distribution; the synthesized examples lack
interpretation and information required by a classifica-
tion model, [4].

3) Any new point obtained by a linear synthesizer is created
by local interpolation from neighbourhood. Localities in
data are linear [72], therefore these points are not able to
follow the curve of the data manifold.

The implication of imbalance on classification models
have been well studied but that on performance metrics is
relatively under- explored. Among the latter, works by [31]
observe association between metrics with an emphasis on
coherence of AUC metric. Works by [30] explore the
effect on metrics performance as imbalance fluctuates via
under-sampling on image datasets. However, the sensitivity
of metrics with varying degree of sample proportionality
using over-sampling (synthetic or generative) is yet to be
explored. Further, a silence of the literature can be observed
in proposing a unification of model-metric mapping with
metric-sample proportionality.

This work therefore, fills in the research gap by propos-
ing a quantifiable methodology, the Model-Metric Map-
per (MMM), which presents a coherent and comprehen-
sive prescription to the modeler in combating class imbal-
ance. This includes: 1) model-metric mapping 2) calibrating
metric-sample proportionality both, using 3) contextual met-
ric selection.

A. CONTRIBUTIONS
The major contributions of MMM are:
1) It establishes an effective model-metric mapping, select-

ing the optimally performing models against the contex-
tually relevant metrics.

2) It calibrates metric wise optimum data proportional-
ity, exploring the degree of sensitivity of a metric to
imbalance.

3) It advocates the use of deep generative models for data
augmentation in the context of structured data.

4) It proposes a quantified methodology, guiding the mod-
eler in their choice of data augmentation models.

B. PAPER ORGANIZATION
The paper is organized as follows: Section 2 reviews Preva-
lent approaches, Section 3 elaborates Deep, nonlinear models
generative models, Section 4 discusses Performance evalu-
ation metrics, Section 5 proposes the MMM methodology,
Section 6 comprises Experimental setup, Section 7 tabulates
and discusses Results, Section 8 sets MMM in motion and
Section 9 concludes the paper.

II. PREVALENT APPROACHES
The problem of improving accuracy on skewed datasets was
formulated in year 2000 at the first workshop held on the
topic in American Association for AI conference, Japkowicz
and Holte [34]. This section majorly discusses the prevalent
augmentation and a significant subset of reduction methods.
The next section is devoted to a comprehensive discussion on
deep nonlinear models (generative methods), relatively new
competitors to these methods. The methods are discussed as
enlisted in below:
• SMOTE (SMT) - Methodical, linear, synthetic oversam-
pling

• Instance hardness threshold (IHT) - Methodical, linear,
under sampling

• Indiscriminate replication/removal - Random sampling
• Related works

A. SMOTE - METHODICAL, SYNTHETIC, LINEAR
OVERSAMPLING
SMOTE - Synthetic minority over sampling, a linear tech-
nique developed by Chawla et al., [41] and variants
(Section 2.4) have been the prevalent oversampling choice by
practitioners, Fernández et al., [1]. The technique improves
classifier generalization by creating new minority instances.
This is in contrast with indiscriminate replication or under-
sampling techniques (Section 2.3, 2.4) where the former adds
no new information and the latter removes it thus being
detrimental to classification performance.
The Method SMOTE performs nearest neighbor iden-

tification followed by synthetic instance generation using
Euclidean distance between feature vectors. A minority class
instance (base) is randomly selected followed by its k nearest
neighbours (support) identification. Each new instance is
created as an additive operation on the feature space of the
base instance with the product of an inter-feature difference
between base-support pair and a random value. This inter-
polation creates synthetic instances along the line section
between features.
The Strengths and Weaknesses: In contrast with indiscrim-

inate oversampling which works in the data space, SMOTE
work in the feature space. This makes decision bound-
aries flexible. However the linearity restricts these to low
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dimensional datasets. The technique fails to counter class
overlap existing in multiple disjoint clusters; when coupled
with undersampling it leads to significant information loss.
The synthetic instances lack variance and are not equipped to
cover curve manifolds.

B. INSTANCE HARDNESS THRESHOLD - METHODICAL,
LINEAR UNDERSAMPLING
This under sampling technique by Smith et al., [49] removes
frequently mis-classified instances by computing their degree
of hardness. The two forked approach first identifies recurrent
mis-classified instances followed by unit level reason explo-
ration. This singularity based dual analysis is in contrast to
prevalent undersampling approaches (discussed later) oper-
ating at an aggregate level.
The Method: Equations 1 and 2 formulate the technique.

Equation 1 calculates hardness for the instance < xi, yi >.
Due to multiple learning algorithms used, the loss is a sum
over these together with the weighing term p(d |z). The term
p(yi|xi, d) defines the probability that d assigns the label yi
to xi. Higher value means high probability prediction. The d
is computed from d = g(z, β) when learning algorithm g is
executed with parameter β on z. Substituting it in Equation 2
yields gk (z, β). The probability p(d |z) is estimated as 1

|C|
while the probability p(yi|xi, gk (z, β)) is a summation over
multiple learning algorithms in set C .

H < xi, yi > = 1−
∑
H

p(yi|xi, d)p(d |z) (1)

Hc < xi, yi > = 1−
1
|C|

|C|∑
k=1

p(yi|xi, gk (z, β)) (2)

IHT uses classifier-out-difference technique by Peterson and
Martinez, [67] for measuring degree of predictive variance
between classifiers followed by clustering. 20 algorithms
are summarized into 9. An example is BayesNet, DecTable,
Ripper, Simple Cart are summarized as Ripper. This forms
the set C in equation 2 for computing instance wise hardness.
Further, two entities per instance for feedback are computed:
classifier score and classification frequency.
The Strengths and Weaknesses: IHT’s distinction is

instance mis-classification reason identification. Major rea-
sons are class intersect, class tilt, and borderline complex-
ity further subdivided into conflicting neighbours, disjunct
size, class equilibrium, class probability and tree depths. The
method also identifies a positive/negative instance-reason
relation. Other undersampling approaches (Related works)
rely on nearest neighbor variants which are vulnerable to
class overlap. The major weaknesses of IHT are: may lead to
information loss due to undersampling and heavy dependence
on the classifier for computing hardness score.

