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ABSTRACT Data attacks from illegal access devices of the Internet of Things will cause serious interference
and threats to the entire network. It is difficult to ensure the security of the communication system only by
relying on traditional application layer password authenticationmethods. Therefore, it is of great significance
to design an effective physical layer authentication system based on radio frequency fingerprints. Regarding
the issue above, this paper proposes a novel physical layer authentication method for Internet of Things
based on differential contour stellar. Through the test of identification and authentication of 20WiFi network
card devices from same manufacturer, same type and same batch, the recognition accuracy rate can reach
98.6% by the proposed method. The proposed method can improve the effect of radio frequency fingerprint
identification from three aspects: i. The differential processing can effectively reduce the negative influence
of phase rotation caused by carrier frequency offset and Doppler effects; ii. The color processing can
effectively reduce the negative influence of random noise caused by channel noise; iii. It is suitable for
processing large-scale networks and the massive data they bring.

INDEX TERMS Differential contour stellar, radio frequency fingerprint, physical layer authentication, fine
portrait, deep convolutional neural network.

I. INTRODUCTION
Information security is the key to building a reliable and
robust Internet of Things (IoT). With the continuous emer-
gence of information security problems brought about by
wireless communication networks, how to accurately iden-
tify and authenticate IoT objects and prevent user identity
impersonation and device cloning is the primary problem to
be solved by the application of IoT. The traditional authen-
tication mechanism is implemented at the application layer,
using cryptographic algorithms to generate numerical results
that are difficult for third parties to counterfeit, but this
mechanism has risks such as protocol security vulnerabilities
and key leakage. The terminal equipment of the perception
layer of the Internet of Things has the characteristics of
diversification, intelligence, complexity and a large number.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaochun Cheng.

Although the traditional authentication mechanism can guar-
antee information security to a certain extent, it is not suitable
for processing large-scale networks and the massive data they
bring, and it is difficult to meet the information security
requirements of the Internet of Things. Therefore, research
on a low error rate, high efficiency, and low cost individual
identification method for communication radiation sources
is the key to ensuring the stable operation of the Internet of
Things.

Physical layer authentication is one of the core technolo-
gies to ensure the security of wireless communication. Its
basic principle is to combine the space-time specificity of
the transceiver channel and the transmitted signal to verify
the physical characteristics of the communicating parties,
thereby realizing identity authentication at the physical layer.
Compared with the authentication technology at the applica-
tion layer, it can effectively resist imitation attacks. It has the
advantages of fast authentication speed, low complexity, good
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compatibility, and no need to consider the implementation
of various protocols. Nowadays, the research on the physical
layer security authentication technology is still in its infancy
and the abundant physical layer resources have not been fully
utilized, and there is still a lot of research space.

Radio frequency fingerprint identification is a non-
password authentication method based on the physical layer
hardware of the device. It does not need to consume additional
computing resources or embed additional hardware. And it
is a very potential technique to establish a low-cost, simpler
and safer identification and authentication system [1]. The
existing radio frequency fingerprint identification technology
can be divided into channel-based fingerprint identification
technology and transmission signal-based fingerprint iden-
tification technology according to the use of physical layer
resources. The channel-based fingerprint identification tech-
nology aims to use the unique location information of the
device as the identity detection indicator for different users
in different scenarios, and is usually applied to indoor posi-
tioning of IoT devices [2]. Common channel characteristics
include radio signal strength (RSS), channel state informa-
tion (CSI) and channel frequency response (CFR) [3], [4].
The fingerprint identification technology based on the trans-
mission signal is divided into the fingerprint identification
technology based on the transient signal and the fingerprint
identification technology based on the steady signal. The fin-
gerprint identification based on the transient signal is a pro-
cess of extracting radio frequency fingerprint from a section
of transient signal sent at the moment the device is turned
on/off [5]. The transient signal does not contain any data
information, only reflects the hardware characteristics of the
transmitter, and is independent. RF fingerprints are initially
extracted from transient signals. Due to the short duration of
the transient signal, it is difficult to capture, and it is more
sensitive to the detection and location of mutation points,
which limits its application in the actual environment [6]. The
steady-state signal is the signal when the transmitter is in a
stable working state. It has a long duration and is easier to
obtain. It can be completed with a cheap receiver. However,
the radio frequency fingerprints present in the steady-state
signal are more difficult to extract [7], [8]. According to
the different feature extraction methods, it can be divided
into fingerprint identification methods based on waveform
domain and fingerprint identification methods based on mod-
ulation domain. The fingerprint recognition method based
on the waveform domain uses the time-domain waveform
characteristics of the signal to directly recognize the signal.
It can also perform various domain transformations on the
signal before extracting its characteristics, such as Fourier
transform, wavelet transform, Hilbert–Huang transform [9],
Synchrosqueezing transform [10], improved fractal box
dimension [11], etc. The transform domain method attempts
to transform the time domain signal to other domains to
maximize individual differences, but the features extracted by
the transform domain method will vary with the changes in
the transmitted data. In order to avoid the feature extraction

