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ABSTRACT Location privacy protection is an essential but challenging topic in the field of network
security. Although the existing research methods, such as k-anonymity, mix zone, and differential privacy,
show significant success, they usually neglect the location semantic and the proper trade-off between
privacy and utility, which may allow attackers to obtain user privacy information by revealing the semantic
correlation between the anonymous region and user’s real location, thus causing privacy leakage. To solve
this problem, we propose a location privacy protection scheme based on the k-anonymity technique, which
provides practical location privacy-preserving through generating an anonymous set. This paper proposes a
new location privacy attack strategy termed semantic relativity attack (SRA), which considers the location
semantic problem. Correspondingly, a semantic and trade-off aware location privacy protection mechanism
(STA-LPPM) is presented to achieve privacy protection with both high-level privacy and utility. To be
specific, we model the location privacy protection as a multi-objective optimization problem and propose
the Improved Multi-Objective Particle Swarm Optimization (IMOPSO) to generate the optimal anonymous
set calculating the well-design fitness functions of the multi-objective optimization problem. In this way,
the privacy scheme can provide mobile users with the right balance of privacy protection and service
quality. Experiments reveal that our privacy scheme can effectively resist the semantic relativity attack while
preventing significant utility degrading.

INDEX TERMS K-anonymity, location privacy, location semantic, multi-objective optimization problem,
particle swarm optimization algorithm, road networks.

I. INTRODUCTION
In recent years, location-based service has become a crucial
part of our daily activities. With the rise of mobile tech-
nologies, people can enjoy various location-based services
using high-precision positioning devices, including searching
for the nearest hotel, restaurant, hospital. Despite the bene-
fits of Location-Based Services (LBS), it may also yield a
high risk of privacy leakage when users send their position
information to the server, leading to severe security issues.
Many related works propose Location Privacy Protection
Mechanisms (LPPMs) to protect users’ position informa-
tion from being leaked to the attackers to tackle the above
problem. Most of these mechanisms are formulated based
on k-anonymity [1], which is practically applied against re-
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identification attacks by generating an anonymous group.
When using k-anonymity to enhance the user location pri-
vacy [2]–[6], the improved algorithms usually consist of
k-anonymity and some other optimization aspects. In this
way, the anonymous process is implementedmore effectively,
e.g., [2] utilizes the Markov model to predict query location
first before selecting anonymous cells, which reduces the
interaction between users and location service provider (LSP)
and improves user privacy. Besides, to provide mobile users
with more effective privacy protection, many related works
also focus on achieving the right trade-off between privacy
and utility [7]–[12]. Such mechanisms generally apply the
Weighted Sum Method (WSM) to balance the privacy and
utility, i.e., the trade-off between privacy and utility can be
achieved through parameter adjusting.

Notwithstanding the demonstrated success, the above
methods rarely consider the location semantic, making them
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quite vulnerable to semantic-related attacks. The attackers
can infer users’ positions with high confidence by consider-
ing prior knowledge of the road network’s location semantics.
Therefore, involving the location semantics in the location
privacy protection scheme’s design is essential for enhancing
the method’s privacy protection capability to resist semantic-
related attacks. Besides, how to achieve a good balance of
privacy protection and service utility is also an unresolved
problem. The existing methods usually make a trade-off
between privacy and service utility by adopting a weighted
sum strategy. However, the general optimization of privacy
or utility will inevitably compromise the other, making it
difficult to reach an optimal trade-off between privacy and
utility.

On the other hand, the weighted sum strategy requires the
users to adjust proper privacy parameters by assigning dif-
ferent weights to a privacy scheme and a utility scheme. It is
unpractical when the server receives massive user requests
quickly since different users may have different privacy and
utility requirements. It is difficult for users to choose the
optimal parameters that can best match their privacy utility
requirements under various circumstances. Thus, it is neces-
sary to automatically obtain the optimal trade-off between the
privacy and the utility for each user instead of the cumber-
some manual setting of weights.

Based on the above observation, we aim to fill the gap
in semantic-relativity location privacy protection and achieve
an automatic optimal trade-off between the privacy and the
utility of the location privacy protection method. To this end,
we first propose a new attack called semantic-relativity attack
(SRA), with which an attacker can infer the user’s posi-
tion by considering prior knowledge of location semantics
of the road network. Correspondingly, an improved seman-
tic and trade-off aware location privacy protection mech-
anism (STA-LPPM) is designed to simultaneously resist
semantic-relativity attacks while achieving an optimal trade-
off between privacy and utility. In particular, to reach a good
balance of privacy and utility, we model the privacy protec-
tion scheme as a multi-objective optimization problem, and
Particle Swarm Optimization (PSO) is adopted to solve the
optimization problem. We model searching for anonymous
edges as a Multiple Traveling Salesman Problem (MTSP) to
adapt the vanilla Particle SwarmOptimization to the road net-
work scenario. Firstly, Breadth-First Search (BFS) is adopted
to generate the candidate edge sets with predefined sizes.
Then, the candidate edge sets are numbered in sequence to
constitute the particle space. Finally, Particle Swarm Opti-
mization is used with the candidate edge sets to produce the
final anonymous edge set. To reach a good balance of privacy
and utility, we propose two types of fitness functions (i.e.,
privacy metrics and utility metrics) to enable PSO to find
the optimal trade-off solution. The main contributions of this
paper can be summarized as follows:

1. We propose a semantic and trade-off aware location
privacy protection mechanism, which can resist the semantic-
relativity attack while maintaining a good balance of privacy

and utility. To the best of our knowledge, this is the first
work taking both semantic relativity and adaptive trade-off
problems into consideration in road networks for location
privacy protection.