C. INDISCRIMINATE REPLICATION/removal - RANDOM
SAMPLING
The traditional approach to balance skewed datasets apart
from the methodical counterparts discussed above is

indiscriminate re-sampling. The dataset is balanced either
via random replication of the minority instances or indis-
criminate removal of the majority instances, Chawla, [50].
The former increases variance and the latter leads to
over fitting, Pozzolo et al., [27]. Further demerits include:
in class overlap settings the former leads to meaningful
information reduction and the latter leads to high mis-
classification, Garcia et al., [32], Cieslak and Chawla [33].
Estabrooks et al., [51], have shown that several base classi-
fiers report an improved accuracy on balanced datasets but
linear separability being a prerequisite.

D. RELATED WORKS
Work by Douzas and Bacao, [7] propose Geometric-SMOTE
(GMT), which produces instances in an ellipsoid surrounding
the chosen minority instance. Work by Douzas et al., [6] pro-
pose K-means-SMOTE (KMT) which combines clustering
with SMOTE where the former identifies clusters and the
latter generates samples in clusters leading to noise reduction.
Reference [2] propose Adaptive-SMOTEwhich uses instance
complexity to partition minority data before oversampling.
The method gives better results than borderline extensions
by Han et al., [42] which generate instances near positive
and negative neighbors. Work by Janbandhu et al., [3] use
Adasyn by He et al., [45] for oversampling which cre-
ates different decision boundaries than SMOTE by pro-
ducing samples near mis-classified instances. Douzas and
Bacao, [39] use Self-organizing-map-oversampling, SOMO
technique which preserves underlying manifold structure by
creating two dimensional representation of the input space
prior to applying SMOTE. Work by Koziarski et al., [5] pro-
pose Radial-specific-over-sampling where the method iden-
tifies potential regions for minority instances creation. Work
by Nekooeimehr and Lai-Yuen, [38] use Adaptive semi-
supervised-weighted-oversampling, A-SUWO which uses
cross validation for minority class cluster size identifica-
tion and generates synthetic instances based on a weight-
ing mechanism. Work by Bunkhumpornpat et al., [40] use
Density-based SMOTE, which uses DB-SCAN algorithm to
discover clusters and generates instances along the short-
est path from each minority class instance to a cluster’s
pseudo-centroid.

Undersampling approaches are discussed. Addabbo and
Maglietta [26], propose parallel-selective-sampling which
gives importance to majority instances near demarcation
and eliminates those further away. Lin et al., [21] use
Clustering-balance to create majority class clusters equal
to minority instances, than reducing the majority until
it equals minority. Mani and Zhang, [46] use NearMiss
and its variants which use nearest neighbour heuristics for
undersampling. NearMiss-1 and NearMiss-2 select posi-
tive samples with smallest and farthest distance to negative
samples respectively, while NearMiss-3 follows a two-step
approach. Tomek-links removes the majority instance by
identifying the disparate pair having the closest link.
SMOTE-Tomek by Batista et al., [53] and SMOTE-ENN
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by Batista et al., [54] perform oversampling followed by
undersampling, cleaning noisy instances.

III. DEEP, NON-LINEAR GENERATIVE MODELS
Deep learning based generative models have the capability
of generating instances that have good likelihood guarantees
with the parameters of the training distribution. The core
idea behind generative modelling being; given a collection
of high dimensional training instances, a model is able to do
the following:
1) Density approximation: Given a large set of instances

the model should be able to estimate the probability
density function well enough to describe the data.

2) New instance generation: The model should keep the
joint distribution of data over all variables, and have a
random process that could generate new data instances
from the estimated training distribution.

Overall, interest in deep generative models has spawned
interesting outcomes namely synthetic music, art work and
forged human faces. This study uses these models to generate
instances for the minority class in an effort to combat class
imbalance problem. The authors observe that these nonlin-
ear models stand out from the traditional linear counter-
parts which were capable of producing new instances upper
bounded by the variation present in the dataset. Three types
of generative models are discussed below. Later the study
provides results of the experiments performed on multiple
imbalanced datasets using these models.
• Generative adversarial networks - (GAN)
• Variational autoencoders - (VAE)
• Restricted Boltzmann machines - (RBM)

A. GENERATIVE ADVERSARIAL NETWORKS
GANs by [70] follow a game theoretic approach where two
models/players compete in an adversarial arrangement. The
objective of the generatormodel is to generate instances anal-
ogous to training distribution while that of the discriminator
model is to discriminate between actual and generated sam-
ples. Although being non-linear and generative, GAN differ
fromVAE and RBM as the latter adopt density approximation
approach.

L(Ddis,Ggen) = min8gmax8d [Ex∼pdata logD8d (x)

+Ez∼p(z)log(1− D8d (G8g (z)))] (3)

The Model: The equation shows the minmax objective of
the bi-model network. The discriminator D with parameters
8d maximizes by making by D(x) the actual sample as close
to 1 and D(G(z)) the counterfeit as close to 0. However
the generator G with parameters 8g minimizes by making
D(G(z)) as close to 1. The purpose of the bi-model is to
make the generator generate images which the discriminator
presumes to be coming from the training distribution and not
as counterfeit. The prevalent approach would have been to
minimize the objective of the discriminator being correct but
this leads to flat gradients where learning is required and

vice versa. However a spin on the generator’s objective leads
to marked improvement where rather than minimizing the
discriminator being correct; it is maximized to be incorrect.
The Strengths andWeaknesses:GANs derive their strength

from game theoretic foundations with the bi-model com-
petitive feature. The generated instances are high in qual-
ity having salient resemblance with the training data. Thus
positioning the models as strong candidates in an image or
transactions based generative setting. C-GAN by [35] for
transaction oversampling, Be-GAN by [57] for crisp and high
resolution, Convolutional-GAN by [59] for vector arithmetic
based morphing, Cycle-GAN by [58] for reversible domain
transfer, LS-GAN by [61] and Wasserstein-GAN by [60] are
variances used for training stability. The major weaknesses of
GAN are: these are difficult to train, lack quantified perfor-
mance assessment, does not use density approximation and
follow a complicated inversion mechanism.
Overriding metrics for performance assessment Works

by [17] and [11] propose a quantified performance assess-
ment of GAN by expressing precision and recall differ-
ently. These consider FID metric [19] as uninformative due
to its qualitative nature. Works in [17] use density mod-
elling with mode change while works in [11] later arguing
this as ambiguous articulate non-parametric manifold with
truncation for metric estimation and quality/variation trade-
off, [12], [13]. Designed for assessing GAN performance on
high dimensional data, both approaches use balance datasets.
The former does introduce imbalance via mode change (class
addition/removal), while the latter is silent on the subject.

