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ABSTRACT This study proposes a novel hands-free interaction method using multimodal gestures such as
eye gazing and head gestures and deep learning for human-robot interaction (HRI) in mixed reality (MR)
environments. Since human operators hold some objects for conducting tasks, there are many constrained
situations where they cannot use their hands for HRI interactions. To provide more effective and intuitive
task assistance, the proposed hands-free method supports coarse-to-fine interactions. Eye gazing-based
interaction is used for coarse interactions such as searching and previewing of target objects, and head
gesture interactions are used for fine interactions such as selection and 3D manipulation. In addition,
deep learning-based object detection is applied to estimate the initial positioning of physical objects to
be manipulated by the robot. The result of object detection is then combined with 3D spatial mapping in
the MR environment for supporting accurate initial object positioning. Furthermore, virtual object-based
indirect manipulation is proposed to support more intuitive and efficient control of the robot, compared
with traditional direct manipulation (e.g., joint-based and end effector-based manipulations). In particular,
a digital twin, the synchronized virtual robot of the real robot, is used to provide a preview and simulation of
the real robot to manipulate it more effectively and accurately. Two case studies were conducted to confirm
the originality and advantages of the proposed hands-free HRI: (1) performance evaluation of initial object
positioning and (2) comparative analysis with traditional direct robot manipulations. The deep learning-
based initial positioning reduces much effort for robot manipulation using eye gazing and head gestures.
The object-based indirect manipulation also supports more effective HRI than previous direct interaction
methods.

INDEX TERMS Deep learning, eye gazing, hands-free interaction, head gestures, human–robot interaction,
mixed reality, object detection.

I. INTRODUCTION
Human-robot interaction (HRI) is attracting much attention
with the advent of collaborative robots that can increase
productivity and efficiency in the manufacturing industry.
Therefore, HRI is considered one of the important research
topics for supporting human operators to interact and collab-
orate with robots in shared working environments.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Liu .

Because existing industrial robots are both programmed
and assigned to perform repetitive tasks, it is difficult to
cope with uncertainties when an unexpected situation occurs
or the work environment changes. However, collaborative
robots can perform intelligent tasks even in dynamic and
uncertain situations by utilizing various sensors, such as
RGB-D sensors and pressure sensors, enabling safe collab-
oration between the human operator and the robot by pre-
venting collisions between them [1], [2]. Typically, a new
interaction method and an interface tool to manipulate the
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robot are required for supporting effective HRI, as the opera-
tor mainly interacts with the robot through a 2D interface such
as a teach pendant or a keyboard mouse. Recently, virtual/
augmented reality (VR/AR) has been considered an essential
tool to provide the user with more natural interactions with
the robot or the real/virtual object [3]–[8].

Mixed reality (MR) is also considered an important inter-
action and visualization tool since MR is the merging of
real and virtual worlds to produce new environments and
visualizations, where physical and digital objects co-exist and
interact in real-time [9]–[12]. MR does not exclusively take
place in either the physical or virtual world but is a hybrid
of reality and virtual reality, unlike AR and VR. In other
words, MR is a blend of physical and digital worlds, unlock-
ing the links between human, computer, and environment
interactions [13]. Therefore, MR has been applied to various
industrial fields such as HRI, manufacturing task assistance,
and collaboration [5], [10], [11]. Instead of overlaying virtual
objects on videos or images of the real world captured from
the AR camera, the virtual environment is combined with
the real world in MR. To make this possible, MR performs
spatial awareness by conducting real-time scanning of the real
environment [14], [15].

In order to support effective and efficient interactions in
MR, hand-based interactions were widely used in previ-
ous studies, which detected the 3D joints of the hand and
recognized hand gestures based on them [4], [14], [16].
However, hand-based interactions cannot be utilized by the
users who hold physical objects with both hands while
conducting tasks or by people with disabilities who have
difficulty in using their hands. For example, for people suf-
fering from tetraplegia, almost all activities requiring user
interaction are very tedious or even impossible without the
help of assistants or assistive devices. HRI provides the
opportunity to create workplaces for people with tetraplegia
while increasing their autonomy in activities of daily living.
Hands-free HRI can even provide an opportunity to integrate
disabled people into working life [9], [17]–[22].

Recently, several studies were conducted to utilize eye
gazing and head gestures for hands-free interactions because
eye-tracking sensors and gyro-sensors are embedded in smart
devices. Sidenmark and Gellersen [23], Sidenmark et al. [24]
leveraged the synergetic movement of eye and head with
naturally combined eye-head movement and refined the cur-
sor position with gestural head movement. However, they
performed only simple tasks such as selection, and they did
not performmore complicated tasks such as 3Dmanipulation
with 3D virtual objects. Other studies focused on controlling
wheelchairs and robots with head gestures for disabled people
who could not use their hands [18]–[21]. It is important to
note that eye gazing causes less fatigue than head gestur-
ing because the eye gaze can move quickly without head
movement, but the accuracy is lower than that of the head
movement due to the jittering of the eye movement and the
limitation of the performance of the eye tracker [24], [25]. For
this reason, when the robot is directly manipulated using eye

gazing or head gestures, it is very difficult to control its posi-
tion and orientation. In addition, direct manipulation might
cause the robot to move out of the specified limits, which
either stops the robot or causes dangerous situations [17].

This study proposes a novel hands-free interaction method
for HRI through multimodal gestures such as eye gazing
and head gestures and deep learning in MR environments.
The proposed approach supports coarse-to-fine interactions
for providing more effective and efficient task assistance.
Because eye gazing is fast but unstable due to jittering, it is
used for coarse interactions such as searching and previewing
objects. On the other hand, since head gestures can support
stable and accurate interactions while they may cause high
fatigue due to frequent headmovements, they are used for fine
interactions such as 3D manipulation and final positioning.
The coarse interaction helps the user search for an object or
user interface (UI) using eye gazing as well as navigate or
preview related information. The fine interaction can help the
user select the navigated or previewed objects and conduct
object manipulation such as 3D translation and 3D rotation
using head gestures. In particular, instead of directly manip-
ulating the end effector of the robot, the virtual object-based
indirect manipulation is proposed to assist the user in con-
trolling the robot to perform pick-and-place tasks more effec-
tively. The indirect manipulation is based on matching the
virtual object onto the real object using hands-free HRI.
Furthermore, deep learning-based object detection is applied
to support fast and accurate initial object positioning, which
can considerably reduce much effort for HRI. A digital twin,
the synchronized virtual robot of the real robot, is used to pro-
vide a preview and simulation of the real robot to manipulate
it more effectively and accurately.

