
Received February 23, 2021, accepted April 2, 2021, date of publication April 6, 2021, date of current version April 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3071325

SLA-Aware Multi-Criteria Data Placement
in Cloud Storage Systems
MOHAMMAD MAGHSOUDLOO 1, AREZOO RAHDARI1, AND NAVID KHOSHAVI 2,3
1Department of Computer Engineering, Golestan University, Gorgan 39361-79142, Iran
2Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
3Department of Electrical and Computer Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA

Corresponding author: Mohammad Maghsoudloo (mo.maghsoudloo@gu.ac.ir)

ABSTRACT This paper proposes a multi-criteria data placement mechanism for typical cloud storage
systems. The primary goal of this study is to place the clients’ files in the storage cluster by taking into
account the principles of service level agreements and the levels of user support services. For this purpose,
a multi-criteria scoring model is defined based on a trade-off between three criteria that can be crucial from
the clients’ viewpoint: data access latency, data privacy, and computational performance. The second goal
of the proposed mechanism is to improve the fairness of the storage allocation mechanism for various kinds
of files compared to the conventional mechanisms. In this case, the cloud service provider gives each data
storage node a chance to become the host of an already received file using a probabilistic ranking model. The
experimental results demonstrate that the proposed data placement mechanism increases the robustness of
cloud storage architecture under different file, network, and storage configurations compared to the existing
data placement mechanisms.

INDEX TERMS Cloud storage systems, Hadoop distributed file system, data placement, service level
agreement, data storage nodes.

I. INTRODUCTION
The emerging adoption of cloud computing in different
aspects of information technology such as financial services,
social networks, e-health, media, and entertainment drives the
growing demand for cloud storage systems [1]–[3]. A cloud
storage system provides ameans of permanent storage of a set
of data in the form of files in which clients can access files via
a lightweight user agent [1]–[3]. The Cloud storage market
is projected to reach a total market size of $92.488 billion
by 2022, with a compound annual growth rate of 53% from
2011 to 2016 [3].

Even though cloud storage provides many intrinsic ben-
efits, some concerns, such as the lack of knowledge and
control on the physical locations of data, still prevent many
customers from migrating to the cloud [4]. Adherence to
the terms and principles promised by cloud providers is the
key point to attract and retain current and potential cus-
tomers [4]–[6]. Nowadays, several methods are provided for
customers to verify contractual obligations and detect mali-
cious or accidental misbehavior on the part of the service

The associate editor coordinating the review of this manuscript and

approving it for publication was Weizhi Meng .

provider [7]–[11]. Therefore, there is a clear need for service
level agreements (SLA) that allows cloud storage users to
specify requirements and concerns about their files [7].

The geographic region of storing data is one of the most
influential parameters affecting various customer service
objectives, including responsiveness, availability, and pri-
vacy [12]. For example, a cloud storage provider (CSP)
may require its customer-serving data centers located within
the continental of its customers to improve load time and
responsiveness [13]. Moreover, many privacy laws, such as
those in Canada, Australia, and the EU, require citizens’ data
remain stored within a political border or other countries with
comparable protections [14]. Therefore, the data placement
mechanism, deployed by a CSP, plays a vital role in enhanc-
ing or degrading the quality of cloud storage and computing
services [12]–[14].

The Hadoop cluster usage is widely spread as a CSP
in different business and academic spheres [15]. Hadoop
is a popular implementation of Google’s MapReduce con-
tributed by Cloudera, Facebook, Microsoft, Yahoo, Citrix,
IBM, and many more companies [16], [17]. The core of
Hadoop consists of a storage part, known as Hadoop Dis-
tributed File System (HDFS), and a processing part called

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 54369

https://orcid.org/0000-0002-1276-9701
https://orcid.org/0000-0002-4010-1354
https://orcid.org/0000-0003-4384-5786

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

MapReduce [16], [17]. The default file placement strategy
of HDFS assumes that each node has the same computa-
tion capacity and capability in a homogeneous environment.
This strategy has its potential benefits in a homogeneous
environment; however, it might not be suitable in a hetero-
geneous environment. The heterogeneity of state-of-the-art
cloud environments raises such problems as optimizing data
placement and distribution across the cluster’s computing and
storage resources [18].

The main goal of most previous data placement tech-
niques is to make the heterogeneity of data storage nodes
transparent to the clients. This goal was achieved by pick-
ing the best choices for storing the clients’ files based on
a predetermined criterion, user concerns, and specifications
of data storage nodes [19]–[23]. For instance, there are
some data placement strategies to locate files in the stor-
age cluster so that the response time of HDFS clients can
be improved [19], [20], [37]. Moreover, different innovative
ideas have been proposed to distribute file blocks among data
storages to enhance cloud computation time [21], [22], [36].
Furthermore, some data placement techniques have concen-
trated on moderating the risk of unauthorized access to a file
in the storages [23]. However, the increased heterogeneity of
large-scale cloud storage and diversity of clients causes that
the previous data placement mechanisms face two serious
problems:

1) The single-criterion approaches for selecting the avail-
able data storage nodes cannot simultaneously resolve
more than one type of clients’ concerns.

2) Selecting the best choices among data storage nodes
for each uploaded file can be unfairly favored the files
received earlier than the other ones.

This paper proposes an SLA-aware probabilistic multi-
criteria data placement to address the above limitations based
on two key innovations:

1) In the proposed data placement mechanism, the deci-
sion of placing a file in a cluster is taken concerning
the heartbeat of data storage nodes, the client concerns,
and a trade-off among three criteria that can affect the
quality of service in terms of different design parame-
ters.

2) Contrary to the traditional greedy strategy, the proposed
data placement mechanism gives each data storage
node a chance to become the host of an already received
file. The chance parameter is estimated based on the
gain of adding files to each data storage node with
respect to the levels of user support services.

Three metrics influencing data access latency, data pri-
vacy, and computing performance have been defined to
assess data placement mechanisms: File Access Latency, File
Breach Probability, and File Correlation Factor. The File
Access Latency is the time interval between issuing a client’s
file access request and accomplishing the request by the
CSP. This metric can be dynamically measured, consider-
ing distance-bounding protocols and estimations. The File

Breach Probability is the probability of the intentional or
unintentional release of private files to an untrusted environ-
ment. This metric can estimate the risk of compromising data
storage nodes for leaking some specific files within the cloud
storage system. The File Correlation Factor is the sum of
network delays between the host of a file and the host(s) of
its correlated one(s). If some files are always used together
by many jobs, they are supposed to be correlated. Collocating
the related data blocks of a file or some files on the same or
adjacent data storage nodes can reduce the network overhead
and is beneficial for MapReduce’s performance.

The main contribution of this work is to propose a Gain
estimationmodel for scoring data storage nodes that are avail-
able for hosting an uploaded file. In the estimation model,
thementioned three parameters of the quality of cloud storage
services have been quantized and aligned. Moreover, three
weighting factors have been defined to tune the importance
of each parameter in the estimation model based on the
SLA and concerns of clients. Furthermore, the drawbacks
of greedy strategies to pick the best available choices have
been removed in the structure of the proposed data placement
technique. This issue has been achieved by taking advantage
of a probabilistic selection mechanism that also reflects the
level of user support services.

The CloudSim [24] framework has been enhanced to
reflect the user’s demands in terms of different expected
services to implement design decisions. Furthermore, six
different scenarios have been conducted to study the perfor-
mance of each data placement mechanism. An individual data
storage node or file specification has been concentrated as the
target parameter in each scenario. The results reveal that the
proposed probabilistic data placement mechanism improves
the File Access Latency, File Breach Probability, and File
Correlation Factor of the Hadoop by about 16.6%, 15.5%,
and 15.2%. It obtains more stable results with lower deviation
under different files, networks, and storage conditions than
the other data placement mechanisms. This issue indicates
that the chance of proceeding towards the best global solution
is often higher for the proposed probabilistic mechanism
compared to the conventional greedy single-objective mech-
anisms.

The rest of the paper is organized as follows: Section 2
describes the base Hadoop distributed file system, the prob-
lem, and related work structures. The features of the pro-
posed data placement mechanism are introduced in Section 3.
Section 4 shows the result analysis. Finally, Section 5 con-
cludes the paper.