B. VARIATIONAL AUTO ENCODERS
VAE by [69] are built on the idea of fusing autoencoders with
probabilistic graphical models. The objective is to estimate
and encode an intractable probability density via an under-
standable surrogate density, e.g. a Gaussian, then minimize
the Kullback-Leibler divergence. These models are different
from traditional autoencoders as they induce probability thus
shifting the paradigm from deterministic to a random.

pβ(x | z)] =
pβ(x | z)]p(z)β

pβ(x)
(4)

Computing the posterior pβ(x | z)] in graphical models has
been intractable and has been estimated usingGibbs sampling
or variational inference. VAE use the latter which works on
maximizing the lower bound.

L = Eq(z)[logpβ(x | z)]−KL[qφ(z | x) ‖ pβ(z))] (5)

The model The encoder and decoder using parameters φ
and β respectively, produce distribution parameters µ and6.
These are used to sample latent factor representation (x | z)
and reconstruction (z | x) from the encoder and decoder
respectively. These being differentiable lead to maximizing
the lower bound. Equation 5 shows the loss function with
the first term being reconstruction error and the second being
the KL divergence regularizer together making up the lower
bound. The encoder assumes a tractable Gaussian qφ(z | x)
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using KL divergence to make this close to pβ(z | x). The
objective is to make prior closed to the posterior. This leads
to deriving the second term in the loss function. The first term
is expectation maximization of the conditional distribution
qφ(z | x) with respect to q(z). As z being Gaussian makes
the decoder a minimizer of reconstruction error.
The Strengths and weaknesses: The stochastic characteris-

tic distinguishes VAE encoders from its traditional counter-
parts. The latent encoding z being sampled from Gaussian µ
and6 parameters transform the disjointed representation into
a continuous one. This paves way for a generative model to
not only replicate but generate interesting image variations.
The combined optimization of the two terms namely the KL
divergence and the reconstruction loss induces a two-fold
effect. The regularizer enforces yet random but densely
packed encodings and the loss encourages clustering of sim-
ilar encodings. This leads to decoder generating instances
having local variation within similar samples and interpo-
lating feature mixes between dissimilar clusters. The major
weaknesses of VAE are: these generate blurry outputs at
times, have subprime variational issues due to amor-tization
and approx-imation gaps and produce gradients having high
variance.

C. RESTRICTED BOLTZMANN MACHINES
These are unsupervised generative models proposed by [68],
designed as a symmetrical arrangement of binary stochastic
neurons where two layers form a bipartite graph using non-
linearity. Though deep models have produce sound general-
ization results but training and parameter optimization has
been a challenge. Initialization with large weight values leads
to poor local minima problem, while small weights leads to
small gradients. But, with calibrated weights, learning algo-
rithm performs well. This does require learning one layer of
features at a time and captures strong high-order correlations
of units in the layer below.

E(v, h) = −
∑

iεpixels

bivi −
∑

jεfeatures

bjvj −
∑
i,j

vjhjwij (6)

p(v, h) =
exp(−E(v, h))

Z
(7)

The Model: RBM defines distribution over visible unit v
with latent variables h via energy function E . As shown in
equation 6, negative w leads to high energy with a decrease
in probability and vice versa. Energy and probability being
reciprocal. The function gives the probability distribution
p(v, h) shown in Equation 7. The challenge being: the parti-
tion function Z is the sum over all values of v and h. These are
binary, so Z can take many values leading to an exponential
sum over the numerator, making it intractable. To counter
this [68] proposed contrastive divergence. The technique uses
Gibbs sampling to approximate joint distribution when direct
sampling is difficult. Alternating between layers, given one
unit in visible layer, all units are independent in hidden layer,
values in one layer be sampled given a value in another layer.

The Strengths and weaknesses:RBM are highly expressive
models equipped with the capacity to encode a distribu-
tion without compromising computational efficiency. Sym-
metric connectivity between visible and hidden units makes
faster algorithms likely. Unsupervised pre-training moderates
parameter values in suitable ranges which makes back prop-
agation efficient. Layer wise stacked unit creates deep belief
networks which serve as meaningful feature extractors. The
weaknesses of RBM are: these are tricky to train, vulnerable
to local minima trap, use partition function which is difficult
to approximate.

D. RELATED WORKS
Works by Engelmann and Lessmann et al., [4] use
conditional-WGAN, a type ofGANonmultiple credit-scoring
datasets for minority class generation. Fiore et al., [8]
use GAN for generating minority instances on financial
anomalies dataset and outperforms traditional SMOTE.
Zheng et al., [9] combine GAN with adversarial denoising
autoencoder for countering imbalance in telecom fraud set-
ting. Themodel outperforms state-of-the-art namely bayesian
belief network, fuzzy inference and deep auto-encoder
models. Douzas and Bacao, [35] follow generative oversam-
pling using conditional-GAN on real and synthetic datasets.
Park et al., [18] propose tab-ular-GAN which using a com-
mon structure for tabular and image data converts tabular
rows into 2D matrix for convolution.

Tingfei et al., [14] use Variational auto encoders for over
sampling minority class and outperform synthetic models on
financial datasets. Islam et al., [15] use VAE for generating
accident events, in highly imbalance setting and compared
it with multiple Smote extensions. Dai et al., [16] use con-
trastive variant of Variational auto encoder for generating
under represented class on clinical datasets surpassing linear
models. Works by Guo et al., [10] use GaussianMixture VAE
on high dimensional time-series data for generating minority
class.