method from being affected by the transmission data of the
signal, radio frequency fingerprint extraction methods based
on steady-state signals mostly use the preamble sequence
repeatedly appearing in the signal. Electromagnetic signals
are affected by factors such as transmitter carrier frequency
offset, power amplifier nonlinearity, quadrature modulator
imbalance and DC offset, and their differences are directly
manifested in the modulation domain of the signal. This
makes it possible to construct the radio frequency fingerprint
identification of the transmitter in the modulation domain.
At present, quadrature modulation has been widely used in
communication signals, and the modulation domain features
involved include carrier frequency offset, modulation offset,
I/Q offset, constellation trace figure [12], differential con-
stellation trace figure [13], etc. and their combinations. The
modulation domain method takes I/Q signal samples as the
basic processing unit, and uses the signal structure forced by
the modulation scheme to make the specific attributes of the
transmitter easier to identify. Knox et al. used the Ettus Labs
USRP1 software radio platform as the receiving device (sam-
pling frequency of 4MHz) for the classification problem of
the SiLabs IEEE 802.15.4 2.4GHz RF device, and collected
and demodulated signals from 5 same type RF devices from
same manufacturer. The phase information of the baseband
signal was extracted as a radio frequency fingerprint. The
experimental results show that the classification performance
of the RF fingerprint changes due to temperature difference
and channel distance difference. The shorter the channel
distance, the higher the recognition accuracy. When three
different channel distances (i.e., short distance, medium dis-
tance, and long distance) were used, the average classification
accuracy was 99.6%, 95.3%, and 81.9%, respectively [14].
Carbino et al. proposed a radio frequency fingerprint identi-
fication method based on constellation based-distinct native
attribute (CB-DNA). The fingerprint of the device is extracted
from the unintentional cable radiation of the Ethernet card
to enhance the traditional MAC-based ID verification to
reduce unauthorized network intrusion [15], [16]. In terms
of feature engineering-based methods, the feature extraction
methods have changed from using single-domain features
to using multi-domain features, and shifting from methods
based mainly on the waveform domain to methods based on
the modulation domain. The classifier is designed to improve
the generalization ability as the research goal, minimize the
manually set parameters, and perform global optimization
parameter settings.

In the identification and authentication stage, according to
the type of classifier, classifiers for radio frequency finger-
print identification can be divided into traditional machine
learning classifiers and deep learning classifiers. Classifier
design is one of the key processing steps after extracting
radio frequency fingerprints using feature engineering meth-
ods. At present, there are a large number of mature clas-
sifiers available, such as k-nearest neighbor, support vector
machine, neural network, gray relation algorithm, extreme
learning machine and other methods. Related research shows
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that it is best to combine feature selection, feature dimension-
ality reduction, and classifier design together, so that corre-
lation analysis can be performed better, and radio frequency
fingerprint features that are more conducive to classification
can be obtained [17]. In addition, by integratingmultiple clas-
sifiers through strategies, better classification performance
can be obtained than a single classifier. This is the idea of
ensemble learning classifiers. Deep learning methods have
been successfully applied in the fields of image recognition,
speech recognition, and autonomous driving. Scholars have
continued to introduce deep learning methods into the field of
radio frequency fingerprint identification to solve the difficul-
ties of feature extraction, and feature selection in RFF recog-
nition [18], [19]. Ding et al. proposed a SEI method based on
deep learning. This method selects the steady-state part of the
signal, and first uses bispectral transformation to extract fea-
tures, then uses supervised dimensionality reduction method
to significantly reduce the bispectrum dimensions, and finally
uses convolutional neural network to use the compressed
bispectrum to identify specific transmitters [20]. Zhao et al.
used a transfer learning method based on rejection sampling
to update weights, and combined the weights with rejection
sampling to construct a training set. The model trained by
this method is less affected by time-varying and channel
environments [21]. Merchant et al. developed a framework
for training convolutional neural networks directly using
time-domain complex baseband error signals and success-
fully identified 7 ZigBee devices [18]. This method does not
need to specifically use the preamble sequence or the signal
segment that reappears at a fixed position, and the extracted
radio frequency fingerprint feature has nothing to do with
the content carried by the signal to be identified. In 2018,
Chatterjee et al. proposed the concept of RF-PUF [22]. This
method uses only the waveform of the data portion and does
not require a preamble sequence. It is a framework based
on deep neural networks. It uses 50 hidden layer neurons to
detect features such as local oscillator offset and I/Q imbal-
ance. Simulation results show that under different channel
conditions, the recognition rate of 10,000 transmitters is as
high as 99%. In 2019, Yu et al. proposed a multi-sampling
convolutional neural network (MSCNN) and developed an
adaptive ROI selection algorithm based on SNR [23]. USRP
was used as the receiver and 54 CC2530 devices were used
as recognition targets. The feasibility and reliability of the
method in line of sight (LOS) and non line of sight (NLOS)
scenarios were tested. The results show that the algorithm is
robust under LOS and NLOS, and the classification accu-
racy is as high as 97% in the LOS environment with an
SNR of 30dB. In the same year, Yu et al. also proposed a
deep learning RFF recognition model based on denoising
autoencoder (DAE) [24]. Compared with traditional CNN,
under the additive white Gaussian noise channel, the recog-
nition accuracy can be improved by 14% to 23.5% when
the SNR is –10 dB to 5 dB. Even if the SNR is 10dB,
the recognition accuracy is as high as 97.5%. In addition,
the deep sparse capsule network can also be used for signal