II. BACKGROUND
The Apache Hadoop software library is a framework that
allows for the distributed processing of large data sets
across clusters of computers using simple programmingmod-
els [15]. It is designed to scale up from single servers to
thousands of machines, each offering local computation and
storage [15]. The Hadoop Distributed File System (HDFS)
and the MapReduce framework are two essential Hadoop

54370 VOLUME 9, 2021

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

components [16]. The HDFS is a scalable, fault-tolerant, dis-
tributed storage system that works closely with various con-
current data access applications [25], [26]. An HDFS cluster
consists of a single NameNode that manages the file sys-
tem namespace; and some DataNodes that contain storages
attached to the clusters [26]. The DataNodes perform object
creation, deletion, and replication under the management of
NameNode [26], [27]. The NameNode executes file system
namespace operations like opening, closing, and renaming
files. It also partitions the files that are written in HDFS
into many same-sized blocks. It then allocates these blocks
to different DataNodes [26]. The default file/data placement
strategy of Hadoop assumes that each node has the same
capabilities such as processing power, proximity to clients,
security robustness, availability, and cost in a homogeneous
environment [19]. Hadoop balances the load by distributing
the blocks to each node randomly [19]. Such a data placement
strategy can achieve load balance, which is highly efficient
in a homogeneous cluster [18]. Nevertheless, in real-world
applications, clusters are often worked in a heterogeneous
environment [18]. Thus, there is a considerable difference
in the consequences of storing data on different DataNodes.
In this case, using the Hadoop strategy leads to a reduction
of overall performance and clients’ satisfaction [19]. There-
fore, the need for purposive data placement mechanisms has
been felt to enhance the performance of Hadoop in terms of
different impressive factors [19]–[22].

Different ideas have been made to distribute file blocks
among DataNodes to reduce job execution time or data trans-
fer time [21], [22], [36]. Under this category, data placement
mechanisms try to place files based on the locality princi-
ple (less proximity to the corresponding processing node),
data characteristics, and interdependency [29]. Identifying
the related files and placing them in the same DataNode or
adjacent DataNodes can reduce network overhead and the
query span during job completion [29], [36]. Some existing
data placement strategies focus on enhancing the HDFS met-
rics respecting the SLA and the client’s concerns [19]–[23].
Under this category, there are some data placement strategies
to locate files in the DataNode cluster so that the response
time of HDFS clients has been improved [19], [20], [37]. For
example, there is a technique in the literature that tries to
revise the basic pipelined HDFS write scheme to a parallel
scheme via placing replicas regarding the proximity to the
corresponding client [37]. Furthermore, some data placement
techniques concentrate on preserving data privacy [23]. Using
these techniques, the risk of unauthorized access to a file in
a DataNode is estimated through data leakage models. Based
on thementionedmodel and user’s concerns, data distribution
among DataNodes can be managed through an estimation
method designed to evaluate the security situation of data
distribution in the cloud storage systems [23].

Generally, the main goal of most previous data place-
ment techniques is to make the heterogeneity of DataNodes
transparent to the clients. This goal is achievable via pick-
ing the best choices for storing the clients’ files based on

an objective (i.e., performance and data privacy), user con-
cerns (i.e., policies and standards of SLA), and specifications
of DataNodes (i.e., processing power and proximity). For
instance, to locate the computing-intensive files in a cluster,
nodes with high processing power can be the best choice. In
contrast, the network-closest node can be the best host for
storing the heavily accessed files.

Despite all efforts, the high diversity of client’s needs
and increasing heterogeneity of DataNodes faces conven-
tional data placement techniques to two serious problems:
1) The single-objective mechanisms for scoring and rank-
ing the available data storage nodes cannot simultaneously
resolve more than one type of clients’ concerns. For example,
a performance-oriented data placement mechanism cannot
meet the client’s demands with privacy concerns. 2) Selecting
the best storage in the case of receiving a client’s place-
ment request is supposed to be an appropriate storage allo-
cation solution. However, this greedy assignment of the best
resources can be unfairly proper in favor of the files uploaded
earlier than the other ones.

III. THE PROPOSED SLA-AWARE MULTI-CRITERIA FILE
PLACEMENT IN HDFS
To meet the expectations of HDFS’s users, cloud service
providers must make numerous resource management deci-
sions that satisfy different objectives to meet the SLAs [6].
DataNode allocation (or File Placement) is the process of
reserving a portion of DataNode memory for storing a spec-
ified file. In this paper, this decision is concerned with
mathematical optimization problems involvingmore than one
criterion to be considered simultaneously. The decision needs
to be taken in the presence of trade-offs between three met-
rics: data access latency, data privacy, and computing perfor-
mance. Reliability has not been considered in the trade-off
list because this parameter is so important that it cannot be
traded-off against the other criteria. Reliability has always
been a significant concern in cloud storage systems [25]. Pro-
viding reliable services is essential for maintaining customer
confidence and satisfaction and preventing revenue losses.
Storage reliability is intrinsic to cloud storage architecture.
In this case, the client is not usually willing to take any risk.
This parameter has been taken into account in the design of
cloud storage regardless of the files’ contents, and most of the
current cloud storage providers have some specific policies to
satisfy this concern [25].

Fig. 1 shows three identities that play vital roles in the
mentioned decision-making. The client machine sends their
files’ specifications along with their corresponding SLA
fields to the NameNode. Three weighting factors (α, β,
and γ) have been intended to indicate the importance of
data access latency, data privacy, and computing performance
from the client’s viewpoint. On the client-side of the proposed
structure, the cloud storage users adjust the values of three
weighting factors as the SLA fields considering the type and
specification of their files without having further information
about the parameter settings of storage nodes. For example,

VOLUME 9, 2021 54371

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 1. Different roles of identities and flows of data and meta-data in the context of the proposed
data placement mechanism.

in the case of uploading a file that will be frequently accessed
by a client machine, the file access latency could be the main
concern of its owner. Thus, the client notices the NameNode
about this issue by setting a greater value for α during the
file uploading process. For another example, suppose a file
contains confidential personal information of a user. In that
case, the client is primarily concerned with maintaining the
file’s confidentiality and sets a greater value for β. Moreover,
if a file contains a number of tasks’ operands exploited during
the execution of some performance-intensive jobs, then the
value of γ should be supposed greater than the others for
that file. Consequently, a client can tune the values of three
weighting factors with respect to the file content and applica-
tion. NameNode that can be federated [30], centralized [15],
or elastic [31] is responsible for making the file placement
decision. Chunk servers store the filemetadata in their names-
pace directories and analyze the received data to locate and
relocate the files in the HDFS cluster. It periodically receives
a heartbeat (consisting of memory usage, stored file infor-
mation, network status, etc.) and a block report from each of
the DataNodes. Based on the given information, NameNode
makes the decision, and place/replace the files in the cluster
via mapper and balancer procedures.

In the structure of the proposed technique, the selection of
DataNodes from the available list during mapping and the
selection of DataNodes from the source list during balancing
are carried out concerning the heartbeat of DataNodes and the

client concerns. During mapping, the number of DataNodes
are selected from the list of available DataNodes that is func-
tioning correctly.Moreover, when the Hadoop cluster runs for
a while, the data load balancing will be broken since nodes
are added and deleted dynamically, and data load balancing
is required by the newly added nodes [32]. The basic load
balancing scheme of HDFS automatically moves data from
one DataNode to another if the free space on a DataNode falls
below a certain threshold. According to the average rate of all
the DataNodes’ storage space, the nodes are divided into four
categories: over-average, above-average, below-average, and
under-average utilized DataNodes [32]. Next, data is moved
from the over-average and above-average utilized DataNodes
to the below-average and under-average utilized DataNodes
to balance the free space of all DataNodes [32].

Fig. 2 illustrates the design factors estimations via an
example containing two clients, four DataNodes, and a sam-
ple file placement scenario. Each client owns three files of the
same size that are already stored on the DataNodes. The net-
work distances between DataNodes, and between clients and
DataNodes have been mentioned in terms of a sample time
unit (millisecond or ms). Client 1 decides to store another
file (File 4) on the HDFS. The design factors estimations
and decision-making process for locating the new file in the
DataNode cluster are explained in the following. Moreover,
Table 1 introduces the parameters that have been exploited to
estimate the mentioned design factors.

54372 VOLUME 9, 2021

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 2. A sample topology including two clients and four DataNodes with different specifications and the raw values of Dij , Bij , and Fij .

TABLE 1. Descriptions of notations used in the equations.