In order to confirm the originality and advantage of the
proposed hands-free HRI, we conduct two case studies. First,
we evaluate the proposed initial object positioning using a
deep learning method concerning three factors: (1) the learn-
ing performance of the deep learning-based object detection,
(2) the accuracy of 2D bounding boxes, and (3) the evaluation
of 3D distance errors in the 3D MR environment. Second,
we conduct a comparative evaluation of the proposed vir-
tual object-based indirect manipulation with traditional direct
robot manipulations including: (1) joint-based manipulation
and (2) end effector-based manipulation.

The proposed hands-free HRI has the following
contributions.

1) We propose a novel hands-free HRI using the coarse-
to-fine metaphor in wearable MR environments, support-
ing effective HRI even in situations where it is difficult
for the human operator to use their hands while holding
tools.

2) We propose the virtual object-based indirect robot
manipulation using eye gazing and head gestures bymatching
the virtual object onto the physical object, which can provide
more effective task assistance.

3) The initial object positioning using deep learning-based
object detection can reduce much effort for hands-free HRI.
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4) We confirm the originality and the excellence of the
proposed hands-free HRI by conducting two case studies:
(1) performance evaluation of initial object positioning using
deep learning-based object detection and (2) comparative
analysis with traditional direct robot manipulations.

The paper is organized as follows. In Section II, we review
the relatedwork. Section III overviews the proposed approach
and presents the eye gazing- and head gesture-based hands-
free interaction to search, select, and manipulate virtual
objects, which is effectively used for indirect robot manip-
ulation. Section IV proposes the accurate and effective initial
object positioning using deep learning and the virtual object-
based indirection manipulation of the robot through the pro-
posed hands-free HRI. Section V describes two case studies
and comparative analyses. Section VI concludes the paper
and presents future studies.

II. RELATED WORK
We classify the related work into three categories and
review each of them. Firstly, eye gaze and head movement-
based interactions in VR/AR environments are reviewed.
Secondly, we discuss previous studies on assistive HRI in
constrained situations where users cannot use their hands.
Finally, we review VR/AR/MR applications for HRI.

A. EYE GAZE AND HEAD MOVEMENT-BASED
INTERACTIONS IN POINTING AND SELECTION
Previous research works explored effective interactions with
the robot and environment using different gestures such as
hand gestures, eye gazing, and head movement. Hand ges-
tures are mainly used for main interactions but eye gazing
and head gestures are used as auxiliary tools. In particular,
simple interactions such as pointing and selection were sup-
ported in hands-free situations by using eye gazing and head
gestures [26]–[29].

Selection by pointing has two phases. First, the user iden-
tifies an intended target by pointing at it. Then, the user
confirms the target via a dwelling action or head movement.
Eye movement is highly effective for the pointing phase as
the user can direct his/her gaze more quickly toward a target
than hands or any other pointing device [23]. A gaze shift
will typically start with eye movement that will be supported
by head movement, not only to reach further but also to
stabilize the eyes in a comfortable position after reaching a
target [30], [31]. However, eye movement is unstable due to
jittering.

In order to solve the disadvantage of the eye movement,
the coarse-to-fine interaction was studied in which eye gaz-
ing was designated as a coarse stage, and mouse, pen, and
touch interfaces were designated as a fine stage [25], [27].
Pfeuffer et al. [25] proposed combining the two modes
for direct-indirect input modulated by gaze and introduced
gaze-shifting as a new mechanism for switching the input
mode based on the alignment of the manual input and
user’s visual attention. They implemented direct-indirect
input enabled by gaze-shifting. Stellmach and Dachselt [27]

proposed gaze-supported interaction as a more natural and
effective way by combining a user’s gaze with touch input
from a handheld device. Also, some studies were conducted
to reduce selection errors by setting the dwell time for
improving unstable interactions of eye gazing [32], [33].

Most of the previous studies only supported simple tasks
such as pointing and selection by combining eye gazing
and head gestures [23], [24], [34]–[36]. Sidenmark and
Gellersen [23] proposed leveraging the synergetic move-
ment of eye and head and identified design principles
for Eye&Head gaze interaction. They suggested three eye-
head coordination methods: Eye&Head pointing, Eye&Head
dwell, and Eye&Head convergence. Sidenmark et al. [24]
also proposed BimodalGaze, a technique for head-based
refinement of a gaze cursor. This technique leveraged eye-
head coordination, which allowed users to quickly shift their
gaze to targets over larger fields of view with naturally
combined eye-head movement and to refine the cursor posi-
tion with gestural head movement. Mardanbegi et al. [34]
proposed a vestibule-ocular reflex (VOR)-based gaze depth
estimation method to resolve target ambiguity in 3D gaze
interaction. They conducted a user study that showed the
possibility of resolving the ambiguity caused by the occlu-
sion problem when target selection was made by gaze and
head gestures. Nukarinen et al. [35] proposed a technique,
HeadTurn, that allowed a user to look at a device and to
then control it by turning his or her head to the left or
right. They evaluated HeadTurn using an interface that linked
head-turning to increasing or decreasing a number shown on
the display. Špakov et al. [36] suggested using a combina-
tion of eye pointing and subtle head movements to achieve
accurate hands-free pointing in a conventional desktop com-
puting environment. Based on their findings, experimental
results showed that head-assisted eye pointing significantly
improved the pointing accuracy without a negative impact
on the pointing time. Although previous works have shown
promising directions using eye gaze and head movement in
conducting pointing and selection tasks, they did not per-
form more complicated tasks such as 3D manipulation with
3D virtual objects.

B. ASSISTIVE HRI APPLICATIONS USING HANDS-FREE
INTERACTIONS
Several previous studies were conducted to help dis-
abled people manipulate robots or physical objects.
Wheelchairs were controlled by using head gestures for
disabled people who were unable to use hands [18]–[20].
Ruzaij et al. [18] proposed an auto-calibrated head orien-
tation controller for wheelchairs and rehabilitation robotics
applications using micro-electromechanical system (MENS)
sensors and embedded technologies. The system movement
and speed control were dependent on the position of the user’s
head related to the X, Y, and Z axes. Laddi et al. [19] proposed
an unobtrusive head gesture-based directional control system
for maneuvering a patient mobility cart. The gesture detec-
tion was done by the face alignment technique developed
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using a regression-based supervised learning method.
Ohtsuka et al. [20] dealt with a simple non-contact detection
method of horizontal head gesture motion using a depth
sensor for the development of an intelligent wheelchair.

