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ABSTRACT The resonant frequency drift caused by the change in mechanical parameters will cause the
servo mechanism of CNC machine tools, robots and other equipment to produce mechanical resonance
again. To address this problem, we propose a novel identification method of mechanical resonance based
on the Fibonacci principle and a novel design method of notch filters based on optimization theory. First,
by using a multifrequency sinusoidal signal, we design a fast search algorithm to search for the drift
resonance frequency online; then, we optimize the notch filter to achieve fast and real-time resonance
suppression by optimization theory. Compared with commonly employed passive resonance suppression
methods, the proposed method can rapidly identify the parameters, more accurately suppress the resonance,
minimize the phase angle loss and maintain the stability of the system. Finally, we apply the method to a
2-mass system experimental platform. The experimental results show that the proposed method is superior
to the conventional passive resonant suppression method under the resonant frequency drift and other states
and has strong robust performance.

INDEX TERMS Servo mechanism, mechanical resonance frequency drifts, Fibonacci principle, optimiza-
tion theory, notch filter, phase angle loss.

I. INTRODUCTION
Permanent magnet synchronous motor (PMSM) drive sys-
tems are widely used for the motion control of preci-
sion equipment such as computer numerical control (CNC)
machine tools, industrial robots, large optical telescopes and
radar due to their high precision, high efficiency and high
power density [1]–[4]. However, the mechanical transmission
mechanism between the motor and the load often includes
elastic factors that lead to mechanical resonance and limit the
bandwidth of the position and speed control loop [5], [6]. The
stiffness coefficient, inertia ratio, damping and other variables
in the transmission system change with increasing equipment
service life, so they are difficult to accurately measure. These
variablesmake it difficult to identify and suppressmechanical
resonance frequency drift, so the performance of the PMSM
servo system is limited.
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At present, the research methods of mechanical reso-
nance suppression are mainly divided into two categories:
active methods and passive methods. Active methods mainly
realize resonance suppression by changing the mechanical
structure or by actively using advanced algorithms [7]. The
adaptive neural network algorithm is adopted in [8], and the
adaptive sliding mode control method is adopted in [7]–[11],
while the adaptive feedback controller is used in [12],
and the model predictive control algorithm is adopted
in [13]. However, the operations of the above intelligent
control algorithms are complex and require a large system
computing capacity, which limits large-scale industrial appli-
cations [11]. In [14], an adaptive vector method for estimat-
ing the unknown parameters of the motor provided a new
approach for parameter identification and resonance suppres-
sion. In recent years, state feedback control has been widely
used to suppress mechanical resonance, where the idea is to
observe state variables that include the mechanical resonance
frequency [15]–[17]. However, these methods often require
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additional sensors, which increases the hardware cost, and
the installation of sensors is limited. The proportional inte-
gral (PI) controller is designed by pole assignment in [18],
[19], and the system performance is improved by assign-
ing the damping coefficient of the transfer function of the
closed-loop system. However, the axial torque oscillation
cannot be suppressed in the saturation stage of the speed
regulator. In [11], [20], and [21], the shaft torque is mea-
sured directly or the displacement, speed and acceleration
data of the load side are measured to obtain the resonance
frequency and peak value, and then the mechanical resonance
is suppressed by adjusting the controller parameters. These
methods also increase the complexity and control cost of the
system.

Passive methods do not change the control structure, do not
increase the hardware cost, and are easy to implement.
At present, the main passive resonance suppression method
is the notch filter method [22]–[25]. However, this method
needs to accurately identify the resonance frequency and
peak value in real time. The offline suppression method is
adopted in [26], [27]: the system Bode diagram obtained by
the frequency sweep is analyzed, and then the filter parame-
ters are set according to the characteristics of the resonance
frequency. This method can accurately identify the resonance
frequency. However, changes in the stiffness coefficient, iner-
tia ratio and damping lead to changes in the resonance fre-
quency and peak value, which leads to resonance suppression
failure. However, the online real-time resonance suppression
method can effectively prevent this problem.

In this paper, the mechanical resonance frequency drift of
a servo system is studied as follows: 1) The mechanical reso-
nance model of a PMSM servo system is established through
the dynamic equation, and the frequency characteristics and
phenomenon of the mechanical resonance drift of the system
are analyzed. 2) Two iterative algorithms, including mul-
tifrequency fast search and fast multifrequency dichotomy,
are given. The resonance frequency and cutoff frequency
can be identified quickly and accurately online, and then
the parameters of the resonant system of the drift can be
determined. 3) By using the frequency characteristics of the
system, the parameters of the notch filter are optimized and
designed to achieve optimal online resonance suppression
and keep the system stable. 4) The experimental results for
the PMSM servo system are given to verify the correctness of
the theoretical analysis and the effectiveness of the proposed
method. Compared with the traditional offline resonance sup-
pression method, the optimal online resonance suppression
algorithm designed in this paper functions in real time and is
fast, accurate, and stable.