File Access Latency (Dij) is the time interval between issu-
ing a file access (file i) request by a client and accomplishing
the request by a DataNode (DataNode j) through returning
the file or committing updates. This factor can be computed
by:

Dij = NL (Owner of file i. DataNode j) . (1)

In this estimation, NL (Network Latency(is the term used
to indicate any kind of delay that happens in data communi-
cation over the simulated network. This term can be dynami-
cally measured with the help of distance-bounding protocols

and the approximate geolocation of different ranges of IP
addresses [14]. The impact of the internal components of the
cloud storage system on file access delay has been ignored.
In the Hadoop architecture, HDFS can play an essential role
in enhancing or degrading the File Access Latency. Storing
files (especially heavily accessed ones) in the network-closest
locations to the owners can be an effective solution for reduc-
ing File Access Latency. Regarding Fig. 2, all four DataNodes
are supposed to have enoughmemory space for storing File 4.
Concerning all options, storing File 4 onDataNode 4 leads to
the minimum value of File Access Latency (D44 = 70 ms).

VOLUME 9, 2021 54373

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

File Breach Probability (Bij) is defined as the probability
of the intentional or unintentional release of private files to an
untrusted environment. Bij is the probability of unauthorized
transmission of file i from DataNode j to an external desti-
nation or recipient. Unauthorized transmission can occur for
various purposes, such as analyzing users’ data for advertis-
ing and financial gains, stealing private information, or even
hide malicious data. In the HDFS system, the NameNode
is supposed to be fully trusted because it is the core node
in the network, usually well-protected. However, given that
a cluster typically includes a large number of self-managed
DataNodes, leading to a higher chance that some of them
may be compromised intentionally or accidentally. A practi-
cal solution is to prevent the files from being compromised
via breach-aware file placement in the DataNode cluster.
Therefore, one of the main concentration of this work is to
estimate the probability of compromising a DataNode for
leaking some specific files within the HDFS system. The
compromised DataNodes could transfer or copy users’ data
to any other nodes that may reside outside the legal regions
specified by the users. Consequently, two scenarios about the
causes of a data breach can be concluded:

1) A DataNode intentionally exposes data to be leaked: if
the geolocation of the DataNode j, as the host of file
i, is not trustable for HDFS client (owner of file i),
ensuring the integrity of out-sourced data becomes a
complicated issue. In this case, the mentioned DataN-
ode cannot be a trustable choice for storing the client’s
sensitive files (based on the SLA provisions). Conse-
quently, the breach probability of the file i, stored on
DataNode j, is supposed 100%.

2) A DataNode accidentally exposes data to be leaked:
even if the geolocations of the client and the DataNode
have been not listed as the locations with conflict of
interests, the stored data could also be leaked due to
accidental reasons or weak file protections. The DataN-
ode that is mostly accessed by the clients located in
untrusted countries has a higher probability of data
breach compared to the DataNode accessed by the
clients resided in the trusted countries [23]. In other
words, the probability of compromising a DataNode
that is mostly occupied by untrusted users is higher than
aDataNode containing files of trusted users. In addition
to the geolocation of a DataNode, some characteristics
of users who have shared the DataNode space can also
be an important factor in the strength of a DataNode
against attacks.

Regarding the above scenarios, Bij can be estimated by:

Bij = 1− Pij. (2)

where Pij is the probability of preserving the confidentiality
of file i while being stored on DataNode j, and can be calcu-
lated by:

Pij = Cij ·

(∑Sj
k=1 Cik
Sj

)
. (3)

Regarding the two mentioned scenarios in which, if the
country of the owner of the file i conflicts with the country
of DataNode j, NameNode cannot ensure the confidentiality
of the file. In this case, Cij is equal to 0, Pij will become 0,
and Bij will in turn become 1. Otherwise, the probability of
preserving the confidentiality of file i depends on the propor-
tion of DataNode’s space, allocated to the trusted users, to the
overall memory space of the DataNode. Suppose thatClient 1
and Client 2 in Fig. 2 reside in two countries with a conflict
of interest. In the case of storing File 4 on DataNode 1,
the breach probability (B41) will become 50% because the
storage space of DataNode 1 has been just equally shared
between Client 1 and Client 2. The values of B42 and B43
will be about 33%, while two-thirds of theDataNodes 2 and 3
have been filled with the files of trusted users. Finally, assume
that the geolocation ofDataNode 4 conflicts with the country
of Client 1. In this case, the breach probability of File 4 on
DataNode 4 (B44) will be the maximum value (100%).

Files Correlation Factor for file i (Fij) is the sum of network
delays between the host of file i (DataNode j) and the host(s)
of its correlated file(s). The correlated files are necessary for
accomplishing a specified job in a DataNode cluster. One job
may require many data for execution, andmany jobs may also
access one file. If somefiles are always used together bymany
jobs, they are correlated to each other [29]. In the default data
placement policy of Hadoop, some data characteristics like
interdependency have not been considered. If correlated files
have been stored on different far DataNodes, the performance
of their corresponded application could be degraded [29].
Colocating the related data blocks of a file or some files
on the same set of DataNode(s) or adjacent DataNodes can
reduce the network overhead and is beneficial forMapReduce
performance in terms of computation time. Based on the
above definitions and discussion, Fij can be obtained from:

Fij =
n∑

k=1

Rik · NL (x1.x2)· (4)

where x1 and x2 refer to the geolocations of DataNode j,
and the DataNode that contains file k. Each element of the
above arithmetic series can take two possible values. If two
files (files i and k) are not correlated, the element’s value
will be equal to 0. Otherwise, the element will be equal to
the network latency between the hosts of files i and k . With
regards to Fig. 2, suppose that all files of Client 1 are corre-
lated to each other. Thus, the minimumfiles correlation factor
for the set of Client 1’s files will be achieved after adding
File 4 to DataNode 4. The F44 is obtained from the sum of
NL(DataNode4, DataNode4), NL(DataNode4, DataNode3),
and NL(DataNode4, DataNode2) which is equal to 220 ms.

Finally, a multi-criteria cost function is intended to
score DataNodes concerning the three mentioned parameters
simultaneously. In this function, users’ concerns about the
requirements of file storage and the conditions of its preser-
vation are also considered with the help of three weight-
ing factors: α, β, and γ . These three factors indicate the

54374 VOLUME 9, 2021

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 3. A sample topology including two clients and four DataNodes with different specifications and the Z-Score of Dij , Bij , and Fij .

importance of Dij, Bij, and Fij from the users’ point of view,
respectively. Regarding the above information, the cost of
selecting DataNode j for storing file i can be computed by:

Cost (i.j) = α × ZScore
(
Dij
)
+ β × ZScore

(
Bij
)

+γ × ZScore
(
Fij
)
. (5)

While Dij, Bij, and Fij are not the same type parameters,
using their raw values in Eq. (5) may lead to unfair and inac-
curate estimation. Therefore, the Z-Scores (Standard Score)
of the mentioned parameters have been exploited instead of
their raw values. The Z-Score indicates how many standard
deviations an element is from the mean [33]. If a Z-Score is
equal to 0, it is on the mean. A positive Z-Score indicates
the raw value is higher than the mean average, and a negative
Z-Score reveals the raw value is below the mean average [33].
the Z-Score can be calculated from:

ZScore (xi) =
xi − x̄√∑m
r=1 (xr−x̄)

2

m

. (6)

where x, x̄, and m are the raw value of a parameter, the mean
of raw values, and the number of all DataNodes, respectively.
Fig. 3 shows the Z-Score of different parameters for each
DataNode based on the raw values indicated in Fig. 2.

The next step is to select some DataNodes from the ranked
list for storing the original and replica versions of a file.
The policy, used by the conventional data placement tech-
niques, is based on selecting the top-ranked data storage
nodes for each client’s request. This greedy assignment of
top-scored DataNodes can be unfairly proper in favor of the
files, which have been uploaded earlier than the other ones.
As the name suggests, the greedy strategy always makes

the choice that seems to be the best at that moment. Thus,
it makes a locally optimal choice hoping that this choice
will lead to a globally optimal solution. While the values of
weighting factors related to the upcoming files are not pre-
dictable, choosing the best possible options has the potential
of starvation during placement of the next resource-intensive
files. The greedy strategy never goes back to reconsider the
earlier choices. Suppose a situation where the storage space
of the most well-protected DataNodes has been assigned to
the non-sensitive files. If one of the clients intends to send a
privacy-sensitive file to the HDFS, NameNode has no choice
but to select the out of favor DataNodes concerning the data
breach incidents. Therefore, the file placement issue in cloud
storage systems cannot be categorized in the class of prob-
lems that can be effectively solved through greedy strategies.