Works by Zieba and Tomczak [37] use Restricted Boltz-
mannMachine in an imbalance credit rating evaluationmech-
anism. Boltzmann encoded adversarial machines by [64]
extend RBM where the model is trained against an adver-
sary making it capable to discriminate between training and
generated instances. Works by [65] use Gaussian-Bernoulli
models as an extension to RBM. These are equipped with
processing continuous data with improved gradients and used
for oversampling.

IV. PERFORMANCE EVALUATION METRICS
Themetric frequently used for evaluating model performance
is accuracy. Being good at summarising, it is uninformative
on imbalance data. As it weighs confusion matrix quadrants
equally by measuring fraction of correct to total predictions
thus does not provide an adequate measure on performance
of minority instances. The following discussion highlights
metrics preferred over accuracy in this context. However, due
to different formulation and model gauging perspectives of
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each, the importance of contextual relevance of the metrics is
also discussed.

1) Precision: High precision reports exactness of the model
using positive predicted rate with lower number of false
positives. The metric is highly useful where lowering
false alerts is mandated. An ex: Spam detection in
emails require model with high precision, otherwise
incorrect classification of non-spams(true negatives) as
spams(false positives) will result in valuable information
loss.

2) Recall: High recall reports completeness of the model
using true positive rate. The metric is useful where
the objective is to capture majority of the minor-
ity instances with minimum false negatives. An ex:
Infectious disease or fraud/money laundering detection
requires model with high recall, where a weak one
may predict infected patient/ fraudulent transaction (true
positives) as healthy/genuine (false negatives), having
devastating consequences.

3) F1-score: High F1-score signifies moderateness of the
model, balancing precision and recall using harmonic
mean of the two. The metric is useful where a mod-
eration between false positives and false negatives is
required. An ex: Models in information retrieval appli-
cations require high F1-Score where a successful search
has to maintain the balance of including relevant and not
including irrelevant documents.

4) AUC: Significance of AUC is its sensitivity towards
model rank ordering. Higher scores highlight quality of
demarcation. The metric is useful where grading predic-
tions are more significant than producing probabilities.
An ex: in terminal disease prediction setting thresholds
is tricky, where a conservative/high value may lead to
skipping actual patients and vice versa. Here AUC may
be the preferred choice.

5) Balanced accuracy: High balanced accuracy reports
model comprehensiveness. The metric uses true nega-
tives together with true positives. Consideration of both
minority and majority class makes models with high
balanced accuracy relevant where completeness is man-
dated. It is also used where the test set is single or
imbalanced. An ex: A fault detection model for newly
manufactured machine, will use balanced accuracy.

6) G-Mean: The metric reports model egalitarianism or
homogeneity as it boost accuracy on each class while
maintaining balance among the accuracies. The metric
is root of the product of two attributes, sensitivity and
specificity. It is used where less conservative measure
than harmonicmean is required. An ex:Models for stock
market growth or investment portfolio yield predictions
where the trends are non-linear or proportional use
G-Mean.

Therefore it can be summarised, contextual metric selection
is required. This will ensure the attribute being measured; is
the one required to assess model’s performance.

V. THE MMM METHODOLOGY
The proposed Model-Metric Mapper methodology (MMM)
is conceived on the idea that an appropriate model selec-
tion is required following a suitable metric identification.
The methodology adds on that metric specific minority-
to-majority proportion is further required to get an optimum
performance. The methodology is introduced below with its
distinguishing features followed by the artifacts.
1) Distinguishing features: MMM exhibits 2 ground break-

ing features highly significant to data imbalance. These
include:
• Model to metric mapping: Designed to work with
heavily imbalance datasets, the MMM guides a
practitioner in relevant model selection for sample
generation based on the required metrics. This work
views that architecturally and algorithmically dis-
similar models behave differently on distinct met-
rics (empirical evidence in Section VII). This is
significant in imbalance context where performance
on a specific metric is a key determinant in model
selection. Hence, an informed model selection is
required. To elaborate, selecting a model with high
precision in an infectious disease environment may
be useless where a high recall one would have been
the obvious choice. Thus, MMM transforms the
prevalent model selection approach from an intu-
itive/preference based to an informed one.

• Metric wise sample proportionality calibration:
Together, with the appropriate model selection;
MMM identifies the optimum minority-to-majority
proportion against specific metric using quadrant
wise calibration search. This work views that met-
rics are sensitive to sample proportionality, hence
a metric specific proportion is to be identified.
(empirical evidence in Section VII and discussed
in Section VIII). This being significant as prevalent
approaches of increasing the minority or decreasing
the majority for mere balancing and without consid-
ering the required metric wise proportionality may
not yield optimum results.

2) The artifacts: MMM is constituted as two independent
modules or artifacts. The first artifact systematically
generates minority instances from three different deep
generative models. The second subsumes the first while
adding a systematic reduction of the majority class. The
artifacts are discussed:
Artifact I - Generative calibrations is designed on the
generative concept with the premise that instances gen-
erated from deep generative models are grander than
the competing synthetic or re-sampled counterparts in
the context of being novel and emitted from learnt joint
distributions. This brings these in close proximity to the
original ones. The artifact using quadrant based cali-
bration employ the generated instances in search of an
optimum metric wise majority to minority proportion
and the model that yields it.
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FIGURE 1. The MMM methodology with orchestration for deep generative & reductive methods.

The artifact has three streams each encompassing an
architecturally and algorithmically different generative
model namely GAN, VAE and RBM. VAE and RBM
are density estimators but as density function being
intractable the former use variational inference and the
latter Gibbs sampling for approximation. GAN adopt
a game theoretic approach rather than working with
specific density function which makes it different from
the two models.