The rest of this paper is arranged as follows. In section II,
the model of the PMSM drive system is analyzed, the sim-
plified model is deduced, and the influencing factors of
mechanical resonance drift are analyzed. In section III,
an optimal online mechanical resonance suppression scheme
is proposed, and specific implementation steps are organized.
The advantages of the method are illustrated by comparison

FIGURE 1. PMSM drive system.

FIGURE 2. Mechanical transmission mechanism of the CNC machine.

with the offline method. The experimental results are given.
Section IV presents the conclusion.

II. MATHEMATICAL MODEL OF A PMSM DRIVE SYSTEM
In the practical application of industrial production, PMSM
drive systems have been widely used, as shown in Fig. 1. The
system is generally composed of a CNC system, servo driver,
servo motor, mechanical transmission mechanism and load.
Usually, the CNC system controls the output electromagnetic
torque of servo motors by servo drivers, and the motor and
load are connected by a mechanical transmission mechanism.

Fig. 2 shows that the mechanical transmission mechanism
of the CNC machine tool includes screws, guide rails, a cou-
pling, fasteners and other mechanical parts. The connection
mode between these parts is not an ideal rigid connection but
an elastic connection. The existence of elasticity introduces
resonance points into the system and causes mechanical
resonance.

A. ESTABLISHMENT OF A TWO-MASS MECHANICAL
RESONANCE MODEL FOR THE PMSM SERVO SYSTEM
The typical two-mass mechanical model used to describe the
servo system is shown in Fig. 3. The motor is connected to the
load through a slender elastic shaft. Themoments of inertia of
themotor and the load are Jm and Jl , respectively, the stiffness
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FIGURE 3. Two-mass model.

FIGURE 4. Block diagram of the two-mass model.

coefficient is ks, the damping coefficient is cs, the electromag-
netic torque is Tm, the ratio of inertia is p, the disturbance
torque is Tl , the shaft torque is Ts, ωm and ωl are the rotation
speed of the motor and load, respectively, and θm and θl are
their rotation angles, respectively. The kinematic equations of
the system can be expressed as

Jmω̇m = −Ts + Tm
Jl ω̇l = Ts − Tl
Ts = ks (θm − θl)+ cs (ωm − ωl)
θ̇m = ωm

θ̇l = ωl

ω = 2π f

(1)

The block diagram of the two-mass mechanical model is
shown in Fig. 4, where Tl is so small that it can be ignored.
The transfer function from Tm to ωm can be expressed as

G (s) =
ωm

Tm
=

1
Jms

Gr (s) (2)

Gr (s) =
s2 + 2kξrωans+ kω2

an

s2 + 2ξrωns+ ω2
n

(3)

Gr (s) is the transfer function of the mechanical resonance
link of the servo system. ωn and ωan are the undamped res-
onance frequency and antiresonance frequency, respectively,
which can be expressed as

ωn =

√
ks (1+ p)
Jmp

(4)

FIGURE 5. Bode diagram of the two-mass model.

ωan =

√
ks
pJm

(5)

However, a change in the damping also causes drift of
the resonance frequency, especially in some cases of servo
precision control.

Let

k =
1

1+ p
(6)

ξr =

√
c2s (1+ p)
4ksJmp

(7)

The damped resonance frequency and antiresonance fre-
quency are ωr and ωar , respectively. The relationship
between ωr and ωn is given as follows:

ωr =

√
(1+ k)+

√
(1− k)2 + 8ξ2r k + 8ξ2r k2

2− 4ξ2r − 4kξ2r
ωn (8)

The relationship between ωar and ωan is given as follows:

ωar =

√
(1+ k)−

√
(1− k)2 + 8ξ2r k + 8ξ2r k2

2k − 4kξ2r − 4kξ2r
ωan (9)

By frequency domain analysis according to equation (2),
the frequency characteristic curve of the mechanical reso-
nance link of the servo system is obtained, as shown in Fig. 5.

B. ANALYSIS OF THE PHENOMENON OF MECHANICAL
RESONANCE DRIFT
According to equations (4), (5), (8) and (9), the resonance fre-
quency and antiresonance frequency are affected by the iner-
tia ratio, stiffness coefficient and damping coefficient. The
change in these three factors leads to drift in the resonance
frequency. Therefore, the causes of resonance frequency drift
can be summarized into three aspects: 1) The stiffness of the
moving shaft is fixed in theory, but with increasing service
life of the equipment, the aging of metal materials leads to
a decrease in the stiffness coefficient; 2) in the process of
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FIGURE 6. Curve of the resonance frequency with cs.

using the equipment, a change in the preload and lubrication
state of the transmission mechanism leads to a change in the
damping coefficient; 3) in the working process of the CNC
machine tools and industrial robots, a change in the load
leads to a change in the inertia ratio. This paper discusses
the influence of the simultaneous variation in the inertia ratio,
stiffness coefficient and damping coefficient on the frequency
drift of the mechanical resonance. According to the actual
mechanical characteristics of CNC machine tools, the fol-
lowing assumptions need to be satisfied: 0 ≤ cs ≤ 1, 1 ≤
p ≤ 20, and 200 ≤ ks ≤ 500. In addition, the initial values
of other mechanical parameters are established as follows:
Jm = 0.043kg · m2, Jl = 0.22kg · m2, ks = 280N · m/rad ,
and cs = 0.22N · m · s/rad .