In the SLA-aware file placement technique, NameNode
assigns a probability to each DataNode in the event of receiv-
ing a file placement/replacement request. The probability
indicates the chance of choosing a DataNode as the host of
the mentioned file. The chance of adding a file to a DataNode
is estimated with regards to their corresponding cost function
values. Contrary to the greedy strategy, all available DataN-
odes can be selected as the host of a file, based on their
estimated probabilities. Therefore, DataNode with the lowest
cost has a higher chance of being picked up as the host.

At this point, the service provider can influence the chance
estimation routine. Based on the revenue model of a cloud
service provider, the users can be classified into different
categories and levels, such as premium, freemium, and free
users. The cloud service provider usually offers all users
essential services but holds a select set of key premium
features only for its paid subscribers. The random strategy for

VOLUME 9, 2021 54375

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 4. The interactions among client, client machine, NameNode and DataNodes in the structure of the proposed technique.

data placement can achieve load balance with low cost and
efforts and is totally beneficial for the service provider. How-
ever, in real-world applications, clusters are often worked in
a heterogeneous environment. Thus, there is a considerable
difference in the consequences of storing data on different
DataNodes. In this case, using the random strategy leads to a
reduction of clients’ satisfaction.

On the other hand, objective-based mechanisms can take
advantage of this variety to satisfy some clients’ concerns
about different parameters. In the first step of the proposed
technique, the DataNodes are ranked based on their specifi-
cation and SLA fields. Some DataNodes should be selected
from the ranked list to store a file and its replicas in the next
step. The constant c determines how much the specifications
of the nominated DataNodes can be fitted with the concerns
of a client about a specified file. Thus, the cloud service
provider set the proper value of constant c respecting the
user support level and contractual agreements. In order to
increase the quality of services delivered to the paid sub-
scribers, smaller values for constant c leads to the selection of
the optimal or near-optimal options for storing clients’ files.
However, larger values for constant c made the placement
process more like a random assignment strategy rather than
a purposive assignment. Therefore, the benefits of the cloud
service provider take precedence over the concerns of the
users. The higher user levels are received a more rational and
precise adjustment of file placement efforts to user require-
ments. An intermediate parameter is defined as the gain of
adding file i to DataNode j to estimate the chance of selecting
a DataNode as the host of a specified file. This parameter is
directly proportional to the chance parameter:

Gain (i.j) = −Cost (i.j)+ c. (7)

The value of constant c in Eq. 7 determines the precision
of adjustment of file placement efforts to user requirements.
Assigning smaller values to variable c leads to the increased
chance of selecting top-ranked DataNodes in the list of avail-
able DataNodes. On the other hand, setting variable c to larger

values results in approximately equal probabilities of selec-
tion for all DataNodes. As mentioned above, the proposed
technique selects DataNodes for storing different files based
on a probability mass function. A probability mass function is
specified in terms of an underlying sample space, which is the
set of all possible observed random phenomenon outcomes.
It is a mathematical function that provides the probabilities
of different possible options (selecting each available DataN-
odes as the host of a specified file) based on their gain values.
Thus, the chance of choosing DataNode j for storing file i can
be calculated as:

Chance (i.j) =
Gain(i.j)∑m
k=1Gain(i.k)

. (8)

Fig. 4 shows the interactions among Client, Client
Machine, and NameNode to set the proper values for the
weighting factors. We refer to the client-side of the cloud
storage application as the ‘‘Client Machine’’. Some custom
client settings have been deployed to the user interface of
the application to get and address the clients’ concerns. The
clients can prioritize their files via checking the radio buttons
in terms of different parameters. For example, four priority
levels are considered for each parameter: Zero, Low, Med,
and High. The client machine can assign the static or dynamic
values to weighting factors of a file, respecting the selected
priority levels for the corresponding file or all outsourced
files of the client. Suppose the importance of each file is
regarded independently. In that case, four priority levels can
represent the static values of 0.00, 0.25, 0.50, and 1.00 for
weighting factors. Afterward, the client machine submits the
form containing the numerical values of weighting factors to
the NameNode. Thus, the NameNode can estimate the gain of
using different DataNodes as the host of the file. Although the
client and the client machine play a major role in determining
the numerical values of weighting factors, the NameNode
(or CSP) is the identity that makes the final decision about
how much the submitted values can affect the placement
solution. NameNode utilizes the constant c as a tool for tuning

54376 VOLUME 9, 2021

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

TABLE 2. Cost and chance of adding File 4 to each DataNode in terms of different values for weigthing factors.

the impact of weighting factors on the placement decision.
It determines the value of constant c for different user service
levels based on the types of user accounts and the heartbeats
of DataNodes. In order to increase the quality of services
delivered to the paid subscribers, smaller values for constant
c lead to the selection of the optimal or near-optimal options
for storing clients’ files. The higher user levels are received a
more rational and precise adjustment of file placement efforts
to user requirements. However, larger values for constant
c made the placement process more like a random assign-
ment strategy rather than a purposive assignment. Therefore,
the benefits of the cloud service provider take precedence
over the concerns of the users. The random placement strat-
egy can achieve load balance and decrease the number of
costly data block movements among DataNodes in favor of
the CSP. Determining the exact value of constant c for each
service level by the NameNode involves taking into account
the policies and the business strategy of the CSP for serving
different users under different characteristics of DataNodes.
Following the example discussed in the manuscript, Table 2 is
the color scale table that shows the cost and chance of adding
File 4 to each DataNode. Seven scenarios have been taken
into account to assess the effects of selecting different priority
levels on the file placement decisions in terms of three user
service levels. Among these three levels, the users classi-
fied in ‘‘Service Level 1’’ experience the highest quality of
services, and the users of ‘‘Service Level 3’’ receive the
cheapest ones. In this example, the value of constant c in
the Gain function is statically set to 2, 4, and 8 for Service
Levels 1, 2, and 3. The value of a cell in the table, related

to the cost of DataNodes, changes its appearance based on its
corresponding value. In this color scale, shades of red/blue are
applied to the higher/lower cost. In a general view, selecting
the DataNode 2/DataNode 1 as the host of File 4 implies
the lowest/highest cost compared to the other DataNodes.
As shown by the table, the probability of selecting DataNode
2 as the best possible option is about 40.5% in service level 1,
and the chance of selecting DataNode 1 as the worst choice
of placement is about 4.1% in this level. In service levels
2 and 3, the chances of choosing the best and worst options
of placement are closer than service level 1. Consequently,
the impacts of users’ concerns on the probabilities of choos-
ing a specified DataNode as the host of File 4 depends on the
user service levels and the value of constant c.
Finally, Fig. 5 shows the steps and sequence of functions

and calculations used in the context of the proposed data
placement mechanism.

IV. EVALUATION RESULTS
The CloudSim [24] framework is considered as the base
simulation environment to implement design decisions. The
CloudSim is an open-source framework for modeling and
simulation of cloud-based infrastructures and services [24].
The cloud-based simulation tools, such as CloudSim, is a suit-
able alternative solution for the real evaluation environments,
where access to the infrastructure incurs payments in real cur-
rency [34], [35]. Simulation-based approaches offer signifi-
cant benefits. It allows cloud customers to test their services
in a repeatable and controllable environment, free of cost,
and tune the performance bottlenecks before deploying on the

VOLUME 9, 2021 54377

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 5. The algorithm and steps of proposed data placement mechanism.

real clouds [24]. The CloudSim is a general and extensible
simulation framework that enables seamless modeling, simu-
lation, and experimentation of emerging cloud-based infras-
tructures and application services [34], [25]. This simulator
is currently the most sophisticated discrete event simulator
for Clouds [24]. Due to the mentioned features and benefits,
the CloudSim has been chosen for building the simulation
environment on top of it.

Fig. 6 shows the architecture of the enhanced CloudSim
used as the evaluation environment. Regarding Fig. 6,
the CloudSim consists of three abstraction layers:

1) User code: This layer enables CloudSim users to define
general simulation configurations such as cloud sce-
narios, requirements/policies, data sets, and brokers.
A new broker (HDFS Broker) has been designed to act
as the client machines of HDFS’s users. It also works
as an interface for CloudSim users to specify the num-
ber of clients, files, and corresponding specifications,
such as network delay among different geolocations,

FIGURE 6. CloudSim-based simulation environment.

privacy conflict between nations/countries, and differ-
ent aspects of HDFS services as the parameters of SLA.