2. We propose a new attack called semantic-relativity
attack (SRA), with which an attacker can infer the user’s posi-
tion by considering prior knowledge of location semantics of
the road network.

3. To find the optimal solution with a balanced trade-off
between privacy and utility, we adapt multi-objective Particle
Swarm Optimization to the road network scenario for gener-
ating the final anonymous edge set. Besides, we also design
two novel fitness functions for dual-objective optimization.

4. Experimental results on real-world data show that the
final anonymous edge set generated by our method can effec-
tively resist the semantic relativity attack and achieve good
utility at the same time.

The rest of this paper is organized as below. Section II
expounds on the recent research on location privacy.
In Section III, we illustrate the system architecture of the
proposed privacy scheme STA-LPPM, and the related defi-
nitions and description of semantic relativity attack are also
involved. Additionally, we elaborate the concrete implemen-
tation of STA-LPPM in detail in Section IV, followed by
the demonstration of the Improved Multi-Objective Parti-
cle Swarm Optimization (IMOPSO) algorithm in Section V.
In Section VI, the experiment results and comparisons with
the other two anonymous algorithms are fully interpreted, and
our conclusion and future plan will be further described in
Section VII.

II. RELATED WORK
Location privacy protection is a trending topic in network
security, attracting much attention [13]–[19]. Among which,
Privacy attack and LPPM are two crucial issues in location
privacy protection of road networks.

Prior research works studying privacy attacks on location
privacy suggest that most adversaries obtain user information
from having access to any entities in the LBS system. For
instance, under the premise that the attacker can directly
obtain distance information of users from the LBS server,
Argyros et al. [20] present the user discovery attacks in
location proximity services, which can effectively infer user
information by bounding the user within a specific area.
Relevantly, works in [21] show that the malicious friends
in location proximity services can narrow down the search
space with users’ background information. Also, to protect
user privacy information from being inferred by learning
user mobility, specifically for the real-world road network
scenario, many research works have been carried out. For
example, Montjoye et al. [22] put forward that an attacker
can reproduce user identity information depending on a small
quantity of user location information. Worse still, the loca-
tion trajectories can be de-anonymized even with sufficient
privacy protection, including the noise-fuzzy technology or
the anonymity technology [23]–[25]. Specifically, in the
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presence of prior knowledge of user mobility, an optimal
inference attack is available [26], e.g., generating the Markov
transition matrix of each user. Based on the prior knowledge
of user mobility and the geographical distribution of user
locations, Bayesian inference can be characterized with a
hidden Markov process [25]. However, most of these attack
models neglect the semantic relativity for the real scenario,
which is likely to be exploited for inferring the user’s real
location by attackers. For this reason, semantic relativity
between the anonymous road edge and user’s real location
is revealed, leading to user privacy leakage.

Various LPPMs have been implemented for different LBS
systems [27]–[37]. For instance, Argyros et al. [20] leverage
spatial cloaking to maintain a level of privacy in proximity
services. Using the resembling cloaking strategy, the pro-
posed spatial and temporal transformations in [31] enforce
privacy by hiding mutual proximity. Concerning other realis-
tic scenarios with sparse data and missing location problems,
Murakami uses multiple learning methods to resist location
privacy attacks based on aMarkov chain model [23]. Besides,
some LPPMs improve location privacy protection via consid-
ering locations semantic. Earlier work in [38] achieves anony-
mous protection comparing the multiplication of semantic
similarities and Euclidean distance with the real location on
user devices, leading to the extra overhead of running the pri-
vacy algorithm. To realize the personalized location privacy
protection based on location semantics, Kuang et al. [39]
propose a personalized sensitivity weight assignment algo-
rithm to allow users to divide multiple location semantics
by themselves, ignoring the semantic relationship between
them multiple location semantics. In this way, the malicious
attacker may infer user privacy information by revealing the
semantic relationship between the cloaking region and user’s
actual location. The above two methods generally ignore
the fine-grained classification of location semantics, leading
to the inaccurate evaluation of semantic relativity., thus the
privacy methods cannot prevent attackers from inferring user
privacy information via revealing the semantic relativity of
the anonymous edge set and the real location.