1) ANALYSIS OF THE VARIATION IN THE
STIFFNESS COEFFICIENT
As shown in Fig. 6, when the inertia ratio p and the damp-
ing coefficient cs remain unchanged and only the stiff-
ness coefficient changes, the resonance frequency point
changes. With a gradual increase in ks, the resonance fre-
quency of the system ωr increases in a piecewise manner.
When ks = 384N · m/rad , ωr = 341.4803rad/s; when
ks = 385N · m/rad , ωr = 326.8834rad/s.
The resonance frequency jumps at a certain point. The

interval [200, 500] is divided into two subintervals [200, 384]
and [385,500]. The function fitted by the least square method
is two straight lines expressed as{

ωr = 0.5142ks + 146.3961 ks ∈ [200, 384]
ωr = 0.4032ks + 172.1765 ks ∈ [385, 500]

(10)

The fitting correlation coefficient reaches 0.9999.

2) ANALYSIS OF THE VARIATION IN THE INERTIA RATIO
As shown in Fig. 7, when the stiffness coefficient cs and the
damping coefficient cs remain unchanged, only the inertia
ratio changes, and the resonance frequency point changes.
With the gradual increase in p, the resonance frequency ωr

FIGURE 7. The curve of the resonance frequency with p.

FIGURE 8. Fitting curve of the resonance frequency (p ∈ [0, 14]).

decreases in a piecewise manner, and the interval [0, 80]
is divided into two subintervals [0, 14] and [15, 80]. When
p = 14, the resonance frequency ωr jumps. The function
fitted by the least square method is given as

ωr = −0.0042 p5 + 0.1818 p4 − 3.0468 p3

+ 24.6396 p2 − 98.6696 p+ 447.6226
p ∈ [1, 14]
ωr = −0.0003 p3 + 0.0228 p2 − 0.9299 p
+ 270.1689

p ∈ [15, 80]

(11)

The fitting curves are shown in Fig. 8 and Fig. 9.

3) ANALYSIS OF THE VARIATION IN THE
DAMPING COEFFICIENT
In most cases, the value of the damping coefficient is very
small, and equations (8) and (9) can be rewritten as

ωr ≈ ωn (12)

ωar ≈ ωan (13)
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FIGURE 9. Fitting curve of the resonance frequency (p ∈ [15, 80]).

FIGURE 10. Curve of the resonance frequency with cs.

This means that damping is ignored, but in some cases
of precise control, damping can also affect the performance
of the equipment. Fig. 10 shows the Bode diagram of the
resonance frequency ωr with varying cs.

As shown in Fig. 10, with increasing cs, the resonance
frequency increases in a piecewise manner, and the interval
[0,1] is divided into seven cells. By using the least squares
method, we can calculate the correlation coefficient and
linear relationship between the damping coefficient cs and
resonance frequency ωr in each cell.
As shown in Table 1, with decreasing damping coefficient,

the resonance frequency of the system drifts to the low-
frequency region.

III. OPTIMAL ONLINE MECHANICAL RESONANCE
SUPPRESSION SCHEME
From the above discussion, it can be seen that changes in
the stiffness coefficient, inertia ratio and damping coefficient
lead to resonance frequency drift, which causes the original
resonance suppression method to fail. Aiming at the problem

TABLE 1. Relationship between ω∗r and Cs.

FIGURE 11. Block diagram of the search algorithm.

of the real-time control of resonance point drift, first, a fast
interval searching iterative algorithm based on the Fibonacci
principle is proposed to accurately detect the resonance fre-
quency in real time. Second, a fast multifrequency bisection
method is proposed to quickly and accurately obtain the
cutoff frequency. Third, the threshold frequency is calculated
to determine the parameters of the mechanical resonance sys-
tem. Finally, the performance index function is constructed,
the parameters of the notch filter are designed by using opti-
mization theory, and then online optimal suppression for the
mechanical resonance of the servo system is implemented.
The control structure of the frequency characteristic search
algorithm is shown in Fig. 11.