2) CloudSim: The second layer consists of several
sub-layers that model the key elements of simulated
cloud-based structures. The User Interface Structure
is the top sub-layer, responsible for adjusting and
adapting system modules and resources considering
the user’s demands. The details of network topology,
message delays, Virtual Machine (VM) provisioning,
Processing Element (PE) or Physical Machine (PM)
instantiations, storage architecture, memory allocation,
file specifications are some of the system require-
ments that should be arranged concerning user’s
demands. In the enhanced version of CloudSim,
a new class (Client) has been designed and devel-
oped to reflect the user’s demands in terms of dif-
ferent expected services. Moreover, some important
attributes of client machines that can affect the perfor-
mance of internal mechanisms of cloud storage sys-
tems have been considered in this class. Furthermore,
the file and file attributes classes have been revised
concerning the new attributes, defined in the client
class, and some further file specifications that have
effects upon user influence-based file/data distribution.
Furthermore, a new attribute has been defined and
considered in the file attributes class of the CloudSim
to reflect the frequency of file access. The middle
sub-layer plays the role of resource manager in allocat-
ing cloudlets (jobs) among VMs and distributing files
among storage nodes. JobTracker and NameNode are
two Hadoop entities that handle job allocation and file
distribution based on pre-definedmechanisms and poli-
cies. While Cloudlet Execution and VM Management
classes can cover the duties of Hadoop JobTracker,
however, there is a lack of CloudSim software module
to act as the NameNode for HDFS-based file distri-
bution. Therefore, a new class (NameNode) has been
designed and developed to implement the base Hadoop
file distribution mechanism and the proposed design
decisions in the context of CloudSim. The Cloudlet
attribute that defines the path for the list of files

54378 VOLUME 9, 2021

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 7. The simulation work-flow and revised classes of the enhanced version of CloudSim.

required by the cloudlet during execution (required-
Files) has been revised to adjust the number of file
accesses based on the new file attributes. We have tried
to simulate the actions and interactions of TestDFSIO
benchmark via creating the workload trace in SWF
format. The TestDFSIO benchmark is a read and write
test for HDFS. It is helpful for tasks such as stress
testing HDFS, to discover performance bottlenecks in
your network, to shake out the hardware, OS, and
Hadoop setup of your cluster machines (particularly the
NameNode and the DataNodes). The bottom sub-layer
simulates the physical and virtual resources such as
Hadoop DataNodes employing enhanced attributes and
methods of Storage and Hard Drive Storage classes.
The values assigned to the attributes of the Hard-
drivestorage class of the CloudSim are those of a
Maxtor DiamonMax 10 ATA harddisk (latency =
4.17 ms, avg seek time = 9 ms, max transfer
rate = 133 MB/sec).

3) Core Simulation Engine: The bottommost layer of the
CloudSim architecture handles the interaction between
CloudSim entities and components such as PMs, Hosts,
VMs, and brokers. It also controls the system events via
queuing and scheduling. Moreover, this layer enables
the CloudSim to interact with the system software on
which CloudSim is running.

In Fig. 7, more details about the new and revised
classes in the enhanced version of CloudSim in terms of
attributes and software methods are demonstrated. Moreover,

Fig. 7 clarifies the simulation workflow consists of construc-
tors, interfaces, and parameters of the estimation functions.

Three parameters have been defined to compare the design
decisions: average File Access Latency, average File Breach
Probability, and average File Correlation Factor. These
parameters can represent and measure CSP services’ quality
in terms of file read/write performance, file privacy, and
computation performance. With regards to the description of
notations, listed in Table 1, the average File Access Latency
is the mean of Dij for all files in the cluster:

Avg File Access Latency =

∑n
i=1

∑m
j=1 Xij · Dij∑n

i=1
∑m

j=1 Xij
. (9)

Moreover, the average File Breach Probability is the mean
of Bij for all files in the cluster:

Avg File Breach Probability =

∑n
i=1

∑m
j=1 Xij · Bij∑n

i=1
∑m

j=1 Xij
. (10)

Finally, the average File Correlation Factor is the mean of
Fij for each possible combination of correlated files:

Avg Files Correlation Factor =

∑n
i=1

∑m
j=1 Fij∑n

i=1
∑n

j=1 Xij
. (11)

The following DataNode scoring and data placement
mechanisms have been implemented and applied on the
Hadoop architecture:

1) The base HDFS data placement
2) The proposed greedy data placement (GDP)

VOLUME 9, 2021 54379

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

TABLE 3. The details of seven simulated scenarios.

FIGURE 8. Comparison of performance of data placement mechanisms in terms of file access latency (a), file breach probability (b), and file
correlation factor (c) in the case of different number of files (the results are normalized to the results of base HDFS).

3) The proposed probabilistic data placement with c = 2
(PDP2)

4) The TSDAT data placement technique [37]
5) The UserRank data placement technique [23]
6) The DDP data placement technique [36]

Furthermore, six different scenarios have been intended
to study the performance of each data placement mecha-
nism. Table 3 summarizes the details of simulated scenarios
in terms of HDFS cluster and file specifications. In each
situation, a certain DataNode or file specification has been
concentrated as the target parameter. A target parameter is
varied during different simulations classified into a scenario
while the other parameters are kept unchanged. The spec-
ifications have been categorized into three classifications:
file specifications, DataNode specifications, and geolocation
specifications. File specifications consist of the number and

size of files, the weighting factors, the file correlation inten-
sity, and the file correlation group size. For reliability reasons,
two replicas are made of each file by all of the data placement
mechanism. DataNode specifications consist of the number
of DataNodes in the cluster, the size of each DataNode,
and the data load utilization (storage space usage) of each
DataNode. Finally, geolocation specifications consist of the
number of geolocations in which clients and DataNodes can
reside, the size of the alliance, and the intervals of network
delays among geolocations.

Fig. 8 shows the results of an experiment intended to ana-
lyze the performance of different data placement mechanisms
for different file sizes: 100 files with the size of 14 GB,
1000 files with the size of 1.4 GB, and 10000 files with the
size of 140 MB. The number and size of files are adjusted
so that the utilization of the DataNode cluster is kept at
70% in all conditions of scenario 1. This adjustment has

54380 VOLUME 9, 2021

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 9. Comparison of performance of data placement mechanisms in terms of file access latency (a), file breach probability (b), and file
correlation factor (c) in the case of different storage utilization values (the results are normalized to the results of base HDFS).

been considered to eliminate the effects of different DataN-
ode utilization on the performance of the design decisions.
Regarding all charts, the results of PDP2 follow practically
the same pattern, and it is often in the top two ranked
design decisions respecting different cases (despite TSDAT,
UserRank, and DDP). This issue reveals that the chance of
proceeding towards the best comprehensive solution is often
higher for the probabilistic mechanism. However, the greedy
strategy always makes the choice that seems to be the best
at that moment. The fluctuation of the GDP’s results shows
that it can more easily get stuck at locally optimal solutions
compared to the PDP2.

Fig. 9 shows the results of an experiment intended to ana-
lyze the performance of different data placement mechanisms
in the case of different storage utilizations: 20%, 40%, and
80%. The number of files (with the fixed-size of 140MB) has
been changed from 2800 to 11400 to vary the storage uti-
lization. Increasing the complexity of mapping and balancing
processes by the PDP2 raised some concerns about this tech-
nique’s effectiveness in the highly utilized DataNode cluster.
Contrary to the mentioned concerns, the experimental results
show that the File Access Latency and File Breach Probability
have not been significantly degraded when the storage uti-
lization increases. In most cases, the File Correlation Factor
is also improved by the PDP2. Increasing the DataNode
utilization causes an expanded design space solutions with an
increased number of relative extrema. Therefore, the proba-
bility of getting stuck in local optimum solutions by the GDP
is subsequently increased. Furthermore, the distance among
the results related to solutions obtained by the single objec-
tive data placement mechanisms (TSDAT, UserRank, and
DDP) increases while the storage utilization grows. This issue
has been observed due to the intensified divergence among
the acquired placement solutions in the expanded design
space.