The general LPPMs usually solve privacy problems with-
out retaining data utility. Thus coordinating privacy with
utility remains one of the heated issues for location pri-
vacy protection [40]. Several works have been developed
to tackle this problem for obtaining the proper trade-off
between privacy and utility. Both [7] and [40] engage in
relevant research of dynamically tweaking the related param-
eters of LPPM, which turned out to be not appropriate for
a complex real-world scenario. Kuang et al. [41] propose
the Location Privacy Requirements, and represented it with a
triplet <K, L, H>, where H denotes the privacy coefficient,
the smaller it is, the narrower the scope of the candidate
grid area will be, resulting in the enhancement of the utility
and the decline of privacy, unfortunately, due to its tenden-
tious implementing way, the trade-off problem is still unre-
solved. Combining k-anonymity and clustering techniques,
Wu et al. [12] propose the anonymizer coordination strategy

to ensures that the anonymizers always provide strong privacy
protection and good service for the recommendation service.
To further provide personalized privacy service, Casper’s
novel privacy framework in [8] is divided into two parts:
the location anonymizer and the privacy-aware query pro-
cessor; the former generates the cloaking regions to pro-
tect exact user location, the other is designed to deal with
anonymous queries. Also, these techniques generally imple-
ment trade-offs through adjusting the weighting parameter
customized by mobile users. Since most mobile users learn
less about background knowledge of location privacy, opti-
mization results can be far from meeting users’ anticipated
needs. Unlike these techniques, we simultaneously optimize
the privacy and utility, i.e., we use IMOPSO to designate
the final anonymous edge set with the optimal fitness value
obtained by calculating multiple fitness functions containing
privacy metrics and utility metrics.

Previously, PSO is commonly used for searching optimal
solutions for general functions, owing to its fast convergence
rate and operability. Also, it is widely applied to improve
privacy-preserving method efficiency [21], [42], [43]. For
example, in [43], a PSO anonymization is utilized for acceler-
ating the process of finding similar attributes, and the anony-
mous users are chosenwith similar attributes. Relevantly, [21]
realizes the privacy protection via the multi-objective opti-
mization algorithm, i.e., it uses the hybrid elite selection strat-
egy to process user privacy information. However, location
privacy protection for the real-world road network scenario
is a complicated problem equipped with semantic attributes.
The general PSO-based privacy schemes fail to protect loca-
tion privacy adequately. This paper defines privacy metrics
and utility metrics based on the real-world road network
dataset. Our privacy scheme thus has more practical signif-
icance in improving privacy protection and retaining decent
utility.

III. PRELIMINARIES
In this section, we first demonstrate the system architecture of
STA-LPPM and the privacy-preserving process, after which
we introduce some related definitions and the semantic rela-
tivity attack in detail.

A. SYSTEM ARCHITECTURE
The privacy protection system’s main framework involv-
ing STA-LPPM consists of three parts: the mobile user,
the anonymous server, and the LBS server, as shown in Fig. 1.
The detailed process of implementing the privacy protection
system is described below. Firstly, the trusted third-party
anonymous server preloads the original version of a road
network, while mobile users send their privacy information
(i.e., real locations, query requests) to the LBS server via
various mobile devices. The trusted third party then generates
an anonymous edge set by running IMOPSO iteratively, then
sends it to the LBS server for further user query processing.
Finally, the LBS server processes the user query requests
and returns the query results to the third-party anonymous
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FIGURE 1. The framework of the privacy protection system.

server, in which these results are first filtered and then offered
to the mobile users. In this paper, we define the location
semantic as a one-to-one matching between each location and
each semantic type, and the location semantic road network
is described as G = (V ,E,L), where V = {V1, · · · ,Vn}
represents the set of all road intersections in the road network,
where n denotes the total number of road intersections. E ={
e1, · · · , ep

}
represents the set of all road edges in the road

network, with each road edge containing different location
semantics, where p denotes the total number of road edges.
Significantly, Mobile users can customize the sensitive loca-
tion semantics L = {l1, · · · , lb} according to different privacy
requirements, where b denotes the total number of types
of sensitive location semantics, and each location semantic
corresponds to a particular value of semantic sensitivity.

Meanwhile, we define the set of location popularity pop =
{pop1, · · · , popb}, each element representing the value of
location popularity of multiple location semantics preset
by the privacy protection system. Furthermore, sen =

{sen1, · · · , senb} is defined to represent semantic sensitivity
values, with each element ranging from 0 to 1, according
to the users’ privacy requirements. The semantic sensitiv-
ity can be used for evaluating the relativity between user
privacy and location semantic, i.e., a bigger value of the
semantic sensitivity indicates a stronger privacy demand of
the user. The location popularity demonstrates the intrinsic
privacy attributes of location semantics in a road network.
For instance, the value of a hospital’s location popularity is
naturally higher than that of a park.