χ = α(|χmin| +
∣∣χmin_gen∣∣)+ 1− α(

∣∣χmaj∣∣) (8)

Equation 8 represents Artifact I.χmin are the original and
χmin_gen the generated minority instances respectively.
These being generated as distinct sets from the 3 deep
models. χmaj are original majority instances. α is the
coefficient of proportionality with values set as {1/4,
1/2, 3/4 and 4/4 or 1/1}. This is used for govern-
ing the minority class instance generation proportion.
The artifact uses quadrant wise calibration search by
combining the majority and minority instances using
the coefficient of proportionality and measuring against
the mentioned 6 performance metrics. The search cycle
continues until an optimum metric wise proportion and
model is identified.
Artifact II - Chaining generative and reductive cali-
brations Is designed on the generative+reductive con-
cept with the premise that coupling minority instances
generation with majority instances reduction in a sys-
tematic order may have the following effects. First,
the reduced noise and induced novelty may lead to a
different model-metric mapping than Artifact I. Second,
majority to minority proportions may vary against the
ones identified in previous Artifact. Therefore, Artifact

II connects or chains IHT, the undersampling technique
(already discussed) with contemporary instance gen-
eration from Artifact I. This constitutes the two links
namely generatives and reductives in the artifact’s chain.

χ = α(|χmin| +
∣∣χmin_gen∣∣)+ 1− α(

∣∣χmaj_iht ∣∣) (9)

Equation 9 represents Artifact II. χmaj_iht are the major-
ity and χmin_gen minority set, ensuing from reduction
and generation models respectively. χmin are the original
minority instances. α is the coefficient of proportionality
with values determined as 3/22 ≈ 1/7, 6/19 ≈ 1/3,
9/16 ≈ 1/22 and 12/13≈ 1. This is used for governing
the minority class instance generation proportion. The
artifact uses quadrant wise calibration search by com-
bining reduced majority with the original and generated
minority instances using the coefficient of proportion-
ality and measuring it against 6 performance metrics.
The search cycle continues until the optimum metric
wise proportion and the model is identified. As for IHT,
when applied to majority class, it assigns and removes
instances of lower probabilities using factors namely
class skew, overlap and decision boundary complexity.
Artifact II differs from Artifact I as the later focuses on
instance generation while the former couples reduction
with generation. This is in addition to the fact that unlike
the later, the former alters both theminority andmajority
instance counts.
Therefore,MMM recommendsmetric specific informed
model selection with calibrated sample proportion,
localizing the model and required data proportion to the
metric level. The methodology strengthens its recom-
mendation using 2 independent artifacts both leading to
similar conclusions.
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TABLE 1. Datasets.

VI. EXPERIMENTAL SETUP
Experimental Setup The sub-section comprises of
dataset details, abbreviations, model parameters, evalu-
ation metrics, and experimental nomenclature. Table 1
enlists the 4 datasets used later in the experiments.
DatasetsAs shown in table 1, experiments are conducted
on 4 public and 1 proprietary dataset.Credit-card-fraud-
detection dataset was collected by ULB (Université
Libre de Bruxelles), [2]. It comprises of genuine and
fraudulent transactions by European cardholders. It is
highly imbalanced with 0.18% frauds. Give-me-some-
credit dataset classifies risky financial borrowers, [73].
Minority accounts for 6.68% making it highly imbal-
ance.Protein-homo dataset categorizes protein sequence
comparability, [74]. Being highly imbalance, the minor-
ity class is 1.11% of the total. Skin-no-skin dataset cov-
ers skin segmentation task, [75]. Anomaly being 20%
makes it imbalance. Anti-money-laundering-cases is a
proprietary dataset comprising of financial transactions
flagged as cleared and laundered. Being heavily imbal-
ance as the minority class constitutes 1.01% of the total
volume. All the datasets are included keeping in view
volume, imbalance and tabular structure.
Abbreviations The work uses following abbreviations
against the models/datasets. Models: Generative adver-
sarial networks (GAN), Variational auto encoders
(VAE), Restricted Boltzmann machines (RBM), Smote
(SMT), KMeans-Smote (KMT), Geometric-Smote
(GMT), Instance hardness threshold (IHT). Models
with IHT: (GAN-i), (VAE-i),(RBM-i),(SMT-i),(KMT-
i),(GMT-i). Datasets: Credit-Card (CC), Give-me-
some-credit (GMC), Protein-Homo (PH), Skin-No-Skin
(SS) and Anti-money-laundering-cases (AM). Model-
wise parameters used in the experiments are enlisted
in Table 2.
The effect of the use of different classifiers is made
invariant by the use of a single classifier, the-industry-
standard, XGBoost across all experiments. The param-
eters used are depth = 5, weak learners = 100 and
learning rate = 0.1.The default implementations of the
models are used as provided in GAN [78], VAE [76],
RBM, [77], SMT [41], KMT [6], GMT [7], and IHT
at [49].
Evaluation metrics based on highly imbalance nature
of datasets, the evaluation metrics used are Precision,
Recall, F1-score, AUC, G-Mean and Balanced accuracy.

TABLE 2. Model configurations.

Experimental Nomenclature The experiments are
divided into 3 sets namely

• Experiment set-B ’Baseline comparison’: compares
models from Artifact I and II with baselines. The
results are shown and discussed in Section 7.1.

• Experiment set-I ’Generatives vs Synthetics’: com-
pares state-of-the-art synthetic with Artifact I’s gen-
erative models using synthetic and generative over-
sampling respectively. These models collectively
fall into ’Data Augmentative Category’ with results
shown in Section 7.2.

• Experiment set-II ’Generatives + Reductives vs
Synthetics+Reductives’: compares state-of-the-art
synthetic with Artifact II’s generative models both
employing a common undersampling technique.
These models collectively fall into ’Data Augmen-
tative + Reductive Category’ with results shown in
Section 7.3.

• An inter-category comparison of leading model
from each of the two categories is performed to
identify the overall top performer against each met-
ric. This is discussed in Section 8.

VII. RESULTS
The results section is divided into 4 segments:

1) Baseline comparison
2) Generatives vs synthetics
3) Generatives+reductives vs Synthetics+reductives
4) Training efficiency

A. BASELINE COMPARISON
The baseline comprises of the dataset in its nascent form and
is compared with both generative and generative+reductive
approaches from Artifact I and Artifact II respectively.
For comparison the Artifacts produce training data with
1:1 minority-to-majority ratio.