Fig. 10 shows the results of an experiment intended to
analyze the performance of different data placement mech-
anisms under the network containing four alliance sizes:
one, two, and four geolocations. The alliance members are
mutually interested and have a conflict of interests with the
geolocations belonging to other partnerships. The inconsis-
tency in the GDP results and the predictable pattern of the
PDP2 results are two common aspects of the charts in Fig. 10.
The inconsistency in the GDP results has been observed due
to divergence and convergence of local minimum solution
(achievable by the GDP) and global minimum solution. How-
ever, the PDP2 leads to consistent moderate improvements in
all three design parameters. Since all three design parameters
are of equal importance to all users (α = β = γ = 0.33)
in the scenario, the results completely support probabilistic
data placement mechanisms’ objectives. In the experiments,
the nearby geolocations are in the same alliance. Therefore,
the TSDAT and UserRank are aligned in different parameters
due to the coincidence of geographical proximity and division
of trusted regions. Regarding Fig. 10 (b), the File Breach
Probability of the HDFS cluster under the management of
different design decisions is 0% in the third case. When
the four geolocations have no conflicts, the probability of
preserving confidentiality is supposed 100% by the proposed
data breach prediction model. The second issue about the
results of related work is the partial conflict between TSDAT
and DDP results. Using TSDAT causes the enhanced score
of solutions in which the data locality is improved concern-
ing the geolocations of files and their owners. However,
using DDP leads to enhanced data locality with respect to
the geolocations of correlated files. Storing the files in the
network-closest DataNodes to the geolocation of its owner
and storing the files in the network-closest DataNodes to
its correlated set of files are two goals that are not always
aligned.

VOLUME 9, 2021 54381

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 10. Comparison of performance of data placement mechanisms in terms of file access latency (a), file breach probability (b), and file
correlation factor (c) in the case of different alliance sizes (the results are normalized to the results of base HDFS).

FIGURE 11. Comparison of performance of data placement mechanisms in terms of file access latency (a), file breach probability (b), and file
correlation factor (c) in the case of different values for correlation intensity (the results are normalized to the results of base HDFS).

Fig. 11 and 12 show the results of two experiments
intended to analyze different data placement mechanisms’
performance under different file correlation conditions. The
correlation among files can be adjusted by tuning two factors:
the correlation intensity and the correlation group size. The
file correlation intensity indicates the degree of correlation
among the out-sourced files. For example, the correlation
intensity of 20% shows that 20% of all uploaded files are
mutually correlated. The files that belong to a certain cor-
relation group are necessary for accomplishing a specified
job in a cluster. The size of correlation groups in a cluster
may also vary depending on the type of their related jobs.
Regarding Fig. 11 and 12, the effects of increasing the size
of correlation groups and correlation intensity on File Access
Latency, File Breach Probability, and File Correlation Factor
follow the almost same pattern. As clarified by Fig. 11,

increasing the intensity of correlation among out-sourced
files from 20% to 80% cannot degrade PDP2’s performance
of different design parameters. Increasing the correlation
intensity among out-sourced files leads to increased deviation
among the results of different possible solutions in terms of
File Correlation Factor. In this case, even a small difference in
the storage location of a file can make significant differences
in the File Correlation Factor of almost similar data placement
solutions. This issue causes an increased number of relative
extrema in the design space of solutions’ results. Regarding
Fig. 11 (c), the distance among the results related to solutions
obtained by the TSDAT/UserRank and the DDP increases
while the correlation intensity grows.

Fig. 13 shows the results of an experiment intended
to analyze different data placement mechanisms’ per-
formance under three different ranges for the delays

54382 VOLUME 9, 2021

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 12. Comparison of performance of data placement mechanisms in terms of file access latency (a), file breach probability (b), and file
correlation factor (c) in the case of different sizes for correlation group (the results are normalized to the results of base HDFS).

FIGURE 13. Comparison of performance of data placement mechanisms in terms of file access latency (a), file breach probability (b), and file
correlation factor (c) in the case of four different ranges of delay between geolocations (the results are normalized to the results of base
HDFS).

between geolocations. The network delay interval among
geolocations was varied from (300ms, 800ms) to
(300ms,1500ms) during the simulation. In the first case,
the delay between all geolocations is equal to 300 ms.
However, in the second, third, and fourth cases, the geolo-
cations’ delays are different and varied within tight and
wide ranges. As shown by Fig. 13 (a) to (c), the PDP2
improves the design parameters in almost all cases. The
random assignment strategy used by the base HDFS cannot
hide the variety of delays between the geolocations. At the
same time, different data placement solutions imply different
significant values for File Access Latency. On the other
hand, objective-based mechanisms can take advantage of
this variety to satisfy some clients’ concerns about access
latency. The File Correlation Factor is the parameter that is

most affected by the variation of geolocations’ delay. Even
so, PDP2 is the only objective-based mechanism that can
maintain its enhancement in all cases. Similar to the previous
scenario, the conflict between TSDAT/UserRank and DDP
results is observed due to the data locality contexts exploited
in their designs’ structure.

Tail latency is the small percentage of access latency to a
system, out of all accesses to the requests it serves, that takes
the longest compared to the bulk of its access latencies. The
data placement strategies can affect the file access latency
by influencing network latency between client machines
and DataNodes, and the response time of a DataNode. The
network proximity of a client machine and the DataNodes
(containing the corresponding client files) adjusted by the
data placement strategies can affect the network latency

VOLUME 9, 2021 54383

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 14. Comparison of the effects of placement strategies on the distribution of DataNode access latency in terms of response
time and network latency (Hadoop: (a), and (c); PDP2: (b), and (d)).

parameter. Moreover, the complexity of data placement
strategies and the I/O bandwidth usage of disk storage are two
parameters that influence the response time of a DataNode.

Fig. 14 shows the distribution of access latency of 20 sim-
ulated DataNodes in terms of response time, and net-
work latency under the management of the base Hadoop
data placement strategy and the PDP2. As illustrated by
Fig. 14 (a) and (b), computing complexity imposed by the
PDP2 leads to a higher number of DataNodes with response
times of more than 10 ms, compared to the Hadoop data
placement strategy. In the case of using Hadoop, the response
time of 85% of the DataNodes is less than 10 ms, while
this portion is about 70% for PDP2. Hadoop’s random strat-
egy is the most straightforward data placement mechanism
with less computational effort than the proposed probabilistic
data placement mechanism. It achieves load balance and
needs less-frequent rebalancing compared to PDP2. How-
ever, PDP2 takes advantage of the purposive ranking model
to improve data locality and improved network latency com-
pared to Hadoop. Fig. 14 (c) and (d) show that network
latency for accessing 80% of DataNodes is less than 500 ms
for the PDP2, while this portion is about 55% for the Hadoop.

In order to study the effects of setting different values of
weighting factors for different files, another scenario has been
defined (Scenario 7 in Table 3). In this scenario, the values
of weighting factors for each of 10000 files were assigned

randomly, and the PDP2 was selected to place the files in
the cluster. Fig. 15 summarizes this scenario so that the
results of files whose weighting factors in the same range
were considered together. For example, the averages of File
Access Latency improvement (FAC), File Breach Probability
Improvement (FBP), and File Correlation Factor Improve-
ment (FCF) for the files whose α are in the same range
have been calculated and shown in Fig. 15 (a). Moreover,
Fig. 15 (b) and (c) have been intended to show the same con-
dition for β and γ , respectively. As indicated by the charts,
the weighting factors can still tune the importance of design
parameters in the placement ranking model, even after setting
different weighting factors for each file. However, there is no
linear relationship between the improvement of the FAC and
FBP and increasing the values of α and β. The FAC and FBP
are aligned under different conditions due to the coincidence
of geographical proximity and division of trusted regions in
the simulation. The top-ranked DataNodes in terms of FAC
also have the best characteristics concerning FBP. Therefore,
the choices for simultaneous improvement of both FAC and
FBP have been limited especially for the close values of α
and β. Moreover, there is a partial conflict between FAC
and FCF due to different data locality concepts that could
have positive influences on these parameters. Storing the files
in the network-closest DataNodes to its owner’s geolocation
and storing the files in the network-closest DataNodes to its

54384 VOLUME 9, 2021

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

FIGURE 15. Effects of setting random values of weighting factors for each file on the design parameters. (a): the average of FAC, FBC, and FCF
for the file in terms of different ranges of α, (b): the average of FAC, FBP, and FCF for the file in terms of different ranges of β, (c): the average of
FAC, FBC, and FCF for the file in terms of different ranges of γ (the results are normalized to the results of base Hadoop).

FIGURE 16. Comparison the results of PDP2 with (a) TSDAT in terms of different values of α, (b) UserRank in terms of different values of β,
(c) DDP in terms of different values of γ .

correlated set of files are two data locality concepts that are
not always aligned.

