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ABSTRACT The requirement of high spectrum efficiency puts forward higher requirements on frame
synchronization (FS) in wireless communication systems. Meanwhile, a large number of nonlinear devices
or blocks will inevitably cause nonlinear distortion. To avoid the occupation of bandwidth resources and
overcome the difficulty of nonlinear distortion, an extreme learning machine (ELM)-based network is
introduced into the superimposed training-based FS with nonlinear distortion. Firstly, a preprocessing
procedure is utilized to reap the features of synchronization metric (SM). Then, based on the rough features
of SM, an ELM network is constructed to estimate the offset of frame boundary. The analysis and experiment
results show that, compared with existing methods, the proposed method can improve the error probability
of FS and bit error rate (BER) of symbol detection (SD). In addition, this improvement has its robustness
against the impacts of parameter variations.

INDEX TERMS Frame synchronization, extreme learning machine, nonlinear distortion, superimposed
training.

I. INTRODUCTION
Due to the limited bandwidth resources, wireless commu-
nication systems have pursued high spectrum efficiency in
the past few decades [1]. As we can see, the spectrum effi-
ciency of the fifth generation (5G) wireless communication
system is many times higher than that of the fourth genera-
tion (4G) wireless communication system [2], [3]. In wire-
less communication systems, frame synchronization (FS) is
a fundamental and essential task to guarantee the overall
system performance [4], which usually consumes substan-
tial bandwidth resources to overcome the synchronization
challenge [5]. Thus, during the FS phase, the contradiction
between the high bandwidth resources consumption and the
high spectrum efficiency requirement needs to be resolved.
Meanwhile, the wireless communication system has a large
number of nonlinear devices or blocks, e.g., high power
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amplifier (HPA), digital to analog converter (DAC), etc.,
inevitably causing nonlinear distortion [6], [7]. With limited
considerations for nonlinear distortion, the classical methods
(e.g., correlation-based FS [8]) and the recent solutions (e.g.,
compressed sensing-based FS in [9]) are usually difficult to
apply in nonlinear distortion scenarios [10]. Therefore, the FS
is facing challenges from not only the spectrum efficiency but
also the nonlinear distortion.

To cope with nonlinear distortion, machine learning (ML),
in particular, deep learning (DL) has shown its prominent
ability [11], [12]. In recent years, DL has been applied in
wireless communication, e.g., signal detection [13], precod-
ing [14], channel state information (CSI) feedback [15],
channel estimation [16], [17], mobile Internet of Things
(IoT) [18], etc. However, these DL-based approaches exist
weaknesses such as long-time training, complex parameter
tuning [10], [19] etc. Different from DL-based scheme, as a
single hidden layer feed-forward neural network, extreme
learning machine (ELM) can learn quickly, randomly
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generate for input weight and hidden bias, require no gradient
back-propagation, and has good generalization performance
[10], [20], [21]. As one of the effective options, using ELM
to deal with nonlinear distortion is a promising solution.

For saving bandwidth resources and thus improving spec-
trum efficiency, the FS using superimposed training sequence
is an attractive scheme.Without any occupation of bandwidth
resources, this FS superimposes the training sequence on
data symbols, yielding more transmission symbols than that
of non-superposition mode [22] in the same transmission
interval. The superimposed training-based FS has been inves-
tigated in past years, e.g., [22]–[25]. These promising FSs
promote us to develop further explorations, especially for the
scenarios with nonlinear distortion.

Inspired by those advantages of ELM networks and super-
imposed training, we investigate an ELM-based FS by using
superimposed training, which overcomes the challenges from
spectrum efficiency and nonlinear distortion during the FS
phase. In our work, the merits to cope with nonlinear distor-
tion can be reaped by ELM networks, and then high spectrum
efficiency can be achieved by using superimposed training.
The combination of ELM network and superimposed training
further improves the FS performance in the scenarios of
nonlinear distortion, e.g., the error probability of FS. To our
best knowledge, for ELM-based FS, there are limited works
to focus on nonlinear distortion, much less to focus on super-
imposed training.