The objectives being:

1) To supports and rationalize the argument that balancing
leads to an increase in performance metrics in gen-
eral. Artifact I generates the minority while Artifact II
reduces the majority together with increasing the minor-
ity to achieve training data balance.
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FIGURE 2. Calibrating metric-sample proportionality.

2) To evaluate the behaviour on 6 different performance
metrics. This being significant as these metrics are pre-
ferred over traditional accuracy metrics for reporting in
imbalance settings.

The comparison with baselines is performed on 6 distinct
metrics over multiple datasets for generalizability. As shown
in Table 3, approaches from both Artifacts surpass the
baseline comprehensively over 6 metrics namely Precision,
Recall, F1-Score, AUC, G-Mean and Balanced accuracy.
Generative oversampling with maximum % increase of 1.71,
452.9, 7.46, 15.2, 19.7, 13.9 while chaining generatives
and reductives with maximum % increase of 1.16, 435.29,
51.67, 30.55, 82.39, 30.55 beats the baseline. Thus pro-
viding a strong case that balancing either by generation or
generation+reduction leads to an increase in performance.

This work further identifies that specific metric may man-
date a more precise minority-to-majority ratio than mere
balancing for further improvement as will be shown in next
subsections.

B. GENERATIVES VS SYNTHETICS
This section compares generatives from Artifact I with state-
of-the-art synthetic models including SMT and its current
extensions KMT and GMT. The comparison is performed
proportion wise. The objectives of this comparison being:

1) Compare 2 data augmentative techniques using 6 met-
rics on multiple datasets. To empirically identify the
benefit of using generative models against synthetic
counterparts.

2) Recommend a model-metric mapper. This works argues
that model performance varies per performance metric.
Therefore, an effective model should be selected based
on the given metric.

3) Search for an optimum minority-to-majority ratio.
The authors of this work view that identifying and

maintaining precise metric specific proportional-
ity together with the yielding model improves
performance.

The results are tabulated in Tables 4 to 9 and propor-
tionality summarized in Figure 2. Top, second best scores
and proportionality quadrants use the same colours for
analogy. Table 4 shows results on Precision metric. On all
5 datasets, VAE leads with scores of (0.87,0.54,0.89,0.9,0.88)
against the synthetic KMT with (0.83,0.53,0.88,0.89,0.84).
The best scores are found where minority-to-majority ratio
is 1/4 or the 1st quadrant. VAE reports a maximum
increase of 4%. On Recall, RBM clearly leads on all
datasets with scores (0.95,0.97,0.96,0.98,0.96) as shown
in Table 5. SMT follows with (0.88,0.54,0.9,0.96,0.86).
Majority of the top scores are reported in the 1st quad-
rant with proportionality 1/4. RBM reports a maximum
increase of 43%. Table 6 shows results on F1-Score.
VAE surpasses on 4 datasets with (0.78,0.82,0.94,0.84)
while SMT leads on 1 with (0.94). The 2nd best scores
are (0.75,0.31,0.8,0.92,0.8) by GAN,SMT,KMT,SMT and
KMT respectively. Majority of the best results are found
where minority-to-majority ratio is 3/4 or 3rd quadrant.
VAE reports a maximum increase of 5%. Table 7 shows
the results on AUC metric. GAN excels on 3 and SMT
on 2 datasets with scores (0.94,0.59,0.88,0.97,0.93) and
(0.93,0.72,0.94,0.95,0.92) respectively with VAE following
closely. The prime results are found in the 4th quadrant where
minority equals majority. The maximum increase reported
by GAN is 2%. Table 8 shows results on G-Mean met-
ric. GAN and VAE closely follow on all the datasets. The
best results are found in the 4th quadrant with proportion-
ality 1/1. The Balanced accuracy metric results are reported
in Table 9. GAN leads on 3 and SMT on 2 datasets with
scores (0.93,0.61,0.87,0.98,0.93) and (0.91,0.72,0.94,0.92)
respectively, with VAE as runner up. The top scores are
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TABLE 3. Comparing baselines.

split between the 3rd and 4th quadrants with 3/4 and 1/1
proportionality respectively. GAN reports a maximum
increase of 2%.

Therefore, following model-metric mappers are identified.
VAE for Precision and F1-Score, RBM for Recall, GAN
for AUC and Balanced accuracy and GAN and VAE for G-
Mean. A discussion on metric-wise sample proportionality is
provided in Section 8.

C. GENERATIVES + REDUCTIVES VS SYNTHETICS +

REDUCTIVES
This section compares the generatives+reductives from Arti-
fact II with the same state-of-the-art synthetic models

from the previous section. Both employ IHT as major-
ity instances reduction technique. The comparison is per-
formed proportion wise. The objectives of this comparison
being:
1) Include a majority reduction technique with both the

generative and synthetic approaches. This strengthens
the argument of balancing the dataset not only by aug-
mentation but also by reduction.

2) Reinforce and improve the identifiedmodel-metricmap-
per. The addition of reduction technique may increase
the efficiency of the model-metric and consistent find-
ings will strengthen the argument of using deep genera-
tive models.
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TABLE 4. Precision - generatives vs synthetics.

TABLE 5. Recall - generatives vs synthetics.

TABLE 6. F1-Score - generatives vs synthetics.

3) Improve metric wise sample proportionality. As the pro-
portion will comprise lesser majority instances, this may
optimize the effective samples count.

The results are tabulated in Tables 10 to 15 and propor-
tionality summarized in Figure 2. Top, second best scores
and proportionality quadrants use the same colours for
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TABLE 7. AUC - generatives vs synthetics.

TABLE 8. G-Mean - generatives vs synthetics.