Table 4 is the color scale table that summarizes the results
of all scenarios and cases, respecting the average values of
the results related to each mechanism. The value of a cell
changes its appearance based on its corresponding value.
In this color scale, shades of blue/red are applied to the
higher/lower values. On average, the PDP2 improves the
File Access Latency, File Breach Probability, and File Cor-
relation Factor by about 16.6%, 15.5%, and 15.2%, with
lower standard deviations than the other design decisions.
The PDP2 results tend to be very close to the mean value.
It obtains more stable results under different file, network,
and storage conditions compared to the other data placement
mechanisms. Regarding Table 4, the standard deviation of
PDP2’s results is about 1.2%, 4.3%, and 2.5% for File Access

Latency, file breach probability, and File Correlation Factor.
In contrast, the results of UserRank, TSDAT, and DDP are
spread out over the larger range of values.

The results of PDP2 were acquired under a circumstance
in which all three design parameters are of equal importance
to all users (α = β = γ = 0.33). Also, the experiments were
extended to assess the performance of the PDP2 in the cases
where only one/two parameter(s) is/are a severe concern(s) of
the users. Fig. 16 shows the comparison of the results related
to PDP2 and the other mechanisms in terms of different
values for weighting factors. Regarding Fig. 16 (b) and (c),
by increasing the values ofβ and γ individually, the PDP2 can
resolve the users’ concerns about a single criterion as well
as single-objective placement mechanisms. Fig. 16 (a) shows
that the TSDAT leads to better File Access Latency for all
cases. However, it should be emphasized that the PDP2 can

VOLUME 9, 2021 54385

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

TABLE 4. The summary of the experimentl results related to all implemented scenarios.

TABLE 5. The effects of centralized and distributed architectures on the design parameters (The results are normalized to the results of base HDFS).

moderate the side effects of the single-criterion mechanisms
on the other criteria (even for the higher values of α). The
probabilistic selection and ranking models cause an increased
chance of selecting comprehensive data placement solutions.
In this case, the maximum degradations of File Breach Prob-
ability and File Correlation Factor for PDP2 are 12.5% and
8.8% less than the TSDAT, respectively.

The HDFS, GFS, and S3 are three major cloud storage
systems. The HDFS is a collection of open-source software
utilities, while the GFS and S3 are unique to Google and
Amazon. The GFS and S3 have been exclusively used by
their owners to organize and manipulate huge files and to
serve as a model for file systems for organizations with

similar needs. Some details about these two systems remain
a mystery to anyone outside of the companies. However,
despite this veil of secrecy, some knowledge about the GFS
and S3’s structures and operations have been made public.
Generally, two typical architectures have been designed and
utilized by the mentioned cloud storage systems: single cen-
tralized master and multiple distributed masters. Previous
experiments were conducted upon the simulation infrastruc-
ture established based on the single centralized master. The
experiments were repeated in the simulation environment,
which has been set up considering the characteristics of mul-
tiple distributed masters. In order to scale the name service
horizontally, cloud storage systems use multiple independent

54386 VOLUME 9, 2021

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

masters. The masters are federated and independent and do
not require coordination with each other. The slaves are
used as common storage for blocks by all the masters. Each
slave registers with all the masters in the cluster. Slaves
send periodic heartbeats and block reports. They also handle
commands from the masters. Table 5 compares the average
and standard deviation of the FAC, FBP, and FCF extracted
from the simulations of six scenarios in the cases of using the
centralized master and the distributed masters architectures.
According to Table 5, a slight improvement can be observed
in terms of FAC and FCF due to the scalable architecture
of the distributed model. The distributed model can more
effectively manage overload DataNodes, especially in the
case of high disk utilization. The improvement of FAC and
FCF can be recognized for all the design decisions. At the
same time, there have not been any considerable changes
in FBP. The geolocation of DataNodes is the key factor of
determining the probability of unauthorized access to the files
of a DataNode and cannot be affected by the implementation
model of the master node.

V. CONCLUSION
This paper proposes an SLA-aware multi-criteria data place-
ment to remove the limitations of the earlier data placement
mechanisms in cloud storage systems. The main goal of most
previous techniques is to make the heterogeneity of storage
nodes transparent to the clients. This goal was achieved by
picking the best choices for storing the clients’ files based on
a predetermined criterion, user concerns, and the heartbeats
of data storage nodes. However, to serve several different
clients with diverse needs, the single-criterion approaches for
scoring the available data storage nodes cannot simultane-
ously resolve more than one type of clients’ concerns. More-
over, the greedy assignment of top-scored resources can be
unfairly proper in favor of the files, which have been uploaded
earlier than the other ones. In the proposed placement mecha-
nism, the decision to place a file in a cluster is taken concern-
ing a trade-off between three criteria that can be crucial from
the clients’ viewpoint, such as file access delay, computing
performance, and data privacy. The proposed cloud storage
provider gives each data storage node a chance to become the
host of an already received file. The chance parameter is esti-
mated with regard to the gain of adding the mentioned file to
each data storage node. In the case of selecting a set of storage
nodes in the cluster, the proposed cloud storage provider can
also consider levels of user support services. To implement
and compare design decisions, the CloudSim framework has
been revised to reflect the user’s demands in terms of different
expected services, attributes of client machines that can affect
the performance of internal mechanisms of cloud storage
systems, and some new file specifications that have effects
upon user influence-based file/data distribution. Furthermore,
six different scenarios have been intended to study the per-
formance of each data placement mechanism under various
conditions of the file specification, cloud storage architecture,
and network topologies. The experimental results show about

16.6% data access latency, 15.5% data privacy, and 15.2%
computing performance improvements with high stability by
the proposed mechanism compared to the conventional data
placement mechanisms under different files, networks, and
storage conditions.

REFERENCES
[1] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, ‘‘IoT-based big data storage

systems in cloud computing: Perspectives and challenges,’’ IEEE Internet
Things J., vol. 4, no. 1, pp. 75–78, Oct. 2016.

[2] T. Mahmood, S. P. Narayanan, S. Rao, and T. N. Vijaykumar, ‘‘Karma:
Cost-effective geo-replicated cloud storage with dynamic enforcement of
causal consistency,’’ IEEE Trans. Cloud Comput., vol. 1, no. 1, pp. 18–28,
Mar. 2018.

[3] A. Mittal, V. Jain, and T. Ahuja, ‘‘Google file system and Hadoop dis-
tributed file system: An analogy,’’ Int. J. Innov. Advancement Comput. Sci.,
vol. 4, no. 1, pp. 29–43, 2015.

[4] A. Albeshri, C. Boyd, and J. G. Nieto, ‘‘GeoProof: Proofs of geographic
location for cloud computing environment,’’ in Proc. 32nd Int. Conf.
Distrib. Comput. Syst. Workshops, Macau, China, Jun. 2012, pp. 506–514.

[5] K. Benson, R. Dowsley, and H. Shacham, ‘‘Do you knowwhere your cloud
files are?’’ in Proc. 3rd ACM workshop Cloud Comput. Secur. workshop
(CCSW), New York, NY, USA, 2011, pp. 73–82.

[6] C. Liao, A. Squicciarini, and D. Lin, ‘‘LAST-HDFS: Location-aware
storage technique for Hadoop distributed file system,’’ in Proc. IEEE 9th
Int. Conf. Cloud Comput. (CLOUD), San Francisco, CA, USA, Jun. 2016,
pp. 662–669.

[7] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, ‘‘Privacy-
preserving public auditing for secure cloud storage,’’ IEEE Trans. Comput.,
vol. 62, no. 2, pp. 362–375, Feb. 2013.

[8] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall, T. Anderson,
and Y. Chawathe, ‘‘Towards IP geolocation using delay and topology
measurements,’’ in Proc. 6th ACM SIGCOMM Internet Meas. (IMC),
Brazil, Brasilia, 2006, pp. 71–84.

[9] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida, ‘‘Constraint-based
geolocation of Internet hosts,’’ IEEE/ACM Trans. Netw., vol. 14, no. 6,
pp. 1219–1232, Dec. 2006.

[10] W. Shen, J. Qin, J. Yu, R. Hao, and J. Hu, ‘‘Enabling identity-based
integrity auditing and data sharing with sensitive information hiding for
secure cloud storage,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 2,
pp. 331–346, Feb. 2019.

[11] A. Razaque and S. S. Rizvi, ‘‘Privacy preserving model: A new scheme
for auditing cloud stakeholders,’’ J. Cloud Comput., vol. 6, no. 1, pp. 1–17,
Dec. 2017.