A. SEARCH ALGORITHM DESIGN OF THE
RESONANCE FREQUENCY
The commonly used one-dimensional search methods can be
divided into two categories: trial methods and interpolation
methods. Because the interpolation method needs to obtain a
smooth function and satisfy other conditions, the trial method
needs only to obtain a function that is unimodal. In compar-
ison, the trial method is simple and feasible. Based on the
principle of the Fibonacci method, an iterative algorithm for
fast searching intervals is proposed in this paper. The method
is as follows. First, let ϕ (λ) be the unimodal function. The
interval [α, β] is inserted into n points λ1, λ2, · · · , λn, and
then the interval is equally divided into n+1 cells. We calcu-
late the function value ϕ (λi) (i = 1, 2, · · · , n) at each point.
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FIGURE 12. Bode diagram threshold analysis for the two-mass system.

There must be a maximum value point λr such that ϕ (λr ) ≥
ϕ (λi) (i = 1, 2, · · · , n); then, we take the two adjacent points
of λr , namely, λr−1 and λr+1. Obviously, the maximum point
must be in the interval [λr−1, λr+1]. Finally, the maximum
value can be obtained by iteration. This method can quickly
and accurately find the extremum of a single peak function.
We use the multifrequency sinusoidal signal and Fibonacci
method to search for the resonance frequency online, so this
method is called the multifrequency fast search method. The
specific measures are as follows.

1) DETERMINATION OF THE THRESHOLD
According to the variation ranges of the stiffness coefficient
ks, inertia ratio p and damping coefficient cs, the search
interval [fc, fe] is determined such that the image in the search
interval is a unimodal function. Here, ω = 2π f , as shown
in Fig. 12.

The setting of the threshold value is related to fast Fourier
transform (FFT) sampling. Following Shannon’s sampling
theorem, 1024 points are used for the FFT analysis in the
experiment. The threshold value isHth = 1.5, and the thresh-
old frequencies are fl and fh, corresponding to the angular
frequenciesωl andωh in Fig. 12.Hmax is the maximum value,
and Hmin is the minimum value. If the amplitude of a certain
frequency point exceeds the threshold, there is considered to
be obvious resonance in the system. Let the amplitude of the
two-mass system at the resonance frequency f be Qf ; the
following expression can be obtained from equation (2):

Qf =
1

2π fJm

√√√√(
f 2 − kf 2r

)2
+ (2kξr fr f )2(

f 2 − f 2r
)2
+ (2ξr fr f )2

(14)

where fr is the resonance frequency found.

2) MULTIFREQUENCY SINUSOIDAL TORQUE
CURRENT SIGNAL
It is assumed that the multifrequency sinusoidal torque cur-
rent signal with online frequency variation is composed of n0
sinusoidal signals with different frequencies. The frequency
interval between each sinusoidal signal is τ = (fe − fc)/n0.
The multifrequency sinusoidal torque current signal can be

expressed by the following equation:

iq (t) =
iqmax

ξn0

n0∑
i=1

sin [2π (fc + iτ) t] (15)

where iqmax is the limiting amplitude of the motor torque
current and ξ is the adjustment coefficient, which ensures that
the motor speed runs in a safe range.

3) RESONANCE FREQUENCY SEARCH
Using the multifrequency sinusoidal torque current excitation
system shown in (15), the motor speed and torque current
are sampled and stored online. By using equation (2), it can
be deduced that the amplitude gain K of the mechanical
resonance of the two-mass system at frequency f is expressed
as follows:

K = Am
/
KiAim (16)

where Ki is the motor torque coefficient, Am and Aim are the
amplitude of the motor angular speed and the amplitude of
the torque current, respectively.

Fig. 12 shows that the amplitude gain K reaches the
minimum value and maximum value at the antiresonance
frequency and resonance frequency of the system, respec-
tively. The multifrequency fast search algorithm searches for
the minimum value and maximum value of K in the target
frequency [fc, fe], and then the resonance frequency charac-
teristics of the system are obtained.

The process of the multifrequency fast search method for
finding the characteristics of the resonance frequency is as
follows:

¬ The initial interval is set as [fc, fe]; n0, τ , ξ and iqmax are
determined; and the accuracy requirement ε = 1;

­ Using a multifrequency sinusoidal signal excitation sys-
tem, the speed and torque current of the motor are trans-
formed by FFT, and then Am and Aim are obtained;

® According to equation (16), the amplitude gain K =
K (fc + iτ) (i = 1, · · · , n0) is determined, and the maximum
point fr of K is obtained;

¯ If fr+1 − fr−1 ≤ ε, the calculation is stopped; an
appropriate point is taken as the approximatemaximumpoint,
and the corresponding function value is the approximatemax-
imum value; otherwise, ° is executed;

° fc = fr−1, and fe = fr+1; the search restarts at ¬.
Similarly, the antiresonance frequency can be obtained.

4) CUTOFF FREQUENCY SEARCH
Using the dichotomy and multifrequency sinusoidal signal,
we propose an iterative algorithm for fast searching for a
cutoff frequency referred to as fast multifrequency bisection.
The common point of the two search algorithms mentioned
above is that they are fast and easy to operate.