Other studies proposed head gesture-based assistive robot
control methods for disabled people. Fall et al. [21] described
the design of a highly intuitive wireless controller for people
living with upper-body disabilities with partial or complete
control of their neck and shoulders. Inertial measurement
units (IMUs) were connected to a microcontroller and helped
to measure the position of the user’s head and shoulders using
a complementary filter approach. Jackowski et al. [17] devel-
oped an assistive robot system through adaptive head motion
control for user-friendly support (AMICUS) to increase
autonomy for motion-impaired people. They conducted a
usability study to validate the AMICUS interaction technol-
ogy and design. However, head-only movement may cause
high fatigue because all interactions are made using head ges-
tures. Kyrarini et al. [22] proposed a head gesture-based inter-
face for hands-free robot control and presented a framework
for robot learning from demonstration. The head gesture-
based interface was suggested using a camera mounted on
a hat the user wore, and the head gesture recognition was
performed using the optical flow for feature extraction and the
support vector machine for gesture classification. The recog-
nized head gestures were further mapped onto robot control
commands to perform object manipulation tasks. However,
the proposed approach could not support the fine-tuning of
the robot manipulation for accurate interactions.

C. HRI APPLICATIONS USING AR/MR AND DEEP
LEARNING
Because AR/MR can embed 3D virtual information onto
the real environment, they are widely used in various
fields such as HRI, manufacturing, and robot manipula-
tion [2], [5], [6], [9], [38]. Huy et al. [37] proposed a new
interface framework for HRI using a laser-writer instead of
a projector - suitable for indoor and outdoor applications.
In addition, the combination of see-through head-mounted
display AR and spatial AR was suggested to enhance the
security level of exchanging information. Kousi et al. [5]
presented an AR-based software suite for supporting oper-
ators in production systems that employ mobile robots.
Chadalavada et al. [38] proposed eye-tracking glasses as
safety equipment in industrial environments shared by
humans and robots. They investigated the possibility of
human-to-robot implicit intention transference solely from
eye gaze data and evaluated how the observed eye gaze
patterns of the participants were related to their navigation
decisions. Chacko and Kapila [6] proposed a mobile AR
interface for HRI in a shared working environment by fusing
marker-based and markerless AR technologies. The mobile
AR interface enabled a smartphone to detect planar surfaces
and localize a manipulator robot in the working environment.
The AR interface and robot manipulator were integrated
to help users to perform pick-and-place tasks effortlessly.

However, it suffers from problems such as attaching
markers on the objects directly as well as mismatching
errors caused by the marker occlusion. On a similar note,
Mohammed et al. [39] addressed real-time 3D object tracking
of shared working environments with AR integration. They
focused on sending warnings to users based on predicted
human-robot collision severity. Krupke et al. [9] proposed the
concept and implementation of an MR-based human-robot
collaboration system in which a human can intuitively and
naturally control a co-located industrial robot arm for pick-
and-place tasks. They compared two different multimodal
HRI techniques to select the pick location on a target object
using head orientation or pointing, both in combination with
speech. The results showed that head-based interaction tech-
niques are more precise while requiring less time. However,
they might cause high fatigue because the robot was manip-
ulated using only head gestures. Guhl et al. [7] presented a
system that allowed the user to interact with an industrial
robot and other cyber-physical systems via AR and VR.
Although their approach could visualize paths of the robot’s
end-effector through 3D virtual lines, it could not support
robot manipulation tasks such as picking and placing.

Recently, deep learning was applied to support task assis-
tance in HRI and assembly. Park et al. [10] proposed a
smart and user-centric task assistance method that combined
deep learning-based object detection and instance segmenta-
tion with wearable AR technology to provide more effective
visual guidancewith less cognitive load. They also proposed a
deep learning-based mobile AR for intelligent task assistance
by conducting 3D spatial mapping between the physical and
virtual robots without pre-registration usingARmarkers [11].
Although their method enabled the manipulation of the robot
directly and effectively, it could not support hands-free inter-
actions in situations where the user’s hands could not be used.

Although previous studies on hands-free interactions sup-
port various kinds of targeting and selection tasks using eye
gazing and head gestures in MR/AR environments, most of
them do not support complicated tasks such as 3D manipu-
lation. HRI using eye gazing and head gestures takes a lot
of time and effort since the user has to manipulate multiple
objects. In addition, frequent head movements can cause
physical stress during the interactions, and direct manipula-
tions of the robot’s joints or end effector makes it difficult for
the user to conduct pick-and-place tasks using eye gazing and
head gestures. For these reasons, there is still much room for
improvement of previous studies concerning hands-free HRI
and robot manipulation.

III. HANDS-FREE INTERACTIONS FOR HRI BY
COMBINING EYE GAZING AND HEAD GESTURES
This study proposes a new approach to the coarse-to-fine
hands-free interactions using multimodal gestures such as
eye gazing and head gestures and deep learning-based initial
object positioning in constrained HRI environments. There
are two different types of HRI interactions: 1) search and
navigation and 2) 3D manipulation. It should be noted that
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FIGURE 1. The framework of the proposed hands-free HRI.

most previous research works have not dealt with 3D object
manipulation because their methods are mainly applied to
2D plane-based selection tasks, not 3D operations.

A. OVERVIEW OF THE PROPOSED APPROACH
The framework of the proposed hands-free HRI is shown
in Figure 1. It consists of coarse-to-fine main interactions
and auxiliary interactions. The coarse-to-fine main inter-
actions consist of 1) eye gazing-based coarse interactions
and 2) head gesture-based fine interactions. It is impor-
tant to note that eye movement is faster and requires less
energy, while head movement is less jittery and more con-
trolled [23], [24], [30], [34], [35]. Therefore, the eye gazing-
based coarse interaction is used for the search and preview
of intended target objects or UIs by tracking the user’s pupils
and calculating the eye pointer’s location in the MR display
which the user is looking at. The head gesture-based fine
manipulation is used for the final selection and 3D manip-
ulation of objects. The fine interaction can also be effectively
used for exact matching between the virtual and physical
objects using pitch, yaw, and roll-based head gestures. Details
on the search & preview and selection & 3D manipula-
tion using eye gazing and head gestures will be described
in Section III.B and III.C, respectively.

The proposed approach also supports auxiliary interac-
tions, such as voice commands and object detection-based
initial positioning. Voice commands are used to capture an
MR image for object detection or reset the pose of the
robot. In addition, they are used for changing manipulation
modes. We utilized the voice commands API supported by
HoloLens 2. Deep learning-based object detection is used to
support initial object positioning to estimate the locations of

physical objects in the MR space. We utilize RetinaNet [40]
for multiple object detection. Details on initial object posi-
tioning will be described in Section IV.A. By applying deep
learning-based initial object positioning, this approach can
assist more effective HRI in hands-free situations.