B. RELATED DEFINITION
Definition 1 (Semantic Sensitivity): Semantic sensitivity
means the sensitivity values of different types of location
semantics preset by mobile users, which can be formulated as
W = {wi |1 ≤ i ≤ b, 0 ≤ wi ≤ 1 }, where b denotes the total
number of types of the location semantics and wi denotes the
sensitivity value of the i-th location semantics. The higher the
value of semantic sensitivity is set, the stronger the correlation
between the location semantic and the user privacy informa-
tion is, e.g., the patients assign a higher value to the hospital.
Definition 2 (Semantic Attribute Set): A semantic attribute

set consists of all the semantic attributes of a location.
For instance, a hospital’s semantic attribute set can be

described as semhospital = {service, health, patient}, where
service, health, patient represent three different semantic
attributes.
Definition 3 (Semantic Relativity): Semantic relativity

refers to the relationship between two different location
semantics. We assume the school’s semantic attribute set as:
semschool = {service, education, student}, and the semantic
relativity between a school and a hospital can be described
as: 1

semdist+1
, where semdist denotes the relative semantic dis-

tance between two different location semantics. semdist can
be calculated as,

semdist =

[
semtype1 ∪ semtype2

]
−
[
semtype1 ∩ semtype2

][
semtype1 ∪ semtype2

] ,

(1)

where semtype1, semtype2 indicate two different location
semantics. The higher the value of semdist , the stronger
the semantic relationship between two types of location
semantics.

The notions used in this paper are described in Table 1.

TABLE 1. Notion list.

C. SEMANTIC RELATIVITY ATTACK
By computing the value of semantic relativity between the
anonymous edges and the user’s edge, an attacker with
intense background knowledge, including the map of the
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location semantic road network, the distribution of location
semantics, and the calculation of the semantic relativity value,
can figure out the real user location, which is defined as a
localization attack [25]. For a particular user query request,
the attacker first acquires the user query information and
anonymous edge set via the LBS server and then gener-
ates a new anonymous edge set attackanony, with at least
k anonymous edges, by computing the value of semantic
relativity among the candidate anonymous edges, this allows
the attacker to infer the user’s real location efficiently.

Formally, we assume the user’s edge as euser containing
multiple sensitive location semantics, which is described as
Luser = {l1, · · · , lm}, where m denotes the total number of
types of sensitive location semantics of euser . Multiple loca-
tion semantics are randomly distributed on each anonymous
edge of the user’s anonymous edge set Sanony = {e1, · · · , ek},
where e1 is defined as e1 =

{
la, lb, · · · , lf

}
and f denotes the

total number of sensitive location semantics of e1. According
to definition 3, we can easily get the semantic relativity
between euser and any anonymous edge, i.e., the bigger the
sum of the semantic relative distance of Sanony, the lower the
degree of semantic relevance between Sanony and euser , thus
the similarity between attackanony and Sanony becomes lower,
and the probability of success for semantic relativity attack is
reduced. In this way, The attacker fails to find out the user’s
actual location, and we can then significantly improve the
level of location privacy-preserving.

IV. SEMANTIC AND TRADE-OFF AWARE LOCATION
PRIVACY PROTECTION
This paper proposes the Semantic and Trade-off Aware Loca-
tion Privacy Protection (STA-LPPM) based on the semantic
relativity attack and implementing trade-off adaptively.

This paper roughly separates the executing process of
STA-LPPM into two steps: (1) We adopt BFS to search for
adjacent road edges on the road network and generate a can-
didate anonymous edge set, depending on user information,
such as the real user location. (2) We introduce Improved
Multi-Objective Particle Swarm Optimization (IMOPSO) for
optimizing the anonymous edge set searching in location
semantic road network, and run that algorithm on the candi-
date anonymous edge set iteratively until the threshold value
of iterations is met, after which the final anonymous edge
set is designated by calculating the fitness function. The
privacy metrics are being optimized constantly. In this way,
we can realize the location privacy location by generating
the final anonymous edge set. As shown in Fig. 2 (a), the
real-world road network appears to be transformed into the
location semantic road network in STA-LPPM, i.e., STA-
LPPM is constructed in a real-world scenario. As demon-
strated in Fig. 2, the user’s sensitive location semantics are
categorized into six types: the bank, community, hotel, hos-
pital, shopping mall, and school, and all the deep orange
lines in Fig. 2 (b) denote the selected candidate anonymous
edges. To demonstrate the output of IMOPSO intuitively,

we illustrate the final filtered anonymous edge set in Fig. 2 (c)
as four areas rounded by azure dotted lines.

FIGURE 2. The executing process of STA-LPPM.

The flow chart of STA-LPPM is as shown in Fig. 3.

V. PSO ANONYMIZATION
A. A BRIEF INTRODUCTION OF PSO
The particle swarm optimization (PSO) is first proposed to
optimize nonlinear problems [44] and is frequently applied
to solve optimization model problems in different science
engineering domains due to its quick convergence speed.
Considering that the vanilla PSO algorithm cannot deal with
the labeled location semantic information, non-serial location
semantic cannot be directly used to model a particle space.
Hence, the vanilla PSO algorithm is not the applicable privacy
protection optimization method for the real-world road net-
work scenario. To cope with the above problem, we propose
the Improved Multi-Objective Particle Swarm Optimization
(IMOPSO). The vanilla PSO algorithm usually initializes a
group of particles in a feasible solution space, where each
particle represents a potential optimal solution and is charac-
terized by location, velocity, and the value of fitness. By run-
ning the PSO algorithm iteratively, an optimal solution can be
obtained from the random solutions by evaluating the preset
fitness functions. The updated location of a particle depends
on its updated velocity and the current location. The calcu-
lations of the updated velocity and location are respectively
shown as,