[12] N. Paladi and A. Michalas, ‘‘One of our hosts in another country: Chal-
lenges of data geolocation in cloud storage,’’ inProc. 4th Int. Conf.Wireless
Commun., Veh. Technol., Inf. Theory Aerosp. Electron. Syst. (VITAE),
Denmark, Copenhagen, May 2014, pp. 1–6.

[13] V. Ubarhande, A.-M. Popescu, and H. Gonzalez-Velez, ‘‘Novel data-
distribution technique for Hadoop in heterogeneous cloud environments,’’
in Proc. 9th Int. Conf. Complex, Intell., Softw. Intensive Syst., Brazil,
Brasilia, Jul. 2015, pp. 217–224.

[14] M. Gondree and Z. A. Peterson, ‘‘Geolocation of data in the cloud,’’
Proc. ACM Conf. Data Appl. Secur. Privacy, New York, NY, USA, 2013,
pp. 25–36.

[15] (2012). Apache Hadoop version 1.X.Y. Accessed: Mar. 2, 2019. [Online].
Available: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[16] J. Ju, J. Wu, J. Fu, Z. Lin, and J. Zhang, ‘‘A Survey on Cloud Storage,’’
J. Comput., vol. 6, no. 8, pp. 1764–1771, 2011.

[17] (2015). Apache Hadoop version 2.X.Y. Accessed: Mar. 2, 2019. [Online].
Available: https://hadoop.apache.org/docs/r2.7.2/

[18] S. V. Ambade and P. R. Deshpande, ‘‘Heterogeneity-based files placement
in Hadoop cluster,’’ in Proc. Int. Conf. Comput. Intell. Commun. Netw.
(CICN), Jabalpur, India, Dec. 2015, pp. 876–880.

[19] P. Neha, P. Narendra, M. I. Hasan, S. Parth, and P. Mayur, ‘‘Improving
HDFS write performance using efficient replica placement,’’ in Proc. 5th
Int. Conf. Confluence Next Gener. Inf. Technol., Noida, India, Sep. 2014,
pp. 36–39.

[20] S. Vipulkumar, ‘‘A survey on data placement in heterogeneous cloud envi-
ronment for big data,’’ Int. J. Eng. Develop. Res., vol. 4, no. 4, pp. 583–588,
2016.

VOLUME 9, 2021 54387

M. Maghsoudloo et al.: SLA-Aware Multi-Criteria Data Placement in Cloud Storage Systems

[21] S. Dolev, P. Florissi, E. Gudes, S. Sharma, and I. Singer, ‘‘A survey on
geographically distributed big-data processing using MapReduce,’’ IEEE
Trans. Big Data, vol. 5, no. 1, pp. 60–80, Mar. 2019.

[22] J.-X. Wu, C.-S. Zhang, B. Zhang, and P. Wang, ‘‘A new data-grouping-
aware dynamic data placement method that take into account jobs execute
frequency for Hadoop,’’Microprocessors Microsyst., vol. 47, pp. 161–169,
Nov. 2016.

[23] C. Guo, Q. Shen, Y. Yang, and Z. Wu, ‘‘User rank: A user influence-
based data distribution optimization method for privacy protection in cloud
storage system,’’ in Proc. IEEE 39th Annu. Comput. Softw. Appl. Conf.,
Taiwan, Taipei, Jul. 2015, pp. 104–109.

[24] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[25] D. Hu, D. Chen, S. Lou, and S. Pei, ‘‘Research on reliability of Hadoop
distributed file system,’’ Int. J. MultimediaUbiquitous Eng., vol. 10, no. 11,
pp. 315–326, Nov. 2015.

[26] (2017). HDFS High Availability Using the Quorum Journal
Manager. Accessed: Feb. 20, 2020. [Online]. Available:
https://hadoop.apache.org/docs/r2.7.7/hadoop-project-dist/hadoop-
hdfs/HDFSHighAvailabilityWithQJM.html

[27] M. Li, Y. Ma, and M. Chen, ‘‘The dynamic replication mechanism of
HDFS hot file based on cloud storage,’’ Int. J. Secur. Appl., vol. 9, no. 8,
pp. 439–448, Aug. 2015.

[28] (2017). Apache Hadoop Version 3.X.Y. Accessed: Jan. 10, 2020. [Online].
Available: https://hadoop.apache.org/docs/r3.0.0

[29] B. G. Babu and M. Kumar, ‘‘Dynamic colocation algorithm for Hadoop,’’
in Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Delhi,
India, Sep. 2014, pp. 2643–2647.

[30] (2018). HDFS Federation. [Online]. Available: https://hadoop.apache.
org/docs/r2.7.7/hadoop-project-dist/hadoop-hdfs/Federation.html

[31] M. Maghsoudloo and N. Khoshavi, ‘‘Elastic HDFS: Interconnected dis-
tributed architecture for availability–scalability enhancement of large-scale
cloud storages,’’ J. Supercomput., vol. 76, no. 1, pp. 174–203, 2019.

[32] K. Liu, G. Xu, and J. Yuan, ‘‘An improved Hadoop data load balancing
algorithm,’’ J. Netw., vol. 8, no. 12, pp. 2816–2822, Dec. 2013.

[33] (2020). Standard Score. Accessed: Mar. 5, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Standard_score

[34] S. K. Garg and R. Buyya, ‘‘NetworkCloudSim: Modelling parallel appli-
cations in cloud simulations,’’ in Proc. 4th IEEE Int. Conf. Utility Cloud
Comput., Toronto, ON, Canada, Dec. 2011, pp. 105–113.

[35] S. Sturm, ‘‘Storage CloudSim: A simulation environment for cloud object
storage infrastructures,’’ in Proc. Int. Conf. Cloud Comput. Services Sci.,
Madrid, Spain, 2014, pp. 186–192.

[36] C.-W. Lee, K.-Y. Hsieh, S.-Y. Hsieh, and H.-C. Hsiao, ‘‘A dynamic data
placement strategy for Hadoop in heterogeneous environments,’’ Big Data
Res., vol. 1, pp. 14–22, Aug. 2014.

[37] S. Yang, P. Wieder, M. Aziz, R. Yahyapour, and X. Fu, ‘‘Latency-sensitive
data allocation for cloud storage,’’ in Proc. IFIP/IEEE Symp. Integr. Netw.
Service Manage. (IM), Portugal, Lisbon, May 2017, pp. 1–9.

MOHAMMAD MAGHSOUDLOO received the
B.Sc., M.Sc., and Ph.D. degrees from the Depart-
ment of Computer Engineering, Amirkabir Uni-
versity of Technology (Tehran Polytechnic),
Tehran, Iran, in 2009, 2012, and 2016, respec-
tively. He has been an Assistant Professor with
the Department of Computer Engineering and
Information Technology, Golestan University,
since 2017. In 2018, he established the Cloud
of Things (CoT) Research Center at Golestan

University and has been chairing the research center since then. His research
interests include dependability evaluation, fault-tolerant computing, depend-
able computer architecture, high-performance computing, cloud comput-
ing/storage architectures, and the Internet of things. He is currently a member
of the IEEE Computer Society and the Computer Society of Iran (CSI).

AREZOO RAHDARI received the B.Sc. degree
from the Department of Computer Engineering,
University of Sistan and Balouchestan, Zahedan,
Iran, in 2018, and the M.Sc. degree from the
Department of Computer Engineering and Infor-
mation Technology, Golestan University, Gorgan,
Iran, in 2021. Her research interests include
fault-tolerant computing, dependable computer
architecture, high-performance computing, cloud
computing/storage architectures, and the Internet

of things. She is currently a member of the Computer Society of Iran (CSI).

NAVID KHOSHAVI received the M.Sc. degree
from the Department of Computer Engineer-
ing, Amirkabir University of Technology (Tehran
Polytechnic), Tehran, Iran, in 2009, and the Ph.D.
degree in computer engineering from the Depart-
ment of Computer Engineering, University of Cen-
tral Florida, FL, USA, in 2017. He has been an
Assistant Professor with Department of Computer
Science, Florida Polytechnic University, since
2017. His research interests include dependability

evaluation using fault injection techniques, fault-tolerant hardware architec-
tures and domain-specific architecture for machine learning applications,
high-performance computing, and cloud computing and storage. He has
received multiple awards recognizing his research initiative and academic
success. He is currently a member of the IEEE Computer Society.

54388 VOLUME 9, 2021