Let

h (f ) = K − 1 (17)
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FIGURE 13. Amplitude-frequency response of the designed notch filter.

Then

h (f ) = Am
/
KiAim − 1 (18)

The steps of the fast multifrequency bisection method for
searching for the cutoff frequency are as follows:

Step ¬ and step ­ are consistent with the above fast
resonance frequency search algorithm.

® According to (18), the amplitude gain is
h (fc + iτ) (i = 1, · · · , n0), and the value of h (fc + iτ) is
calculated.

¯ If there is a frequency fr that makes h (fr ) = 0, then the
calculation stops; otherwise, ° is executed.

° The minimum frequency fr1 of h (fc + iτ) > 0 and the
maximum frequency fr2 of h (fc + iτ) < 0 are determined.
If fr1 − fr2 ≤ ε, then the calculation stops, and an appro-
priate point is taken as the cutoff frequency; otherwise, ± is
executed.

± fc = fr1, and fe = fr2; the search restarts at ¬.

5) DETERMINATION OF THE THRESHOLD FREQUENCY AND
DRIFT PARAMETERS
The mechanical resonance frequency, antiresonance fre-
quency and cutoff frequency as well as their corresponding
amplitudes Aan,An and 1 can be calculated by A and B.
Let equation (14) be equal to Aan, An and 1, respectively.
We have the coefficients k and ξr , the damping coefficient cs,
the inertia ratio p and the stiffness coefficient ks. Let equation
(14) be equal to Hth; finally, we obtain the frequency equal to
the threshold value Hth.

B. OPTIMAL DESIGN OF THE NOTCH FILTER
To easily adjust the filter frequency, filter width and filter
depth, an improved double-T network notch filter is adopted
in this paper. Its transfer function is shown in equation
(19), and the amplitude-frequency response characteristics
are shown in Fig. 13. F is the amplitude gain of the notch
filter at resonance frequency f0, and M is the bandwidth.
Obviously, when the depth f0 and the width M are larger,
the amplitude near the resonance frequency point can obtain
sufficient attenuation. However, if these parameters are too
large, it leads to excessive resonance suppression and reduces
the stability margin of the servo system, resulting in obvi-
ous vibration in the system response. We need to determine
how to select a and b to find the optimal depth and width

parameters, limit the amplitude of the resonance frequency
below the threshold value, and minimize the phase angle
loss. 

GN (s) =
s2 + 2π f0as+ (2π f0)2

s2 + 2π f0bs+ (2π f0)2

F =
a
b

M = 2π f0
√
b2 − 2a2

(19)

Mechanical resonance reduces the stability margin of the
system, which not only affects the dynamic performance of
the system but also destroys the stability of the system. Let
the system be stable without a notch filter, and the phase
margin of its open loop is ϕm, which can be expressed
as ϕm = arctan

af0f

f 20 − f
2
− arctan

bf0f

f 20 − f
2
, f 6= f0

0 f = f0
(20)

After the notch filter is added, the stability margin of the
system is expressed as

ϕnewm = ϕm + ϕ

where ϕ is the phase angle loss at the shear frequency fc, and
the expression is

ϕ = arctan
af0fc
f 20 − f

2
c
− arctan

bf0fc
f 20 − f

2
c
, f0 > fc (21)

Let 
ϕ = ϕ1 − ϕ2

ϕ1 = arctan
af0fc
f 20 − f

2
c

ϕ2 = arctan
bf0fc
f 20 − f

2
c

(22)

Then,

tanϕ = tan (ϕ1 − ϕ2) =
tanϕ1 − tanϕ2
1+ tanϕ1 tanϕ2

=

(a− b) f0fc
f 20 −f

2
c

1+ ab
(

f0fc
f 20 −f

2
c

)2 (23)

Let

m =
f0fc

f 20 − f
2
c

(24)

Then, (22) can be rewritten as

ϕ = are tan
(a− b)m
1+ abm2 (25)

Since a is much smaller than b, the absolute value of (25)
is taken as the phase angle loss caused at the cutoff frequency
fc; then, we have

|ϕ| = are tan
(b− a)m
1+ abm2 (26)
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Equation (26) shows that with a and b as the adjustment
coefficients, the phase angle loss increases with decreasing
a and vice versa, and the phase angle loss decreases with
decreasing b and vice versa. Then, we canmake the following
conclusions. When b increases and a decreases, the depth of
F and width of M increase, and the resonance suppression
ability is enhanced. Simultaneously, the phase angle loss
increases, which increases the influence on the stability of the
system. When a increases and b decreases, the depth F and
the width M decrease, and the resonance suppression ability
decreases. Simultaneously, the phase angle loss decreases,
and the influence on the stability of the system decreases. The
final purpose of this paper is to select the optimal adjustment
parameters a and b to minimize the phase angle loss, main-
tain the stability of the system, and effectively suppress the
resonance.