Vi+1 = ω × Vi + c1 × r1 × (pbest − Xi)

+ c2 × r2 × (gbest − Xi) , (2)

Xi+1 = Xi + Vi+1, (3)

where Vi+1 and Vi denote the updated velocity of a particle,
the current velocity of a particle, respectively. Similarly, Xi+1
and Xi stand for the updated location of a particle, the current
particle location, respectively. Besides, ω, pbest , and gbest
represent the inertia parameter, the local optimum and the
global optimum, respectively. Here, the local optimum and

54268 VOLUME 9, 2021



C. Tian et al.: Semantic and Trade-Off Aware Location Privacy Protection in Road Networks via IMOPSO

FIGURE 3. The flow chart of STA-LPPM.

the global optimum represent the best solution an individual
particle has ever gone through, the best solution a particle
swarm has ever met, respectively. c1 and c2 denote the accel-
eration constants, while r1 and r2 both stand for the random
parameters ranging from 0 to 1. The flow property of the
PSO algorithm’s information-sharing mechanism is unidi-
rectional, which results in the transformation of the particle
swarm being influenced by both the local optimum and the
global optimum. Thus, the PSO algorithm is characterized by
rapid convergence.

B. PRIVACY PROTECTION ALGORITHM BASED ON PSO
Although PSO has been verified to improve the efficiency
of the privacy-preserving method in recent studies, most of
them fail to combine privacy protection enhancement and
decent utility, leading to the unexpected loss of utility while
implementing the PSO-based privacy policies. To solve this

problem, we aim to introduce an improved PSO anonymiza-
tion method termed IMOPSO, which calculates the fitness
values of both privacy metrics and utility metrics syn-
chronously during the optimization procedure. The objective
function of IMOPSO is formulated as (4) below,

optimize F (privacy, utility)

= [privacy (m1,m2) , utility (m3,m4)]T

s.t. optimize privacy (m1,m2) ,

optimize utility (m3,m4) , (4)

optimize privacy (semdist ,PRM) , (5)

optimize utility
(
sum1e, avgtime_cos t

)
, (6)

wherem1 andm2 denote the two different privacy metrics,m3
and m4 denote the two different utility metrics. Equations (5)
and (6) are the expanding descriptions of the objective func-
tion for privacy, the expanding descriptions of the objective
function for utility, respectively. The calculations of the above
metrics are elaborated in the following content.
In IMOPSO, all the candidate road edges are first num-

bered in sequence to carry out a brute force method, which
is used to demonstrate every possible permutation of these
edges. To achieve multiple anonymous edge sets that sat-
isfy anonymity requirements, we adopt the particle break-
point position [45] to represent various permutations of the
candidate anonymous edges. For example, with the par-
ticle breakpoint set Sbreakpoint {3, 7, 11, 15}, we can sepa-
rate the particle S {1, 2, · · · , 15} into four non-overlapped
subsets, i.e., S1 {1, 2, 3}, S2 {4, 5, 6, 7}, S3 {8, 9, 10, 11},
S4 {12, 13, 14, 15}. In this paper, the permutation of the can-
didate anonymous edges X iRoute, is updated by itself and
the permutation of particle breakpoint positions X i+1Break , both
X iRoute and X i+1Break are in the representation of serialization,
in this way, the search for the best solution of the anonymous
set in the particle space also works in the real road network
scenario. Furthermore, to achieve the best trade-off between
privacy protection and utility, we also propose two novel fit-
ness functions by introducing several well-designed privacy
and utility metrics.

The IMOPSO can be formulated as,

X i+1Break = ω × X iBreak ·
[
c1 × r1 ×

(
pbest ⊗ X iRoute

)]
·

[
c2 × r2 ×

(
gbest ⊗ X iRoute

)]
, (7)

X i+1Route = X iRoute ⊕ X
i+1
Break , (8)

where X iRoute and X
i
Break denote the permutation of the can-

didate anonymous edges of a particle after the i-th iteration,
the permutation of a particle’s particle breakpoint positions
after the i-th iteration, respectively. Similarly, X i+1Route and
X i+1Break represent the updated permutation of the candidate
anonymous edges of a particle, the updated permutation of
a particle’s particle breakpoint positions, respectively. pbest
denotes the current local optimal permutation of anonymous
edges, while gbest represents the current global optimal per-
mutation of anonymous edges. Remarkably, the parameters
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with the same names (i.e., ω, c1, r1, c2, r2) are identical to
those included in (2).

The operations are defined as follows:

⊗: The calculation of A⊗B aims to get the better solution
with the best fitness value between A and B, and both A
and B denote the sequence sets with the same quantity of
elements.
·: A · B can be acquired by: A · B = A+ B−A

2 . Both A and
B denote the sequence sets, and the result is composed of
all the intermediate values between A and B.
⊕: The calculation can be performed by rearranging
the permutation of the candidate anonymous edges of
the sequence set A, according to the permutation of the
particle breakpoint positions of sequence set B. A new
sequence set is then generated as the result of the
calculation.