Unlike the traditional methods that directly manipulate the
robot’s joints or end effector, this study proposes the virtual
object-based indirect manipulation method, which matches
the virtual object’s pose with the real target object. Indirect
manipulation proves that the user can conduct pick-and-place
tasks more effectively. Details on the virtual object-based
indirect manipulation will be described in Section IV.C.

The hardware and software used to implement the pro-
posed approach are as follows. We use the Microsoft (MS)
HoloLens 2 [14] as MR smart glasses and Unity 3D [41]
to develop the MR system. MS HoloLens 2 has built-in
gyroscope and acceleration sensors and an eye tracker that
tracks the user’s eye gaze in real-time. The Universal Robot
UR3 [42], a well-known as a collaborative robot, is used for
developing the proposed HRI. For testing the proposed HRI,
we evaluate how easily and effectively the user wearing the
HoloLens 2 can control the UR3 robot through the proposed
hands-free HRI.

B. EYE GAZING AND HEAD GESTURES FOR SEARCH
AND SELECTION
Through the proposed hands-free method, a user can perform
a search and navigation task using eye gazing, and then he
or she can perform a selection task using head gestures. Two
pointers on MR smart glasses are defined for conducting a
combined search and selection task: the eye pointer and the
head pointer. The eye pointer is defined at the location on the
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display of MR smart glasses where the pupils are looking,
and the head pointer is defined at the center location of the
MR display, which is the frontal direction of the user’s face.
Therefore, the eye pointer changes its location on the MR
display when the eyes are moving while the head pointer
is fixed at the center of the display, as shown in Figure 2.
The built-in eye tracker of the HoloLens 2 is used for eye
gazing and the eye pointer is shown as a green circle on
its display. The head pointer is displayed as a green circle.
The head gesture is calculated using the gyro-sensors of the
HoloLens 2.

FIGURE 2. A detailed description of the proposed search and selection
interaction using eye-head coordinate gesture: (a) positions of pupil,
head pointer, and eye pointer, and (b) procedure of the search and
selection using eye-head coordinate gesture (Object: intended target
object, Preview: preview of the detailed information on the target object,
Selection: final selection of the object).

The algorithm for the proposed search and selection
method is shown in Figure 3. Figure 2 shows the search
and selection task’s process using the proposed hands-free
interaction by combining eye gazing and head gestures. First,
the search starts when the eye pointer touches an intended
target object or the UI. Then, the preview of the detailed
information of the gazed object is displayed around it. If two
objects are in the direction of the eye gaze, the nearest object
from the eye is selected. That is, when a ray is fired from
the direction of the eye gaze, the first hit object is selected.
Finally, the user can determine whether or not to finally select
the gazed object while reviewing the augmented information
(top in Figure 2(b)). The final selection of the gazed object
through head gestures is determined as follows. The reference
distance between the head pointer and the gazed object, Di,
is calculated. When the head pointer moves toward the gazed
object within the threshold distance Di ∗ d , an activation
graphical user interface (GUI) A is shown to confirm the
readiness to select the gazed object (middle in Figure 2(b)).
When the head pointer collides with the activation GUI, and

the dwelling time is longer than t seconds at a rate less
than v velocity, the object is selected [23] (bottom
in Figure 2(b)). In this study, we set d= 0.8, v= 20◦/sec, and
t= 1 sec.

C. EYE GAZING AND HEAD GESTURES FOR 3D
MANIPULATION
Coarse interactions correspond to discrete interactions with
objects such as search, selection, or preview through eye
gazing as explained in Section III.B. On the other hand,
fine interactions correspond to continuous manipulations of
objects. As shown in Figure 4, the process of 3Dmanipulation
is similar to that of the search and selection task. First, eye
gazing is used in navigating to find a manipulation mode.
While navigating the mode, the preview is also shown around
the virtual object. Then, the head gesture is performed to
select the manipulation mode. After the manipulation mode
is selected, the user can conduct the direct 3D manipula-
tion of the object using pitch, yaw, and roll-based head
gestures.

Because it is difficult to manipulate the virtual object in
the 3D space, the manipulation mode is defined along X, Y,
and Z axes for 3D translation (Figure 4 (a)) and 3D rotation
(Figure 4 (b)). In addition, the user can manipulate the object
in a different mode, such as coarse translation, fine transla-
tion, coarse rotation, and fine rotation. To simplify the coarse-
to-fine interaction, the user can define a plane for easily
manipulating the object. Thus, the object is manipulated
on the defined plane, which reduces the degrees of free-
dom (DOF) of the object and supports more intuitive inter-
action. For example, the XZ plane-based translation makes it
possible for the object tomove along the horizontal plane, and
the XY plane-based translation makes it possible for translat-
ing the object along the vertical plane, as shown in Figure 4.
In a similar manner, the rotation along the Y-axis in the
world coordinate is useful when the object is located on the
horizontal plane (WY, World coordinate-based Y-axis). One
of themain reasons for the plane- or axis-basedmanipulations
is that most of the robot manipulations such as pick-and-
place tasks are conducted on the planar surface, such as on a
horizontal desk or on a vertical wall. In addition to the world
coordinate-based manipulation, the manipulation based on
the camera coordinate (Camera coordinate-based Axes) is
supported using pitch, yaw, and roll gestures. This is defined
based on the head of the user wearing MR glasses instead
of the world coordinate, as shown in Figure 4. Furthermore,
auxiliary interactions such as voice commands can be used
for selecting manipulation modes and reset the interaction
environment. We utilized the voice commands API supported
by HoloLens 2.

An example of 3D manipulation using eye gazing and
head gestures for matching a virtual object onto a real
object is shown in Figure 5. Figure 5(a) shows the working
environment. First, a virtual object can be created in the
MR environment through a user interaction. The user is then
ready to match the virtual object with the physical object
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FIGURE 3. Algorithm of the search and selection using the proposed hands-free interaction for interacting with the target object in MR.