classification [25]. Compared with CNN, it not only has good
classification performance, but also can automatically obtain
hierarchical feature representations. Deep learning methods
provide new ideas and techniques for radio frequency finger-
print identification. However, the current fingerprint recogni-
tion technology based on deep learning mainly directly uses
baseband data as training data, trying to let the algorithm find
fingerprint features by itself, and has achieved certain results.
However, due to its ‘‘black box’’ characteristics, it is best
to combine it with feature engineering methods to enhance
the interpretability of deep learning models and improve the
understanding of the mechanism of radio frequency finger-
print identification.

In this paper, the inherent and essential unintentional
modulation information carried by the electromagnetic wave
signal emitted by the terminal device of the Internet of
Things is used as the identifiable fingerprint feature of the
device. Through the effective feature extraction method of
the differential contour stellar, a fine portrait database of
the fingerprint features of the devices is constructed, and
the one-dimensional radio frequency signal feature set is
converted into a two-dimensional image data set. And a deep
convolutional neural network is used to identify the extracted
fine portrait of the RF fingerprint, which can achieve reli-
able identification and authentication of the physical layer
terminal devices of the Internet of Things. And the main
contribution of the paper is as follows:
a. A differential contour stellar based RF fingerprint

extraction method is proposed and can be used as a
fine portrait of the transmitter’s RF fingerprint by using
transmission data segment of the steady-state signal.

b. Deep convolutional neural network based RF Finger-
print identification scheme using differential contour
stellar (DSC-CNN) is proposed.

c. Based on the measured signals of 20WiFi network card
devices from the same manufacturer, same type and
same batch, the validity and reliability of the method
proposed in the paper are tested.

d. Compared with the contour stellar [22], the differential
contour stellar has better robustness as RF fingerprint.
Even if the carrier frequency deviation and phase devia-
tion of the receiver are not estimated and compensated,
a reliable RF fingerprint of the communication radia-
tion source (transmitter) can be obtained.

The remainder of this paper is organized as follows.
In Section II, the typical constellation method and the pro-
posed method are described. The application and analysis
are presented in Section III, and test results of the proposed
method are also presented in Section III, followed by the
conclusions in Section IV.

II. METHODOLOGY
A. TYPICAL CONSTELLATION METHOD
Due to the deviation between the actual value and the nominal
value of the electronic component, even if the transmitters
composed of the same batch of electronic components still
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have differences, it is also called transmitter imperfection,
which is the physical basis of RFF, as shown in fig.1.

FIGURE 1. Software radio universal digital transmitter.