The running process of IMOPSO can be summarized as
follows:

Step 1. Initialize an n-dimension particle space as the
original particle swarm. Specifically, X1

Route it is assigned as
an original permutation of the candidate anonymous edges
for each particle, whereas.is assigned as the original permu-
tation of particle breakpoint positions to satisfy anonymity
requirements.

Step 2. Initialize pbest for individual particles of the orig-
inal particle swarm as X1

Break Then initialize gbest with the
best fitness value calculated by the predefined fitness func-
tions in the original particle swarm.

Step 3. Set the threshold value of iterations, and then start
to run the algorithm iteratively.

Step 4. X iRoute of each particle and X iBreak are iteratively
updated using (7) and (8), respectively. Both pbest and gbest
are iteratively updated accordingly.

Step 5. After each iteration, IMOPSO increments the iter-
ation counter by 1, and the updated gbest is added to the
optimal solution set. If the number of iterations exceeds a cer-
tain threshold value, the operation turns to step 6. Otherwise,
it turns to step 4.

Step 6. Randomly select an element from the optimal
solution set as the final global solution, from which the final
anonymous edge set is randomly selected.

C. PRIVACY METRIC
To thoroughly analyze the resilience of our proposed pri-
vacy scheme, we introduce two privacy metrics based on the
semantic relativity attack defined in Section III Part C, one
of which is the sum of semantic relative distances denoted by
sumdist , for summing up the values of the semantic distances
between pairs of anonymous edges in the final anonymous
edge set. According to definition 3, the higher the sum of
semdist is, the less the final anonymous edge set and user’s real
location are semantically related. Thus the attackermay fail to
infer user privacy information via semantic relativity attack.
The other privacy metric is the semantic privacy denoted by
PRMCR (which also appears as PRM) applied to measure the

Algorithm 1 ImprovedMulti-Objective Particle SwarmOpti-
mization
Input: (1) The map of location semantic road network
Mapsem;

(2) the set of candidate anonymous edges Scandi;
(3) the Maximum Number Of Iterations Itmax;
(4) the size of Scandi, sizecandi.

Output: the final anonymous edge set Sanony
1. Encode each edge of Scandi in sequence
2. Generate the matrix Mpar
3. the set of the rows of Mpar , which is denoted as XRoute,
represents different permutation ways of the edges of
Scandi
4.Generate XRoute as the set of various ways for separating
XRoute into several subsets
5. Initialize pbest as{{
X1
Route,X

1
Break

}
, · · · ,

{
X sizecandiRoute ,X sizecandiBreak

}}
with origi-

nal values
6. Initialize gbest

{
XbestRoute,X

best
Break

}
with original values

7. Sanony = {}, Sgbest = {}
8. for i < Itmax

9. for each particle
[
X jRoute,X

j
Break

]
in Mpar

10. Calculate

X i+1Break = ω × X iBreak ·
[
c1 × r1 ×

(
pbest ⊗ X iRoute

)]
·

[
c2 × r2 ×

(
gbest ⊗ X iRoute

)]
X i+1Route = X iRoute ⊕ X

i+1
Break

11. if fit_bestj+1
{
X j+1Route,X

j+1
Break

}
is sup erior to

fit_bestj
{
X jRoute,X

j
Break

}
12. then pbestj

{
X jRoute,X

j
Break

}
←

pbestj+1
{
X j+1Route,X

j+1
Break

}
13. if fit_pbestj+1

{
X jRoute,X

j
Break

}
is superior to

fit_gbestj
{
XbestRoute,X

best
Break

}
14. then gbestj

{
XbestRoute,X

best
Break

}
← pbestj

{
X jRoute,X

j
Break

}
15. Sgbest ← gbest , i = i+ 1
16. Randomly pick one set out of the Sgbest as Sbest
17. Randomly pick one subset of Sbest as Sanony
18. Return Sanony

degree of semantic privacy of an anonymous edge set, where
the index CR stands for an anonymous edge set. PRMCR can
be calculated as,

PRMCR =
POPCR
SENCR

, (9)

where POPCR and SENCR denote the accumulated value of
location popularity of the sensitive location semantics in the
final anonymous edge set, the accumulated value of semantic
sensitivity of the sensitive location semantics in the final
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anonymous edge set, respectively. According to (9), the big-
ger thePRMCR, the less the leakage of the privacy information
of mobile users, in this way, a higher level of semantic privacy
of an anonymous edge set can be obtained for achieving
location privacy protection.

D. UTILITY METRIC
According to practical experience, the LBS server of a cen-
tralized system is supposed to process user query requests,
including the final anonymous edge set and other public
information, and return the query results to mobile users.
In this process, the query efficiency is strongly related to the
utility. In this paper, we propose the sum of edge distance
difference denoted as sum1e to evaluate the utility. sum1e can
be computed as,

sum1e =

n∑
i

(
eanony − euser

)
, (10)

where eanony denotes an anonymous edge and euser denotes
the road edge where the user locates. The edge distance
is calculated by counting the steps between pairs of edges.
Based on the query process mentioned earlier, the more eanony
is relatively close to euser , in other words, the smaller the edge
distance between eanony and euser is, the less the LBS server
may pay for searching on the road network. Thus, the LBS
server can provide mobile users with quick query feedback,
and the utility is accordingly improved. Furthermore, we also
introduce the average time as the other utility metric, which
is denoted as avgtime_cos t and can be calculated as below,

avgtime_cos t =
sumtime
sumcount

, (11)

where sumtime and sumcount denote the total time consump-
tion of running the algorithm iteratively, algorithm’s iter-
ations, respectively. The more the average time, the less
the processing ability of location privacy protection scheme,
i.e., the privacy system needs to spend much time to provide
location privacy protection, leading to the degradation of the
level of utility.