Assuming the amplitude of the notch filter at frequency f
is Bf , the expression obtained from equation (19) is presented
as follows:

Bf =

√√√√(
f 2 − f 20

)2
+ (af0f )2(

f 2 − f 20
)2
+ (bf0f )2

(27)

Obviously, Bf is a function of a and b and can be expressed
as Bf (a, b). For the threshold Hth, when f < fl , f > fh, Qf <
Hth; when fl ≤ f ≤ fh, Qf ≥ Hth. Therefore, we need only to
consider that the amplitude corresponding to the interval [fl fh]
should be controlled below the threshold value Hth, and the
amplitude of the other intervals should naturally be below the
threshold valueHth; that is, equation (28) holds in the interval
[fl fh] .

Qf Bf ≤ Hth (28)

With equation (28), we have the following optimal regulation
parameters:

min
Qf Bf ≤Hth

|ϕ| = are tan
(b− a)m
1+ abm2 (29)

The specific steps of solving the optimization problem (29)
with Zoutendijk’s feasible direction method are presented as
follows:

¬ The initial point is set to x1 =
(
a1
b1

)
, and k = 1;

­ The constraint formula (28) is recognized as Axk ≤ 0,

where A =
[

1
2π fr Jm

√
(1−k)2+4k2ξ2r

4ξ2r
Hth

]
and xk =

(
ak
bk

)
;

® Calculate ∇|ϕ(xk )|Obtain the optimal solution pk of the
formula min

Ax≤0
∇|ϕ(x)|TP; −1 ≤ pi ≤ 1, where i = 1, . . . , n.

¯ If ∇|ϕ(xk )|pk = 0, the calculation is stopped; xk is the
Kuhn-Tucker point; otherwise, ° is executed;

° Obtain the optimal solution λk of the formula
min

st 0≤λ≤λmax
|ϕ(xk + λpk )|, where

λmax =

{
min(c̄i/p̄i, p̄i) p̄i > 0
∞ p̄i ≤ 0

, c̄ = −Axk , p = Apk .

± Set xk+1 = xk + λkpk , where k = k + 1.

FIGURE 14. Flow chart of the optimal online resonant suppression
algorithm.

The determined a and b can place the amplitude attenuation
at any frequency ω in the resonant link below the threshold
valueHth, and the phase angle loss is minimized to determine
the optimal notch depth and notch width parameters, to avoid
excessive suppression, and to maintain the stability of the
system.

C. DESIGN OF THE OPTIMAL ONLINE RESONANCE
SUPPRESSION ALGORITHM
The servo system resonance suppression scheme based on an
adaptive notch filter mainly includes four steps: 1) data sam-
pling, 2) FFT analysis, 3) resonance frequency fast search,
and 4) notch filter parameter tuning. After the resonance
online suppression function is turned on, the torque current
signal is sampled. In each sampling period, the system com-
pletes data sampling, and at the same time, all the collected
data are stored in the register. When the number of sam-
pling points reaches the predetermined number, sampling is
completed, and FFT analysis is carried out. The results of
the FFT analysis are obtained by using the multifrequency
fast search algorithm to obtain the resonance frequency and
its amplitude gain. A notch filter is designed by using the
resonance frequency and the parameters of the notch band-
width and notch depth determined by optimization theory
to realize online resonance suppression. The flow chart of
the optimal online resonance suppression algorithm is shown
in Fig. 14.

IV. EXPERIMENT
To verify that the optimal online resonance suppression algo-
rithm can suppress the mechanical resonance frequency drift
of the PMSM servo system in real time and maintain the
stability of the system, an experimental device based on the
two-mass elastic model is built, as shown in Fig. 15.

The experimental platform is mainly composed of a drive
motor, load motor, damper, controller, and upper computer,
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FIGURE 15. Experiment setup.

TABLE 2. Motor parameters used in the experiment.

where the main chip of the controller is a TMS320F2812 of
the TI company. C language is used for programming. The
rated power of the permanent magnet synchronous motor
is 750 W, and the switching frequency of the three-phase
inverter is 10 kHz. The speed of the motor is obtained by
a 2500 lines incremental encoder with itself, and the period
of system speed loop is 0.45 ms. The drive motor and the
loadmotor are connected by a slender elastic shaft. Themotor
parameters are shown in Table 2.

The load motor can provide different torques and obtain
different moment of inertia ratios. The stiffness coefficient
can be adjusted by changing different slender elastic shafts.
The damping coefficient can be adjusted by adjusting the
damper. When the three factors of the inertia ratio, stiffness
coefficient and damping coefficient change at the same time,
the experimental platform verifies the suppression effect of
the optimal resonance suppression algorithm proposed in this
paper and its influence on the stability of the servo system.
Three experiments were carried out to verify the results.
Experiment 1 verifies the suppression effect of the optimal
online resonance suppression algorithm on mechanical reso-
nance for the PMSM servo system. Experiment 2 verifies that
the optimal online resonance suppression algorithm can still
suppress the resonance in real time and keep the system stable
after the resonance frequency drifts. Experiment 3 verifies
that the optimal online resonance suppression algorithm has
satisfactory robustness.