Even if it is device from the same manufacturer, same
type and same batch, due to the tolerance effect of electronic
components, the actual hardware parameters of some internal
components such as oscillator (existence of frequency offset
and phase noise), modulator (existence of modulation error)
and power amplifier (existence of non-linear distortion) and
so on, will also vary. The RF signal is modulated by modulat-
ing the current at the excitation source before transmission,
and the information to be transmitted is added to the sig-
nal. In this process, the intentional modulation information
transmitted is included, and the unintentional modulation
information of the characteristics of the radiation source is
also included [26]. Radio frequency fingerprint is an essential
feature of the physical layer of a wireless communication
device, and it is difficult to be tampered with. Just as dif-
ferent people have different fingerprints, different radio fre-
quency fingerprints of different communication devices can
be used for wireless device identification and access authen-
tication. After these information-carrying electromagnetic
waves start from the excitation source and propagate step by
step, although the characteristics of the electromagnetic field
at the excitation source are retained, they are also constantly
affected by the transmission medium.

The constellation diagram is a vector diagram obtained
by drawing the endpoints of the modulation signal under a
specific base vector projection on the two-dimensional coor-
dinates with I and Q as the horizontal and vertical axes. Each
vector endpoint (also called a symbol point) can express two
basic information of the amplitude and phase of the signal
relative to the carrier at a certain moment, and its projection
on the two coordinate axes is the two baseband signals at
the current moment. The number of symbol points of the
digital modulation signal is limited, and all symbol points are
represented in the same vector diagram to form a constellation
diagram, as shown in fig.2.

Fig. 2 shows examples of transitions in the I/Q complex
plane corresponding to QPSK, BPSK, and OQPSK. It can be
seen that different modulation waveforms present different
transition patterns in the I/Q complex plane. For example,
the transitions between (1,0) and (-1, 0) are unique to BPSK
but do not appear in QPSK,which has a substantially different
constellation. It can constitute a unique signature of the RF
baseband signal that can eventually be learned by the CNN’s

FIGURE 2. Transitions in the I/Q complex plane corresponding to
(a) BPSK,(b) QPSK, and (c) OQPSK, where the arrows indicate the symbol
transition traces.

filters. At present, quadrature modulation has been exten-
sively applied in communication signals, and the radio fre-
quency fingerprint features in themodulation domain, such as
constellation trace figure [12], [13], and constellation based
contour stellar [27], have been typically proposed by scholars
to represent radio frequency fingerprints. And a constellation
figure of radio frequency baseband I/Q signals of a wifi
network card device can be shown in fig.3.

FIGURE 3. A constellation diagram of RF baseband signal from a WiFi
network card device.

Since the constellation diagram corresponds to the ampli-
tude and phase of the RF baseband signal, the shape of
the array can also be used to analyze amplitude imbalance,
quadrature error, correlated interference, phase/amplitude
noise, phase error, modulation error ratio, etc.

B. THE PROPOSED METHOD
Assume that the radio frequency signal emitted by the com-
munication radiation source (transmitter) is as follows:

S (t) = X (t) e−j2π f
t
c t (1)

where X (t) is the transmitter baseband signal; f tc is the trans-
mitter carrier frequency.

Assuming that the RF circuit of the transmitter is ideal
and the channel is also ideal, the RF signal received by the
receiver is as follows:

R (t) = S (t) (2)

The receiver down-converts the RF signal to obtain the
baseband signal as follows:

Y (t) = R (t) ej(2π f
r
c t+ϕ) (3)

where f rc is the receiver carrier frequency; ϕ is the received
signal phase offset.
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when f tc 6= f rc , the receiver down-converts the RF signal to
obtain the baseband signal as follows:

Y (t) = X (t) ej(2πθ t+ϕ) (4)

where θ = f rc − f
t
c .

Since the demodulated signal contains residual frequency
deviation θ , each sampling point of the baseband signal has a
phase rotation factor ej2πθ t . The phase rotation factor ej2πθ t

varies with the position t of the sampling point, which usually
leads to poor robustness and stability of the extracted constel-
lation features, as shown in fig.4.

FIGURE 4. Transitions in the I/Q complex plane corresponding to
16-QAM: (a) The ideal constellation; (b) The received constellation which
is affected by random channel noise, carrier frequency offset and Doppler
effect, etc.