FIGURE 4. 3D manipulations using eye gazing and head gestures: (a) coarse-to-fine translation and (b) coarse-to-fine
rotation.

using eye gazing and head gestures. The matching process
takes coarse-to-fine manipulation steps. For coarse manip-
ulation, the user navigates or searches for a specific menu
using eye gazing and then AR smart glasses show a preview
or simulation of the intermediate pose of the virtual object.
In Figure 5 (b), ‘FT’ stands for fine translation, ‘CR’ for
coarse rotation, ‘FR’ for fine rotation, ‘Sel’ for selection,
and ‘Can’ for cancellation. For example, when the selec-
tion mode is chosen, the robot moves to pick or place the
physical object, which will be explained in the next section.

When the ‘Can’ mode is selected, the user cancels the
manipulation of the object. Finally, the user can match the
virtual object with the physical object through head gestures,
as shown in Figure 5(c) and Figure 5(d). However, we have
found that, when the virtual is created, its initial position in
theMR space can influence the whole process of the intended
manipulation using hands-free interactions. Therefore, it is
very important to support accurate initial object position-
ing, which can reduce eye gazing- and head gesture-based
interactions.

55454 VOLUME 9, 2021



K.-B. Park et al.: Hands-Free HRI Using Multimodal Gestures and Deep Learning in Wearable MR

FIGURE 5. Example of manipulating 3D virtual object using hands-free
interaction for matching the virtual object (green) onto the real object
(yellow): (a) real working environment with hands-free interaction,
(b) coarse manipulation for rotation about Y-axis and preview of the
rotated virtual object (red), (c) fine manipulation for translation about the
XZ-plane and preview of the translated object (red), and (d) matching
between the virtual and real objects.

IV. DEEP LEARNING-BASED INITIAL OBJECT
POSITIONING AND INDIRECT
ROBOT MANIPULATION
One of the important key features of the proposed hands-free
HRI is the application of both deep learning-based object
detection and spatial mapping for initial object positioning,
which helps the user conduct the pick-and-place task more
effectively and intuitively while reducing eye gazing- and
head gesture-based interactions. Usually, many interactions
are required to control the robot before making the robot
take actual pick-and-place actions. Another key feature is
to support the virtual object-based indirect robot manipula-
tion instead of its direct manipulation for the pick-and-place
task. We analyzed the joint-based manipulation and the end
effector-based manipulation that directly control the robot
in situations where the user cannot use his or her hands.
However, we found inherent problems in this such as a lot of
time and effort being needed to predict the configuration of
the robot’s end effector while manipulating the robot using
eye gazing and head gestures. Therefore, it is difficult to
accurately perform pick-and-place tasks through 3D manip-
ulations with many DOF. On the other hand, the virtual
object-based indirect manipulation supports the effective and
intuitive robot control. This is done by matching the physical
object’s pose with that of the virtual one using eye gazing
and head gestures rather than directly manipulating the end
effector or joints of the robot in conventional HRI. The
proposed approach calculates the inverse kinematics of the
robot with respect to the virtual object and communicates
the calculated kinematic information to the robot, which
supports more effective HRI than conventional direct manip-
ulations. Case studies are given to prove the advantage and
effectiveness of the proposed indirect manipulation for HRI
in Section V.

A. INITIAL OBJECT POSITIONING USING DEEP
LEARNING-BASED OBJECT DETECTION
AND SPATIAL MAPPING
The initial object positioning process consists of two steps:
1) deep learning-based object detection and 2) 3D spatial
mapping on the 3D reconstructed area. A deep learning-based
object detection method can automatically estimate the real
object’s initial position, which detects object classes and
2D bounding boxes from the MR image captured from
smart AR glasses. After that, 3D spatial mapping is con-
ducted to embed the results of object detection onto the
3D MR environment.

We used RetinaNet [40] for object detection, one of the
state-of-the-art research works, which solved the extreme
foreground-background class imbalance encountered during
the training of dense detectors. RetinaNet addressed the class
imbalance by reshaping the standard cross-entropy loss such
that it down-weights the loss assigned to well-classified
examples. The Focal Loss focuses training on a sparse set
of hard examples and prevents the vast number of easy neg-
atives from overwhelming the detector during training [40].
The architecture of RetinaNet is shown in Figure 6. Instead
of using the results on 2D images, we apply them to the
3D reconstructed MR space to find good initial object posi-
tioning before conducting coarse-to-fine manipulation.

Before applying the deep learning method to the working
environment, training was performed based on five objects
by fine-tuning RetinaNet. As shown in Figure 7(a), in the
case study, four components of a motor in a cordless vacuum
cleaner and a puzzle object used for the mental rotation test
were trained. Four components of the motor consist of body,
bottom case, coil, and fan. All five components are made by
a 3D printer.

The training data consist of a total of 100 images for
each object. The pre-trained weights learned from the COCO
dataset [43] was used for transfer learning. The learning rate
was 0.00025, the batch size was 4, and the epoch was 5,000.
An NVIDIA GeForce 2080 Ti 11GB was used for training
and inferencing. It takes about 0.066 second per image or
15.17 frame per second (FPS) for the object detection using
RetinaNet. Figure 7(b) shows the result of object detection in
a pick-and-place task using RetinaNet.

The object detection results are a set of bounding boxes
on the MR image that must be mapped onto the 3D MR
environment because of a mismatch between the 2D image
space and MR-based 3D spaces. A ray-casting method is
applied to spatially map the 2D image space onto the MR
space, which takes the following steps [10]. The process of
the proposed initial object positioning is shown in Figure 8.

1) Capturing an RGB image in HoloLens 2
2) Creating a 2D image plane in front of the user in the

MR environment
3) Performing object detection and detecting 2D bounding

boxes using RetinaNet
4) Calculating a direction vector between HoloLens 2 and

the center of 2D bounding boxes in the 2D image plane
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FIGURE 6. Architecture of RetinaNet [40] for object detection.

FIGURE 7. Object detection using RetinaNet to the working environment:
(a) four components of a motor in a cordless vacuum cleaner and one
puzzle object and (b) results of the object detection.

5) Casting a ray toward the calculated direction vector
6) Mapping the detected boxes on the reconstructed

3D MR space in HoloLens 2

B. INVERSE KINEMATICS OF UR3 FOR THE DIGITAL TWIN
It should be noted that the proposed hands-free HRI in the
MR environment uses a digital twin, the synchronized virtual
robot of the real (physical) robot. Therefore, it is possible to
manipulate the real robot UR3 by interacting with the virtual
robot through gestures. Conversely, it is possible to manip-
ulate the virtual robot by controlling real robot. The main
reason for using a digital twin is to provide a preview and
simulation of the real robot to manipulate it more effectively
and accurately in the MR environment. Figure 9 shows the
real robot and its synchronized digital twin.