TABLE 9. Balanced accuracy - generatives vs synthetics.

analogy. Table 10 reports results on the Precision met-
rics. The VAE-i model leads on all 5 datasets with (0.74,
0.46,0.7,0.92,0.69). GAN-i and SMT-i trail with (0.71,0.45)

and (0.67,0.9,0.67) respectively. All of the best scores are
reported in the 1st quadrant where the minority-to-majority
ratio is 1/7. VAE-i reports a maximum increase of 6%.
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TABLE 10. Precision: Generatives + reductives vs synthetics + reductives.

TABLE 11. Recall: Generatives + reductives vs synthetics + reductives.

TABLE 12. F1-Score: Generatives + reductives vs synthetics + reductives.

RBM-i model clearly leads on all datasets using Recall met-
rics with (0.89,0.91,0.96,0.99,0.92) as shown in Table 11.
SMT-i trails with (0.87,0.72,0.93,0.98,0.89). The top results

are reported in 2nd quadrant where the minority-to-majority
ratio is 1/3. RBM-i reports a maximum increase of 19%.
Table 12 reports results on F1-Score. Similar to the Precision
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TABLE 13. AUC: Generatives + reductives vs synthetics + reductives.

metrics, the generative+reductive models leads the synthetic
counterparts on all datasets. VAE-i reports the best score
on 4 datasets with (0.44, 0.75, 0.93,0.76) and GAN-i on
1 with (0.76). KMT-i trails with (0.74,0.42,0.73,0.92,0.70).
The best scores are reported in 2nd quadrant where the
minority-to-majority ratio is 1/3. VAE-i reports a max-
imum increase of 2%. Table 13 reports the results on
AUC metrics. GAN-i clearly leads on 4 datasets and is
comparable on 1 with (0.93,0.79,0.92,0.97,0.95), SMT-i
trails with (0.92,0.77,0.95,0.96,0.93). The best scores are
reported in the 4th quadrant where the minority nearly
equals majority. A maximum increase of 2% is reported
by GAN-i. Table 14 show results on G-Mean metric where
VAE-i and GAN-i closely follow. The scores are reported
in 4th quadrant. The results on Balanced accuracy met-
rics are reported in Table 15. GAN-i lead on 3 and SMT-i
on 2 datasets with scores (0.92,0.77,0.93,0.97,0.94) and
(0.93,0.76,0.94,0.96,0.92) respectively. The majority of the
best scores are reported in 4th quadrant where minority
nearly equals majority. GAN-i reports a maximum increase
of 2%.

However, the method in this section generates and reduces
the minority and majority respectively, the findings are
consistent with the previous section where the minor-
ity is generated only. To elaborate, similar model-metric
mapping is identified. VAE-i for Precision and F1-Score,
RBM-i for Recall, GAN-i for AUC and Balanced accu-
racy and VAE-i and GAN-i for G-Mean. As for the
metric-wise sample proportionality a discussion is provided
in Section 8.

D. COMPUTATIONAL EFFICIENCY
As for training efficiency, the generativemodels scale linearly
as opposed to the synthetic counterparts which scale in orders
of multiple. To elaborate, if there arem datasets and each is to
be augmented using n proportions, than the generativemodels
merely require m while the synthetic require m × n training
time. As this work uses 5 datasets each with 4 proportions,

the training time for generativemodels is 5 while for synthetic
models is 5 × 4. This linear order training efficiency makes
the generative models a stronger candidate.

VIII. MMM IN MOTION
This section sets the proposedmethodology inmotion.MMM
launches a six pronged attack to neutralize class imbalance
from six frontiers as shown in figure 3. The objective is
to come up with a data driven and industry neutral class
imbalance solution. The motion is set as follows:

• The optimum minority-to-majority ratio against spe-
cific metric is identified. The sensitivity of the metric
to varying degree of proportionality is elaborated. The
model-metric mapping is established. The rationaliza-
tion is strengthened by observing these against both
categories.

• An inter-comparison of the leading models from each
category is performed establishing a rank-order pref-
erence. MMM, finally recommends this rank-order
based model-metric mapping along with the optimum
minority-to-majority proportionality.

1) Precision metrics require a low minority-to-majority
ratio. The reason being prime results are reported in 1st
quadrant with sample proportionality 1/4 and 1/7 respec-
tively, Figure 2. The scores drop in higher quad-
rants whereminority representation increases, endorsing
the sensitivity of the metric to proportionality, refer
Tables 4, 10. VAE and VAE-i lead over competing mod-
els in respective categories with mentioned proportion-
ality. This highlights high representational strength of
VAE generated instances against precision. The reduc-
tion in false positives leading to high Precision can be
attributed to these instances, marking the suitability of
the VAE model against the metric.
Recommendation - VAE from Artifact I, 1/4 propor-
tionality An inter-category comparison between the two
leaders observes VAE surpasses VAE-i showing the
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TABLE 14. G-Mean: Generatives + reductives vs synthetics + reductives.

TABLE 15. Balanced accuracy - generatives + reductives vs synthetics + reductives.

generated instances are even more expressive inde-
pendently, Tables 4, 10. Thus, for high precision,
MMM recommends VAE from Artifact I followed
by VAE-i from Artifact - II with the mentioned
proportionality.

2) Recall metrics similarly require a low minority-
to-majority ratio as prime results are reported in the 1st
and 2nd quadrant with sample proportionality 1/4 and
1/3 respectively, Figure 2. Scores decline in higher quad-
rants as minority representation is increased, cement-
ing the sensitivity of the metric to proportionality,
Tables 5, 11. RBM and RBM-i are top performers in
their respective categories with the mentioned propor-
tionality. High representational strength of RBM gen-
erated instances against can be confirmed as synthetic
SMT trails in both categories and that also using high
proportion of minority instances. The reduction in false
negatives leading to high Recall can be attributed to
these instances, marking the suitability of the RBM
model against the metric.

Recommendation - RBM from Artifact I, 1/4 propor-
tionality An inter-category comparison between two
foremost show that RBM further leads over RBM-i,
Tables 5, 11. This shows that generative instances from
RBM are independently more expressive than being
combined with reductive technique as the later not only
require more instances but also an equivalent reduction
of the majority class. Thus, for high recall, MMM rec-
ommends RBM fromArtifact I followed by RBM-i from
Artifact - II with the mentioned sample proportionality.