E. SECURITY ANALYSIS
In this paper, we propose a privacy scheme STA-LPPM
for achieving location privacy protection via the Improved
Multi-Objective Particle Swarm Optimization (IMOPSO),
which ensures security for three main steps as below.

In the process of constructing the final anonymous edge
set, IMOPSO uses serialization to generate multiple candi-
date anonymous subsets, each of which meets the privacy
requirement for k-anonymity containing at least k anonymous
edges. Under adequate anonymous protection, IMOPSO can
prevent malicious attackers from inferring user privacy infor-
mation by revealing the semantic relativity between anony-
mous set and user’s real location. Besides, we can enumerate
the candidate anonymous edge set as much as possible by
assigning the particle space dimensions. Thus, the range of

the best solutions is reasonably expanded, leading to optimiz-
ing the final anonymous edge set.

After generating multiple candidate anonymous edge sub-
sets, IMOPSO searches for optimal solutions by iteratively
calculating the fitness functions. Since the fitness functions
consist of privacy metrics and utility metrics, IMOPSO
can simultaneously optimize privacy metrics and utility,
i.e., IMOPSO can generate the final anonymous edge set to
resist semantic relativity attack while preventing significant
utility degrading.

Finally, IMOPSO randomly selects an anonymous edge
set from the optimal solution set as the final anonymous
edge set, leading to the randomness of the privacy-preserving
algorithm. The attackers are thus less likely to reconstruct
the similar anonymous edge set for inferring user privacy
information. In this way, IMOPSO can prevent information
leakage effectively. According to the above technical steps,
our scheme is secure and can effectively resist semantic rela-
tivity attacks while preventing significant utility degrading.

VI. EXPERIMENT AND EVALUATION
A. EXPERIMENTAL ENVIRONMENT AND SETTING
To evaluate the proposed STA-LPPM, we conduct exper-
iments over a road network dataset generated by the
Network-based Generator of Moving Objects (NGMO) [46]
based on the city’s road map Oldenburg, where 6,105 road
intersections and 7,035 road edges are included. All the
experiments are performed with a PC equipped with Intel(R)
Core(TM) i5-6300UCPU and 8GBRAM.We introduce mul-
tiple location semantics into the real-world road network by
randomly distributing the preset sensitive location semantics
to Oldenburg’s original road network. Themap of the location
semantic road network is as depicted in Fig. 4 (b). To verify
the advantages of our method against the existing works in
terms of semantic privacy protection and trade-off improve-
ment, we conduct experiments to compare the proposed
STA-LPPM with Dummy-Location Generation (DLG) [38]
and BL k-disturbance [39]. All the experimental parameters
are explained in detail in Table 2.

B. PRIVACY ANALYSIS
Here we compare our method to the other two methods by
evaluating how privacy metrics vary with the parameter k .
As observed in Fig. 5 and Fig. 6, the performances of both
privacy metrics of IMOPSO are always the best amongst
these three algorithms, which demonstrates that IMOPSO is
superior to both DLG and BL k-disturbance in enhancing the
degree of semantic privacy of the final anonymous edge set.
As shown in Fig. 5, the sum of semantic relative distance of
IMOSPO is twice as that of DLG and BL k-disturbance. This
phenomenon results from the fact that IMOPSO uses semdist
to evaluate the semantic relativity by comparing two different
semantic attribute sets, which can calculate the semantic
relative distance more accurately. Additionally, the scale of
the anonymous set based on DLG increases with the increase

VOLUME 9, 2021 54271



C. Tian et al.: Semantic and Trade-Off Aware Location Privacy Protection in Road Networks via IMOPSO

FIGURE 4. The two road networks for algorithm experiment.

TABLE 2. Experimental parameter list.

of k in Fig. 5 but the growth trend is nonlinear (i.e., its
performance cannot satisfy the user privacy requirements as
k increases). BL k-disturbance ensures the privacy protec-
tion of location semantic and sensitive location semantic,
but it is limited in a specific context. Since the value of
semdist of IMOPSO is well above the other two algorithms,
the spatial distribution of the anonymous set of IMOPSO
is more reasonable, and the resistance of semantic relativity
attack of IMOPSO remains the best according to Eq. (1).
As shown in Fig. 6, by comparing these three algorithms
in terms of the anonymous edge selection strategy, the level
of semantic privacy of IMOPSO is more than twice that of
DLG and BL k-disturbance. This phenomenon results from
the fact that IMOPSO uses semantic attribute sets to imple-
ment fine-grained definitions of multiple location semantics.
In this way, mobile users can assign semantic sensitivity
values to different location semantics more precisely. Hence
the final anonymous edge set obtained by IMOPSO can
evaluate the semantic privacy more accurately. Particularly,

FIGURE 5. Effect of k on the sum of semantic relative distance.