TABLE 3. Parameters used in the experiment.

FIGURE 16. Response of the quadrature axis current in the
multifrequency fast search procedure.

FIGURE 17. Updating process of the multifrequency fast search.

Experiment 1 Optimal online suppression of the reso-
nance frequency

The initial mechanical parameters of the experimental plat-
form are shown in Table 3. The optimal online resonance
suppression method searches the resonance frequency online
and automatically configures the filter. First, we initialize
the multifrequency sinusoidal quadrature axis current signal,
determine that the frequency search range [fc, fe] is [0,300],
and determine that the given speed is 500 r/min.

Fig. 16 shows the cross-axis current response over the
whole search process, and Fig. 17 shows the iterative update
process of the multifrequency fast search algorithm. The
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TABLE 4. Parameters obtained from the search algorithm.

TABLE 5. Comparison of the phase margins before and after resonance
suppression.

experimental results show that with 9 iterations, it takes
0.45 seconds to search for the resonance frequency fr ,
the antiresonance frequency fa, the amplitude gain K at
the resonance frequency and the shear frequency fc. The
first seven iterations search for the resonance frequency and
antiresonance frequency, which takes 0.35 seconds. The next
two iterations search for the cutoff frequency, which takes
0.10 seconds. Then, the frequencies fl and fh corresponding to
the threshold Hth are calculated by the algorithm. The results
are shown in Table 4.

Both the fast search algorithm proposed in this paper
and the search algorithm in [28] divide the search interval
into 10 subintervals. The search algorithm in this paper can
accurately determine each iteration interval with a small
number of calculations and fast search speed, taking only
0.45 seconds, while the algorithm in [28] needs to judge and
compare each subinterval to determine each iteration interval,
so the number of calculations is large, taking 5.4 seconds to
execute.

After the resonance frequency characteristics are identi-
fied by the fast search algorithm, the notch filter is auto-
matically configured according to optimization theory. The
performance index is established, and then the mechanical
resonance amplitude is controlled below the threshold value,
while the phase angle loss is minimized. The filter adjust-
ment coefficients are determined to be a = 0.1074 and
b = 0.2949. The simulation results are shown in Fig. 18,
and the comparison of the phase margins is shown in Table 5.
The results show that both the optimized notch filter and
the ordinary notch filter can control the harmonic amplitude
below the threshold value, but the less phase angle loss is
caused by the optimized notch filter than by the ordinary
notch filter. The optimized notch filter designed in this paper
can minimize the loss of the phase angle and has little effect
on the stability of the system.

Fig. 19 and Fig. 20 show the response waveforms of the
motor quadrature axis current and motor speed of the servo
system, respectively.

FIGURE 18. Simulation waveform of the two-mass system resonant
suppression.

FIGURE 19. Quadrature axis current response.

FIGURE 20. Motor speed response.

It can be seen that the optimal notch filter designed in
this paper barely changes the stability of the system, while
the ordinary filter causes obvious fluctuations in the speed
response and current response. Manual adjustment of the
notch filter parameters was used in [27], which takes a long
time and makes it difficult to achieve an optimal effect.
However, this paper establishes a real-time and accurate per-
formance index to obtain the optimal adjustment parameters
through the optimal algorithm.

Comparisons of thewaveforms through FFT analysis of the
quadrature axis current are shown in Fig. 21 and Fig. 22. It can
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FIGURE 21. FFT analysis of the current waveforms before resonance
suppression.

FIGURE 22. FFT analysis of the current waveforms after optimal online
resonance suppression.

be seen that the optimized filter can significantly attenuate the
mechanical resonance and keep it below the set threshold.

Experiment 2 Optimal online suppression after reso-
nance frequency drift

The resonance frequency drifts because of changes in the
stiffness coefficient, damping coefficient and inertia ratio due
to replacement of the slender elastic shaft, adjustment of
the damper and adjustment of the torque of the load motor,
respectively. The resonance frequency fr , antiresonance fre-
quency fa, amplitude gain K at the resonance frequency and
shear frequency fc can be identified by a multifrequency
fast search algorithm. The response of the quadrature axis
current in the search process is shown in Fig. 23, and the
updating process of the multifrequency sinusoidal signal is
shown in Fig. 24. Nine iterations take 0.36 seconds. The
stiffness coefficient ks, damping coefficient cs, inertia ratio
p and frequencies fl and fh corresponding to the threshold
Hth are calculated by the algorithm. The results are shown
in Table 6.