In most coherent demodulation communication systems,
the estimated frequency deviation θ̃ and phase deviation ϕ̃
can be obtained by estimating the frequency deviation and
phase deviation. The receiver uses the estimated results to
compensate the received signal for frequency deviation θ̃
and phase deviation ϕ̃, thereby obtaining a stable constel-
lation. In the radio frequency fingerprint extraction method
based on constellation, the purpose of the receiver is not to
demodulate each received signal symbol correctly. Therefore,
the received I and Q baseband signals can be differentially
processed according to a certain interval n to obtain a stable
constellation diagram as follows:

D (t) = Y (t) · Y ∗ (t + n)

= X (t) ej(2πθ t+ϕ) · X (t + n) e−j(2πθ(t+n)+ϕ)

= X (t) · X (t + n) e−j2πθn (5)

where Y ∗ takes the conjugate value.
Although the differentially processed signal D (t) still

contains a phase rotation factor e−j2πθn, the phase rotation
factor e−j2πθn is a constant value and will not change with
the change of the sampling point position. Therefore, after
differential processing, a stable constellation can be obtained
even if the carrier frequency deviation θ̃ and phase deviation
ϕ̃ of the receiver are not estimated and compensated, as show
in fig.5.

Here the newRF baseband signal after differential process-
ing is as follows:

D (t) = (x1 · x2 + y1 · y2)+ j (y1 · x2 − x1 · y2)

FIGURE 5. Visualize the new In-phase signal and Quadrature signal after
differential processing as a differential constellation.

FIGURE 6. The transition from differential constellation to differential
contour stellar.

FIGURE 7. Deep convolutional neural network-based RF fingerprint
identification scheme using differential contour stellar (DSC-CNN).

FIGURE 8. Experimental test scheme.

where x1 = I (t); y1 = Q (t); x2 = I (t + n); y2 = Q (t + n).
And the time interval n is 1.
Therefore, the subsequent feature extraction of the con-

tour stellar based on the differential constellation can be
performed. According to the different point density of the
two-dimensional differential constellation diagram, the dis-
tribution of different colors is given to different areas, and the
one-dimensional signal is converted into a two-dimensional
color image (like an ultra-high-definition X-ray film), which
can describe the subtle characteristics of the signal more
comprehensively, as seen fig.6.

As shown in fig.6, when sliding the density window func-
tion on the differential constellation, the density window
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FIGURE 9. One new sample for one WiFi network card device.

TABLE 1. The deep convolutional neural network structure.

function will calculate how many points are in the window.
Different calculation results mean different densities, and dif-
ferent colors will be used to mark different densities. Yellow
indicates a relatively high density area of sampling points,
green indicates a relatively medium density area of sampling
points, and blue indicates a low density area of sampling
points. By calculating the point density on the differential
constellation, and then coloring by sliding the rectangular
window function (density window), the colored differential
contour stellar of the RF baseband signal can be obtained as
a fine portrait of the transmitter’s RF fingerprint.

FIGURE 10. An example of the transition from constellation to contour
stellar for the WiFi network card devices.

Finally, a deep convolutional neural network can be used
to identify the extracted fine portrait of the RF fingerprint,
which can achieve reliable identification and authentication
of the physical layer of the Internet of Things, as seen fig.7.

Mathematically speaking, the method (DSC-CNN) pro-
posed in this paper can improve the effect of physical layer
authentication from three aspects: i. The differential process-
ing can effectively reduce the negative influence of phase
rotation caused by carrier frequency offset and Doppler
effect; ii. The color processing can effectively reduce the
negative influence of random noise caused by channel noise;
iii. It is suitable for processing large-scale networks and the
massive data they bring.
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FIGURE 11. An example of differential processing on the In-phase signal
and Quadrature signal after delayer to form a new In-phase signal and
Quadrature signal.

III. EXPERIMENT AND ANALYSIS
A. EXPERIMENT INTRODUCTION
The specific implementation case takes as an example the
identification of 20WiFi network card devices from the same
manufacturer, same type and same batch, as shown in fig.8.

Among them, the radio frequency baseband signal
acquisition equipment adopts FSW26 spectrum analyzer. The
collection environment is a laboratory in line of sight (LOS)
scenario. Collect 50 samples per device; The signal acqui-
sition bandwidth is 80MHz, and each acquisition is 1.75ms,
that is, 140,000 points per sample (take a single channel as an
example). The effective data transmission section excluding
the channel noise section is 80,000 points (all are steady-
state signals). And then slice the effective data transmission
section, and take 10,000 points as a new sample, and there
are a total of 8,000 samples for these 20 WiFi network card
devices. And one new sample for one WiFi network card
device is seen in fig.9.

B. APPLICATION AND ANALYSIS
After generating a differential contour stellar for each new
sample, randomly selects 320 samples for each device to
be used for the training of the deep convolutional neural
network, and the remaining 80 samples are tested for recog-
nition.