FIGURE 6. Effect of k on semantic privacy.

DLG consistently holds the low spot as k increases, which
may attribute to its greedy strategy for filtering the final k−1
anonymous edge out of the 4k candidate anonymous edges.
Hence, the degree of semantic privacy of the final anonymous
edge set is lower than expected. BL k-disturbance applies the
self-learning algorithm to generate an anonymous set, which
improves the degree of semantic privacy of the anonymous set
to a large extent, but the privacy rating of location semantic is
roughly carried out by users themselves at the same time. On
the contrary, IMOPSO continuously updates the anonymous
sets with better privacy metrics within the threshold number
of iterations. In that case, IMOPSO has practical significance
in improving the degree of semantic privacy compared to the
other two algorithms.

C. UTILITY ANALYSIS
To prove that our method can retain good utility while ensur-
ing decent privacy, we adopt sum1e and the average time
described in Part D of Section IV as the utility metrics to
evaluate the performance of our method. As shown in Fig. 7,
the average time grows correspondingly with the increase of
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FIGURE 7. Effect of k on average time cost.

the k value. Note that the calculation of semantic correlation
between eanony and euser of BL k-disturbance occupies a large
proportion in total time costs, and the final k − 1 anonymous
edges of DLG are filtered out of the original 4k candidate
anonymous edges through three rounds. At the same time,
the improved PSO anonymization algorithm of STA-LPPM
involves the application of evolutionary computation. In this
paper, the query time of IMOPSO is kept within tolerable lim-
its by setting a certain iterative threshold. As shown in Fig. 8,
the growing tendency of sum1e for these three algorithms
is nonlinear as the k value increases, and the sum of edge
distance difference of IMOSPSO is more than twice that of
DLG and BL k-disturbance. This phenomenon results from
the fact that IMOPSO evaluates the sum of edge distance
difference in terms of multiple candidate anonymous edge
sets, guaranteeing the overall accuracy of the calculation.
Notably, the distribution scope of sum1e of DLG is broader
than those of the other two algorithms due to the lack of the
privacy rating for sensitive location semantics. The privacy

FIGURE 8. Effect of k on the sum of edge distance difference.

FIGURE 9. Effect comparison of three algorithms based on the sum of
semantic relative distance.

FIGURE 10. Effect comparison of three algorithms based on PRM.

rating of the location semantics of BL k-disturbance roughly
includes three levels, leading to a coarse-grained LBS. and
semantic relativities amongst anonymous edges are then easy
to be inferred by attackers. IMOPSO thus taking advantage
of maintaining the utility via the non-discrete distribution of
anonymous edges of the final anonymous edge set.

D. TRADE-OFF ANALYSIS
Since the trade-off between privacy and utility in the exist-
ing methods remains being implemented in a compensatory
way, we remind that our method is good in realizing opti-
mal trade-off between privacy and utility simultaneously.
To prove that IMOPSO indeed works in the compromise
between privacy and utility, we conduct experiments to com-
pare the performance of the trade-off of IMOPSO with
that of the other two algorithms. As the results are shown
in Fig. 9 and Fig. 10, IMOPSO implements trade-off more
than twice as effectively as DLG and BL k-disturbance.
As demonstrated in Fig. 9, IMOPSO maintains a high degree
in resisting the semantic relativity attack as the average time
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increases, indicating that IMOPSO is highly capable of pro-
viding better semantic privacy protection in a road network
to DLG and BL k-disturbance. What can be concluded from
Fig. 10 is that as the scope of the final anonymous edge
set extends, IMOPSO has a great advantage in reconciling
privacy and utility over the other two k-anonymity-based
privacy-preserving approaches. Following the comparison
and analysis mentioned above, it is evident that IMOPSO
is more sensible in meeting user privacy requirements and a
real-world road network scenario.

VII. CONCLUSION
This paper proposes an improved privacy protection strat-
egy STA-LPPM, which is applied to improve the trade-off
between privacy and utility in a location semantic road net-
work. To analyze the effectiveness of privacy protection and
utility maintaining, we first propose a new attack called
semantic-relativity attack, and then propose two privacy met-
rics to evaluate the semantic privacy and the resistance to
semantic relativity attack. Two utility metrics are used to
measure the computation cost and query efficiency. STA-
LPPM first employs BFS to generate a candidate edge set.
After that, an optimal solution set is generated by running
IMOPSO iteratively, from which the final anonymous edge
set is randomly selected. As a result, the search time is
minimized, and the accuracy rate is increased when forming
the final anonymous edge set. The simulation results show
that our privacy scheme performs better in user location
protection and is practically applicable to a real-world road
network scenario. STA-LPPM is thus not just a verified
optimization method for enhancing the search effect of k-
anonymity, but also an advanced problem-solving strategy for
location privacy-preserving. For future work, we will focus
on improving the trade-off problem of location trajectory
privacy protection.
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