After the resonance frequency characteristics are identified
by the fast search algorithm, the notch filter parameters are

FIGURE 23. Response of the quadrature axis current in the
multifrequency fast search procedure (resonance frequency drifts).

FIGURE 24. Updating process of the multifrequency fast search
(resonance frequency drifts).

TABLE 6. Parameters identified by the search algorithm.

optimized by experiment 1, with filter adjustment coefficients
a = 0.1202 and b = 0.5319. The simulation results are
shown in Fig. 25.

The contrast of the resonance suppression effect is
very obvious. Fig. 26 shows the waveform of the reso-
nance suppression by the general filter whose resonance
suppression failure is caused by the resonance frequency
drift.

Fig. 27 shows the waveform of the optimal online reso-
nance suppression algorithm. The algorithm can effectively
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FIGURE 25. Simulation waveform of the 2-mass system resonant
suppression (the resonance frequency drifts).

FIGURE 26. FFT analysis of the current waveforms after resonance
suppression with a general filter (resonance frequency drifts).

FIGURE 27. FFT analysis of the current waveforms after resonance
suppression with an optimal online suppression algorithm (resonance
frequency drifts).

suppress themechanical resonance after drift in real time. The
phase margin comparison is shown in Table 7.

Fig. 28 and Fig. 29 show the response curves of the
quadrature axis current and speed of the servo system motor.
The experimental results show that the optimal notch filter
designed in this paper minimally changes the stability of the
system, while the ordinary filter makes the speed and current
obviously fluctuate.

TABLE 7. Comparison of the phase margins before and after resonance
suppression (resonance frequency drifts).

FIGURE 28. Quadrature axis current response (resonance frequency
drifts).

FIGURE 29. Motor speed response (resonance frequency drifts).

Experiment 3 Robust analysis of optimal online reso-
nance suppression algorithm

Keep the parameters a and b unchanged when the inertia
ratio p, stiffness coefficient ks, viscosity damping coefficient
cs and moment of inertia of the motor Jm change. If the
resonance peak value of the control system is less than the
threshold Hth in the process of external parameter changes,
and the phase margin remains in the interval [30◦ 70◦],
the system remains stable. This finding indicates that the
system has strong robustness.

Fig. 30 - Fig. 37 show the curves of the resonance peak
and phase margin, respectively. When 19.1 ≤ p ≤ 31.2,
0.164 ≤ cs ≤ 1, 260 ≤ ks ≤ 270 and 0.00257 ≤ Jm ≤
0.00437, it is obvious that the resonance peak value is less
than the threshold value Hth and that the phase margin is in
the interval [30◦ 70◦].
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FIGURE 30. Curve of the resonance peak with different p.

FIGURE 31. Curve of the phase margin with different p.

FIGURE 32. Curve of the resonance peak with different cs.

Fig. 38, Fig. 39, Fig. 40 and Fig. 41 show the motor speed
response curves with p, csks and Jm, respectively.

The results show that when the mechanical parameters p,
cs, and ks and motor parameter Jm change greatly, the system
still has reasonable speed response characteristics. Thus, the
control system based on the proposed method has strong
robustness.

FIGURE 33. Curve of the phase margin with different cs.

FIGURE 34. Curve of the resonance peak with different ks.

FIGURE 35. Curve of the phase margin with different ks.

The commonly utilized manual adjustment method is
time-consuming, inaccurate and untimely. The aim of the
online adjustment method is to search the resonant frequency
online in real time via the optimal algorithm. Compared
with the algorithm in literature [28], the number of itera-
tions of the multi-frequency fast search algorithm proposed
in this paper is significantly reduced, which only needs
0.45 s, with a decrease of 5 s. According to the resonant
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FIGURE 36. Curve of the resonance peak with different Jm.

FIGURE 37. Curve of the phase margin with different ks.

FIGURE 38. Motor speed response with different p.

frequency obtained from the search, the optimal algorithm is
used to determine that the notch filter parameters only need
0.9 s. The whole algorithm (resonant frequency search +
cutoff frequency search + drift parameter tuning + notch
filter parameter determination) requires a total of 1.98 s
(0.45 s+0.27 s+0.36 s+0.9 s), and the minimum phase angle
loss is 0.0217 (1.2433◦).

FIGURE 39. Motor speed response with different cs.

FIGURE 40. Motor speed response with different ks.

FIGURE 41. Motor speed response with different Jm.

V. CONCLUSION
In this paper, an optimal online resonance suppression
scheme is designed to address that the original notch filter
fails when the resonance frequency drifts due to changes in
the stiffness coefficient, inertia ratio and damping coefficient
of the servo system. This scheme can not only effectively
control the resonance system of the drift in real time but
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also maintain the stability of the system. The experimental
results show that the proposed multifrequency fast search
algorithm is fast and accurate; the designed optimized filter
can effectively suppress mechanical resonance, providing a
solid theoretical basis for industrial applications.
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