It is necessary to solve forward and inverse kinematics of
the robot [44], [45] and to synchronize the solved kinematics
with those of the digital twin whenever an interaction occurs,
and vice versa. The robot agent plays the role to support the
bi-directional communication between them. Figure 10 and
Table 1 show the Denavit-Hartenberg parameters of the
UR3 robot [42]. Based on these parameters, the real robot’s
digital twin can be virtually modeled [46]. The configuration
of the digital twin is synchronized with the real robot and
updated whenever an event occurs. Furthermore, when the

TABLE 1. D-H parameter values of the UR3 robot [42].

digital twin is manipulated in the MR environment, its con-
figuration is also sent to the real robot through the robot agent
for synchronization. Details on calculating inverse kinematics
are described in references 44 and 45.

C. OBJECT-BASED INDIRECT ROBOT MANIPULATION
FOR HANDS-FREE HRI
One of the key contributions is that, instead of directly manip-
ulating either the joints or the end effector of the robot,
the proposed approach supports the same task more effec-
tively and efficiently by enabling indirect manipulation of the
real robot through virtual object matching-based HRI. The
proposed object-based indirect robot manipulation is shown
in Figure 11. After initial object positioning, the user can
conduct the matching of the virtual object to the real object
using eye gazing and head gestures. When the matching is
completed, the proposed method calculates the inverse kine-
matics of the digital twin by synchronizing the coordinate
of the end effector with the virtual object’s pose. In addi-
tion, it verifies the kinematics by simulating the digital twin.
Finally, the proposed method commands the real robot to be
synchronized with the digital twin, as shown in Figure 11(c).

The proposed hands-free HRI has been implemented based
on three layers: 1) interaction and visualization, 2) deep
learning, and 3) digital twin, as shown in Figure 12. The
interaction and visualization layer supports coarse-to-fine
interactions using multimodal gestures. In addition, interac-
tion results are superimposed on the display of the smart MR
glasses that provide step-by-step instructions and previews
for object manipulation. The deep learning layer supports
2D object detection that is effectively used for initial
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FIGURE 8. Process of the proposed initial object positioning.

FIGURE 9. Example of registering the virtual robot onto the real robot by
tracking the AR marker.

FIGURE 10. Kinematic configuration of the UR3 robot for calculating
Denavit-Hartenberg parameters (D-H) [42].

object position before conducting eye gazing- and head
gesture-based manipulations. The digital twin layer supports
interactions between the virtual and real robots. The robot
agent supports bi-directional communication between the two
robots and synchronizes the kinematic parameters between
them.

The process of the proposed hands-free HRI takes the
following steps: (1) initial object positioning using deep
learning-based object detection, (2) coarse-to-fine manipu-
lation using eye gazing and head gestures for matching the
virtual object onto the physical object needing to be manipu-
lated, (3) previewing the robot movement and configuration
through the digital twin before conducting an actual task, and
(4) commanding the real robot based on the pose of the virtual

object matched with the real object through calculating the
inverse kinematics of the real robot. Therefore, the proposed
approach makes it possible to support various tasks more
effectively than previous approaches using eye gazing and
head gestures.

An example of a pick-and-place task using the proposed
method is shown in Figure 13. The working environment
is shown in Figure 13(a). First, initial object positioning is
conducted using deep learning-based object detection and
3D spatial mapping. Figure 13(b) shows an example of auto-
matic virtual objects’ initial positioning corresponding to
physical objects. Without this process, it is very difficult and
error-prone to conduct initial object positioning with eye gaz-
ing and head gestures. The user is then ready to conduct fine
translation and rotation using head gestures after complet-
ing the menu selection using a coarse interaction, as shown
in Figure 13(c). During this process, the user conducts the
indirect manipulation of the virtual object to match the phys-
ical object. Then, the robot is ready to move to pick the
physical object. Before controlling the real robot by sending
a command, the user can preview the digital twin simulation
to check whether the robot can perform the exact task the
user expects. In addition, when the selection button is selected
through eye gazing, the real robot moves to pick the object in
the same way that the digital twin simulates (Figure 13 (e)).
Moreover, as shown in Figure 13(d) and Figure 13(f), when
the robot is controlled by eye gazing and head gestures,
the simulation preview of the digital twin can be augmented
in theMR environment before the user takes actions to control
the robot. Therefore, it is possible to finally check whether
the robot’s control is identical to the user intent. In addition,
even if the object has an arbitrary orientation, as shown
in Figure 14, the virtual object can be matched through fine
rotation based on the camera’s coordinate system. The verifi-
cation can also be performed with the previewed virtual robot
to conduct a pick-and-place task accurately.

V. CASE STUDIES
We conducted two case studies to verify the proposed
approach’s effectiveness and advantage: 1) performance
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FIGURE 11. Process of virtual object-based indirect robot manipulation: (a) matching between virtual and real objects in the
pick-and-place task, (b) calculating the inverse kinematics of the digital twin and simulation, (c) commanding the real robot to
conduct the same task of the digital twin.

FIGURE 12. System architecture for implementing HRI in MR.

evaluation for the initial object positioning using deep
learning-based object detection and 2) comparative analysis
of the proposed indirect manipulation with traditional direct
robot manipulation methods.

A. CASE STUDY FOR PERFORMANCE EVALUATION OF
INITIAL OBJECT POSITIONING USING DEEP
LEARNING-BASED OBJECT DETECTION
It takes much effort and time to estimate the target object’s
initial position and orientation based on the robot using
eye-tracking and head gestures. Therefore, we proposed
the initial object positioning through deep learning-based
object detection and spatial mapping in the MR environment.
We conducted a performance evaluation with respect to the

accuracy of 2D object detection and the accuracy of 3D initial
object positioning.

To evaluate the performance of object detection used for
the pick-and-place task, we collected 150 images for the
training dataset and fine-tuned RetinaNet to train the dataset.
We also collected 50 images for the validation dataset. While
training our dataset, we found that the losses of 150 train-
ing datasets and 50 validation datasets gradually diminished
simultaneously for 5,000 iterations, which indicated that the
training was performed successfully, as shown in Figure 15.
As a metric for measuring the accuracy of 2D object detec-
tion, the average precision (AP) was used [47]. AP computes
the average precision value for recall value over 0 to 1. The
mean average precision (mAP) compares the ground-truth
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FIGURE 13. Example of the pick-and-place task using the proposed
object-based indirect HRI: (a) real working environment, (b) performing
initial object positioning using the deep learning-based object detection
and 3D spatial mapping (green objects are virtual objects), (c) performing
fine manipulation of a target object using eye gazing and head gestures,
(d) previewing the simulation of the digital twin before controlling the
real robot, (e) commanding the real robot toward the synchronized virtual
robot and commanding the robot to pick the object, and (f) previewing
the ‘place’ operation with the digital twin at the desired location.