In order to illustrate the effectiveness of the method pro-
posed in this paper, compare it with the radio frequency
fingerprint extraction method of the contour stellar [27], [28],
and the deep convolutional neural network structure is unified
as shown in Table 1, which is improved on the basis of
AlexNet.

An example of the transition from constellation to contour
stellar for the WiFi network card devices is shown in fig.10.

FIGURE 12. An example of the transition from differential constellation
to differential contour stellar for the WiFi network card devices.

Note: the x-axis is the In-phase signal and the y-axis is
the Quadrature signal. Variousmodulation waveforms always
present various transition patterns in the I/Q complex plane,
and therefore the constellation figures can represent a distinc-
tive signature of the radio frequency baseband I/Q signals.

An example of differential processing on the In-phase
signal and Quadrature signal after delayer to form a new
In-phase signal and Quadrature signal is shown in fig.11.

An example of the transition from differential constella-
tion to differential contour stellar for the WiFi network card
devices is shown in fig.12.

We can see that, from fig.10 and fig.12, the differential
contour stellar for each WiFi network card device is quite
different from contour stellar. Finally, through the recognition
and authentication of the deep convolutional neural network,

VOLUME 9, 2021 53751



J. Li et al.: Differential Contour Stellar-Based Radio Frequency Fingerprint Identification for IoT

FIGURE 13. The recognition results of the individual communication
radiation source based on the contour stellar.

FIGURE 14. The recognition results of the individual communication
radiation source based on the differential contour stellar.

the recognition results of the individual communication radi-
ation source based on the contour stellar and the recogni-
tion results based on the method proposed in this paper are
obtained respectively, as shown in fig.13 and fig.14.

From fig.13, we can see, the overall recognition success
rate of a total of 1600 test samples from 20 WiFi network
card devices is 90.4%. And a total of 6 devices are fully
recognized correctly. And there are 5 devices with a recog-
nition rate of below 87.5%, which are device#5, device#6,
device#9, device#16, and device#18, and the recognition rate
of device#18 is the lowest, only 57.5%.

From fig.14, we can see, the overall recognition success
rate of a total of 1600 test samples from 20 WiFi network
card devices reaches 98.6%. And a total of 14 devices are
fully recognized correctly. The recognition rate of device#6 is
the lowest, still as high as 92.5%. As the differential contour
stellar can effectively reduce the negative effects of phase
rotation and random noise, compared with the contour stel-
lar [27], the differential contour stellar has better robustness
as RF fingerprint. Even if the carrier frequency deviation
and phase deviation of the receiver are not estimated and
compensated, a reliable RF fingerprint of the communication

radiation source (transmitter) can be obtained by the proposed
method.

IV. CONCLUSION
This paper proposes a novel physical layer authentication
method for Internet of Things based on differential contour
stellar. First, collect the radio frequency baseband signal
through the receiver, and collect the In-phase signal and
Quadrature signal; Then carry out differential processing on
the In-phase signal and Quadrature signal after delayer to
form a new In-phase signal and Quadrature signal; Then
visualize the new In-phase signal and Quadrature signal as a
differential constellation; And next, by calculating the point
density on the differential constellation, and then coloring by
sliding the rectangular window function (density window),
the colored differential contour stellar of each segment of
the RF baseband signal is obtained as a fine portrait of the
transmitter’s RF fingerprint; Finally, a deep convolutional
neural network is used to identify the extracted fine portrait of
the RF fingerprint, which can achieve reliable identification
and authentication of the physical layer of the Internet of
Things. Through the test of identification and authentication
of 20WiFi network card devices from the samemanufacturer,
same type and same batch, some meaningful conclusions can
be obtained as follows:

(1) The differential contour stellar can be used as a fine
portrait of the transmitter’s RF fingerprint, extracted from the
transmission data segment of the steady-state signal.

(2) Compared with the contour stellar, the differential con-
tour stellar has better robustness as RF fingerprint. Even if
the carrier frequency deviation and phase deviation of the
receiver are not estimated and compensated, a reliable RF
fingerprint of the communication radiation source can be
obtained.

(3) Deep convolutional neural network based RF Finger-
print identification scheme using differential contour stellar
(DSC-CNN) can achieve reliable identification and authenti-
cation of the physical layer of the Internet of Things.

In the future work, experimental case studies will be con-
ducted for more wifi network card devices from same batch,
same type, and samemanufacturer, at mixed scenarios of line-
of-sight (LOS) scene and non-line-of-sight (NOS) scene to
further test the robustness of the proposed approach. And the
deep convolutional neural network structure can be further
improved.
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