3) F1-Score require a moderate minority-to-majority ratio
as highest scores are reported in the 3rd and 2nd quad-
rant with 3/4 and 1/3 sample proportionality respec-
tively, Figure 2. Sensitivity of the metric to pro-
portionality can be observed as scores drop when
minority-to-majority ratio is shifted to either extreme,
Tables 6, 12. VAE and VAE-i exceed in their respective
categories. A modest representation strength of VAE
generated instances is observed against the F1-Score.
The homogeneity between false positives and negatives
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FIGURE 3. MMM in motion - A six pronged attack on imbalance.

leading to high F1-Score can be attributed to these
instances, marking the suitability of the VAE model
against the metric.
Recommendation - VAE from Artifact I, 3/4 propor-
tionality Comparing the two leaders from each cate-
gory show VAE surpasses VAE-i,Tables 6, 12. This
confirms a moderate representation of minority class is
preferred over a restricted one. Therefore for high F1-
Score, MMM recommends VAE as 1st and VAE-i as 2nd
model with proportionality of 3/4 and 1/3 respectively.

4) AUC metrics require a high or near equal minority-
to-majority ratio as the top scores being reported
in 4th quadrant with sample proportionality 12/13 and
1/1 respectively, Figure 2. The metric is highly sensi-
tive to proportionality as low scores are observed until
near equilibrium between the two classes is achieved,
Tables 7, 13. GAN-i and GAN lead on multiple datasets
in their respective categories. This shows high expres-
siveness of GAN generated instances over other models
against AUC. The enhanced grading predictions capac-
ity leading to high AUC can be attributed to these
instances, marking the suitability of the GAN model
against the metric.
Recommendation - GAN-i from Artifact II, 12/13 pro-
portionality: An inter-category comparison of the two

prime performers observe GAN-i excels over GAN,
Tables 7, 13. This shows that for AUC metric, GAN
instances are more expressive when a near equilib-
rium of both classes is maintained but with high count.
Therefore for high AUC, MMM endorse GAN-i as 1st
and GAN as 2nd model with proportionality 12/13 and
1/1 respectively.

5) G-Mean metrics Similar to AUC, G-Mean require a
high or near equal minority-to-majority ratio as the
top scores being reported in 4th quadrant with sample
proportionality 1/1 and 12/13 respectively, Figure 2.
Sensitivity to proportionality is evident as low scores are
reported with low minority counts, Tables, 8, 14. GAN,
VAE and GAN-i deliver near comparable performance
against foremost models. To enjoy expressiveness, both
synthetic and generated instances require a near equal
presence of the opposite class with high count. Balanc-
ing the dataset is attributed to these instances which
increase modestness and leads to high G-Mean, marking
the suitability of GAN and VAE models against the
metric.
Recommendation - G-Mean, GAN-i from Artifact II,
12/13 proportionality: An inter-category comparison
between deep models establishes lead of GAN-i over
GAN and VAE, Tables 8, 14. MMM, for high
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G-Mean, recommends GAN-i together with SMT as the
1st model followed by GAN and VAE with proportion-
ality 12/13 and 1/1 respectively.

6) Balanced accuracy metric requires a moderate to high
ratio. The reason being metric reports highest score in
the 4th and a split between 3rd and 4th quadrants with
proportionality 12/13, 3/4 and 1/1 respectively, Figure 2.
The metric is observed to have medium sensitivity as
low scores fall in lower quadrants, Tables 9, 15. GAN
and GAN-i lead on multiple datasets in their categories.
GAN generated instances enjoy high expressive strength
against balanced accuracy. The equilibrium attained
between true positives and negatives is attributed to these
instances which increase comprehensiveness and leads
to high Balanced accuracy, marking the suitability of the
GAN model against the metric.
Recommendation - Balanced accuracy, GAN,GAN-i
from Artifact I,II, 3/4,1/1,12/13 proportionality: Inter-
comparison between the foremost models show near
equivalent performance, Tables 9, 15. Hence, MMM
recommends both GAN and GAN-i using mentioned
proportionality.

IX. CONCLUSION
The proposed MMM methodology, covers research gap in
class imbalance domain by building on two concepts. First,
the authors are of the view that metrics being distinct in their
formulation and usage are also sensitive to data proportions
but with varying degree. An effective proportionality for one
metric may be not be suitable for the other. Therefore metric
wise proportionality calibration is required. Second, a highly
suitable model on one metric may be less suitable on the
other. So, an informed model selection is required. Though,
deepmodels are known to have strong generative capabilities,
but their inherent architectural and algorithmic variation also
makes a strong case for precise candidate selection. MMM,
formulated on these concepts, conclude the following:

1) Optimal model-metric mapping identified and 1st, 2nd
recommendation proposed. These are, Precision and
F1-Score: VAE, VAE-i, Recall: RBM, RBM-i, AUC and
G-Mean: GAN-i, GAN/VAE and Balanced accuracy:
GAN/GAN-i.

2) Metric wise optimum minority-to-majority proportion-
ality is calibrated on both Augmentation and Augmen-
tation + Reduction categories. These are, Precision:
1/4, 1/7, Recall: 1/4,1/3, F1-Score 3/4,1/3, AUC and
G-Mean: 1/1,12/13, and Balanced accuracy: 3/4,
12/13.

3) The proposed deep models, outperform synthetic coun-
terparts on Precision, Recall, and F1-Score, AUC and
Balanced accuracy on both categories. The maximum%
increase are Precision: 4,6, Recall: 43, 19, F1-Score: 5,
2, AUC: 2, 2 and Balanced accuracy: 2, 2.

4) The proposed deep models comprehensively surpass
baselines on all 6 metrics on both categories. The
maximum % increase are Precision: 1.71,1.16, Recall:

452.9,435.29, F1-Score: 7.46,51.67, AUC: 15.2,30.55,
G-Mean:19.7,82.39, Balanced accuracy: 13.9,30.55.

5) The proposed deep models are computational efficient
as these scale linearly in m as opposed to the synthetic
counterparts which scale in orders of multiple in m× n.
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