FIGURE 14. Example of picking an object rotated in an arbitrary
orientation using the proposed approach.

bounding box to the detected box and returns a score. The
higher the score, the more accurate the model is in its
detections. Table 2 shows the performance evaluation of the
2D object detection, verifying the accurate object detection
(mAP > 0.9). The formulae for precision, recall, and inter-
section over union (IoU) are described as follows.

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

IoU =
area

(
Bboxgt ∩ Bboxp

)
area

(
Bboxgt ∪ Bboxp

) (3)

RetinaNet was applied to the real working environment,
as shown in Figure 16. Ground truth positions (blue) of
the objects can be calculated based on the AR marker
(Figure 16(b)). Then, the object’s initial positions are esti-
mated through deep learning-based object detection and ray-
casting-based positioning in the MR environment.

We also conducted a performance evaluation of the pro-
posed method by calculating the Euclidean distance between
the ground truths (blue) and predictions (green) after applying
the deep learning-based initial object positioning method,
as shown in Figure 17. We tested 30 times for measuring
distances of five objects within 1.5 meters (m). We have

FIGURE 15. Model loss on the training of object detection for the dataset
using RetinaNet.

TABLE 2. Evaluation of 2D object detection.

found that the distance error is less than 0.05 m on aver-
age, which shows excellent initial positioning for fine object
manipulation using hands-free HRI in the next step. Based on
the findings, the proposed approach has a much lower error
than previous research using spatial mapping of real objects
obtained with IoT sensors (the distance error was 0.2 m at a
distance of 2 m in the previous study [15].).

B. CASE STUDY FOR COMPARATIVE ANALYSIS WITH
TRADITIONAL DIRECT MANIPULATIONS
We also conducted a qualitative evaluation of the proposed
indirect manipulation compared with traditional direct robot
manipulations including the joint-based direct robot manip-
ulation (Figure 18) and the end effector-based direct robot
manipulation (Figure 19). The joint-based direct robotmanip-
ulation enables the control of six joints of the robot directly,
which requires calculating forward kinematics. The end
effector-based direct robot manipulation enables the manipu-
lation of the end effector of the robot directly, which requires
the calculation of inverse kinematics. Figure 18 shows an
example of the joint-based direct robot manipulation by con-
trolling six joints. The main advantage of this method is that
it does not require the calculation of the inverse kinematics
of the robot. However, it takes a lot of time and effort in
controlling all the joints. Furthermore, when considering the
end effector movement, it is not intuitive to the user.

The end effector-based direct manipulation can support
more intuitive and user-centric interactions by control-
ling the end effector directly, which calculates the inverse
kinematics of the robot based on the end effector’s pose.
Figure 19 shows how to interact with the robot using
hands-free HRI in the pick-and-place task. In this sce-
nario, the user can control the robot through translation and

VOLUME 9, 2021 55459



K.-B. Park et al.: Hands-Free HRI Using Multimodal Gestures and Deep Learning in Wearable MR

FIGURE 16. Evaluation of initial spatial mapping in MR: (a) real environment before spatial mapping, (b) ground truths (blue), and
(c) calculating Euclidean distance between ground truths and predictions (green) after initial object positioning.

FIGURE 17. Box-and-Whisker plot for evaluating initial object positioning.

rotation operations using head gesture-based fine manipula-
tions. However, because the inverse kinematics can gener-
ate many possible outcomes, the robot’s final configuration
might be unpredictable, as shown in Figure 19(b)
and Figure 19(c).

The direct manipulation results might be different from the
user’s intent, which can cause problems such as self-collision
that stops the robot. For example, direct manipulation can
generate an infeasible kinematic configuration when the user
tries to manipulate the end effector to have a certain configu-
ration, as shown in Figure 20(a). On the other hand, as shown
in Figure 20(b), the proposed indirect manipulation makes
it possible to check the feasibility of the robot configuration
in advance by calculating inverse kinematics and simulating
the robot’s movement using the digital twin. The proposed
indirect manipulation through virtual-real object matching
makes it possible to determine the infeasible configuration
by simulating the robot’s digital twin before controlling the
real robot.

In addition, both traditional methods make it difficult for
the user to conduct the pick-and-place task while directly
interacting with the robot because of the lack of 3D percep-
tion, as shown in Figure 21(a) and Figure 21(b). Because
traditional methods are based on direct and real-time inter-
actions with the end effector or joints, it is very difficult to
figure out the robot’s 3D spatial configuration. Thus, it is not
easy to control the robot using eye gazing and head gestures.

On the other hand, virtual object-based indirect manipula-
tion can reduce the problem related to 3D spatial perception
because the user does not have to directly manipulate the end
effector of the robot located in the air. The object needing to
be manipulated in the pick-and-place task is usually located
on the floor or hung on the wall, reducing the DOF for
recognizing 3D perception during the indirect manipulation.
Furthermore, it is possible to figure out the feasibility of
handling the object in advance. Direct manipulations make it
difficult to find out whether the robot is able to pick the object
before actually controlling it, as shown in Figure 22(a). How-
ever, through the virtual object-based indirect manipulation,
it is possible to check the feasibility of the robot configuration
for the pick-and-place task through the preview of the digital
twin, as shown in Figure 22(b). In conclusion, the indirect
manipulation and the preview of the synchronized digital
twin can reduce inherent problems such as self-collision,
3D perception, and infeasible configuration, in comparison
to previous direct manipulation methods.

C. DISCUSSION
Concerning the two case studies, the proposed method
showed a very effective hands-free HRI method by combin-
ing deep learning and the digital twin. In particular, through
the comparative evaluation with the existing manipulation
methods, we have found that easy and fast manipulation can
be supported by overcoming the shortcomings of the previous
methods.

In addition to the two case studies, another test was con-
ducted to evaluate whether the proposed approach shows
better performance in task completion time. However, due
to the COVID-19 pandemic, a preliminary pilot study was
performed in a pick-and-place task instead of the experiment
with recruited participants. Although a further study is still
needed, the result shows a promising direction of the pro-
posed hands-free interaction for HRI.

The pick-and-place task consists of picking a coil com-
ponent of a motor in a cordless vacuum cleaner in a source
location and placing it to a target location by manipulating
the UR3 robot, as shown in Figure 23. For the joint-based
direct manipulation, the user can select each joint of the robot
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FIGURE 18. Example of the joint-based direct robot manipulation: (a) initial configuration, (b) performing joint-based
control (e.g., rotation along a red axis), and (c) performing multiple axis-based rotations for picking the object.

FIGURE 19. Example of the end effector-based direct robot manipulation: (a) initial configuration, (b) performing 3D
translation, and (c) performing 3D rotation.

FIGURE 20. Comparative analysis of self-collision: (a) traditional direct robot manipulation, and (b) proposed indirect robot
manipulation.

FIGURE 21. Comparative analysis of 3D perception: (a) traditional direct robot manipulation, and (b) proposed indirect
robot manipulation.

through voice command and manipulate the joint through
head gestures to pick and place the targeted object. For the
end effector-based direct manipulation, the user can directly
manipulate the end effector using head gestures. In this

manipulation, the user selects a translation or rotation mode
through a voice command. On the other hand, for the pro-
posed object-based indirect manipulation, the user can indi-
rectly conduct the manipulation by matching or positioning
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FIGURE 22. Comparative analysis of pose possibility: (a) the infeasible configuration is detected while directly controlling the
robot in traditional direct robot manipulation, and (b) it is easily detected while previewing in the proposed indirect robot
manipulation without controlling the robot.

FIGURE 23. A pick-and-place task.

the virtual object corresponding to the real object through
deep learning and coarse-to-fine gestures.

Table 3 shows the result of the preliminary pilot study.
In this study, three measurements were compared: the task
completion time, the number of voice commands, and the
influence of the end effector’s initial pose for the task comple-
tion. The proposed method took the least time to conduct the
given task, required the least number of voice commands, and
was not affected by the end effector’s initial pose. It is impor-
tant to note that previous studies were greatly influenced by
the end effector’s initial pose to conduct a pick operation,
as shown in Figure 24.

The joint-based direct manipulation takes much time to
complete the task because it is required to separately manipu-
late all the robot joints. While manipulating the robot through
head gestures, the end effector does not move along the
user intent. Thus, it is difficult to intuitively change the
pose and position of the end effector to pick the targeted
object. The end effector-based direct manipulation is more
intuitive than the joint-based manipulation since the user
can directly manipulate the robot’s end effector as a pivot.
However, it is difficult to estimate the robot’s configuration
calculated through inverse kinematics accurately. Usually,
while translation is intuitive, rotation is not intuitive. Since
rotation is conducted around the end effector, even if the
end effector rotates a little, the robot’s overall posture may
change significantly, which may cause the stopping of the
robot. Accordingly, when an infeasible configuration occurs,
the task may take time because the robot should restart or
conduct the manipulation several times. However, if the rota-
tion is performed properly, the user can manipulate the robot
intuitively.

The proposed object-based indirect manipulation enables
fast and intuitive matching because there is no need to manip-
ulate the robot directly to determine its pose or movement

FIGURE 24. Influence of the initial pose to conduct the task: (a) easy,
(b) difficult, (c) very difficult.

TABLE 3. Evaluation results of the preliminary pilot study.

range regardless of the end effector’s initial pose. In the
case of the existing methods, since it is difficult to rec-
ognize the depth perception, it is necessary to move the
robot several times, which requires many trial-and-errors.
In contrast, the proposedmethod can perform the task quickly
with a single indirect matching. However, we have found
that a mismatching might occur between the physical robot
and the virtual robot due to unstable MR marker tracking
when the marker was partially occluded. For more accurate
task execution, further research is required for the sophis-
ticated calibration between HoloLens, robots, and physical
objects. Nevertheless, the proposed approach showed the best
performance.

Meanwhile, since voice commands are affected by noises
and the pronunciation and intonation of the user, voice com-
mands do not work properly sometimes. Voice commands
are frequently used in the joint-based manipulation whenever
the joint to be manipulated is changed and used in the end
effector-based manipulation when the manipulation mode is
changed. In contrast, the proposedmethod rarely causes voice
recognition errors because voice commands are not used
when performing manipulation except for capturing an image
for initial object positioning. In this respect, the proposed
method is more suitable for use in noisy actual workplaces.
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It is also believed that the proposed method can be effec-
tively used as an assistive technology in various situations
where both hands cannot be used. For example, the proposed
approach can help the elderly or handicapped interact with
the robot to conduct assistive applications.

Although the case and preliminary pilot studies verified the
excellence and advantage of the proposed approach, we have
found that further research is still needed to conduct more
objective and subjective analyses. These analyses include
the evaluation of the task completion time and manipula-
tion accuracy in more complex tasks and the user study to
assess the physical and cognitive loads through question-
naires and surveys based on the National Aeronautics and
Space Administration-Task Load Index (NASA-TLX) [48].

VI. CONCLUSION
This study proposed a new hands-free HRI using multimodal
gestures such as eye gazing and head gestures and deep learn-
ing in MR environments. The proposed approach provides
coarse-to-fine interactions that can support more effective
and intuitive HRI. Coarse interaction uses eye gazing for
the search and preview of objects and UIs. The preview is
beneficial before making the final decision because related
information is augmented around the intended target object,
and the user can also check whether the result is correct
with respect to his or her intent. Fine interaction can sup-
port the final selection of the object or UI and accurate
3D manipulation of the object using head gestures. In addi-
tion, the initial object positioning using deep learning-based
object detection can reduce much effort on HRI using
eye gazing and head gestures. Furthermore, the virtual
object-based indirect manipulation can providemore intuitive
and effective control of the robot using eye gazing and head
gestures. Two case studies for the initial object positioning
and the virtual object-based indirect manipulation were eval-
uated to confirm the originality and advantage of the proposed
hands-free HRI. The first case study confirms that the deep
learning-based object detection and 3D spatial mapping can
provide more accurate and user-centric initial positioning of
the object for hands-free HRI. The second case study shows
that the virtual object-based indirect robot manipulation is an
excellent and effective method in terms of 3D manipulation,
3D perception, and pose estimation compared to existing
direct robot manipulations.

In future studies, we will apply the proposed approach
to a more diverse range of industrial tasks. Different deep
learning methods will be applied to HRI for assuring safety
and task assistance. In addition, it is necessary to apply a new
method for matching the real and virtual robots instead of
using MR marker tracking. A possible approach is to apply
deep learning based 3Dmatching or 3D pose estimation [11].
Furthermore, we will evaluate the task completion time and
manipulation accuracy in more complex tasks and conduct
the user study to assess the physical and cognitive loads
through questionnaires and surveys based on NASA-TLX.
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