A. RELATED WORKS
We respectively present the related works of DL-based FS
and ELM-based FS as follows.

The DL-based FS has been investigated in [26]–[29].
In [26], an artificial neural network (ANN)-based synchro-
nization method was proposed. For the end-to-end commu-
nication systems, [27] and [28] investigated the FS based
on neural network (NN). In [27], to achieve the task of FS,
a deep neural network (DNN) was employed to auto-encoder,
and a convolutional neural network (CNN) was developed
in [28] to compensate impairments introduced by timing
offset and timing error of sampling. As for [29], a CNN-based
FS method was proposed to convert the one dimension (1D)
correlator to two dimension (2D) matrix to find the frame
offset. From [26]–[29], the DL technology provides effective
approaches for FS. Nevertheless, these DL-based FSs are
still challenged by many issues, such as long training time,
complex parameter tuning, large memory requirements, etc.

Relative to DL networks, the ELM network features
many advantages [10], [20], [21], e.g., the gradient
back-propagation can be avoided, the output weight can be
obtained by solving the least square (LS) question, and a
single-hidden layer is employed for the feed-forward neu-
ral network, etc. In [10], an ELM-based time-division FS
was proposed with the consideration of nonlinear distortion.
In [30], the ELM network was employed to compensate the
residual time offset with time-division mode. Although the
error probability of FS is lower than conventional method,

the training sequence for FS still occupies the bandwidth
resources, which reduces systems’ spectrum efficiency.
To avoid the occupation of bandwidth resources, an ELM-
based FS method using superimposed training is proposed in
this paper to reduce the error probability of FS.

B. CONTRIBUTIONS
To overcome the challenges of spectrum efficiency and non-
linear distortion during the FS phase, the ELM-based FS
using superimposed training is investigated in this paper. The
main contributions of this paper are summarized as follows.

• Firstly, an ELM-based FS method by using superim-
posed training is proposed. In contrast to the ELM-based
time-division FS scheme in [9], not only the occupation
of bandwidth resources is avoided in the proposed FS
method, but also the smaller error probability of FS is
achieved with the same energy cost.

• Secondly, the superimposed training-based FS is inves-
tigated in the scenarios of nonlinear distortion. Our
investigation remedies the deficiencies of the existing
superimposed training-based FS, which cannot work
well in the scenarios of nonlinear distortion and is suit-
able for practical application.

• Thirdly, extensive experiments are given to verify the
effectiveness of the proposedmethod in this paper. Com-
pared with the classical correlation method in [8] and
the time division method in [10], both the FS’s error
probability and the symbol detection (SD)’s bit error
rate BER) are reduced with the same energy consump-
tion. In addition, the proposed FS presents its robustness
against the impacts of parameters.

The remainder of this paper is structured as follows:
In Section II, we describe the system model. The ELM-based
FS using superimposed training method is presented in
Section III, followed by the experimental results and analysis
are illustrated in Section IV. Finally, Section V concludes our
work.
Notations: Bold face upper case and lower case letters

denote matrix and vector respectively. (·)T , (·)H , (·)†, denote
the transpose, conjugate transpose, and matrix pseudo-
inverse, respectively. ‖·‖2 is the Frobenius norm. |x| denotes
the absolute value of x and |x| denotes the absolute value
operation to the entry-wise of vector x.

II. SYSTEM MODEL
At the receiver, the received M × 1 complex-valued signal
vector, denoted as y, can be expressed as

y = H̃xext + n, (1)

where n ∈ CM×1 represents the complex additive
white Gaussian noise (AWGN) vector with zero-mean and
σ 2-variance entries. x̃ext ∈ C(2N−L+1)×1 denotes the
extended vector of transmitted signal with nonlinear
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distortion, which can be given by

x̃ext =

0, · · · , 0︸ ︷︷ ︸
τ

, x̃T , 0, · · · , 0︸ ︷︷ ︸
N−L−τ+1

T , (2)

where N and L are the size of search window and the number
of multi-path, respectively. The unknown frame boundary
offset is denoted as τ , whose range is 0 ≤ τ ≤ N − L + 1.
In (2), x̃ = [̃x1, x̃2, · · · , x̃N ]T denotes the distorted transmit-
ted signal and can be expressed as

x̃ = fdis (x) , (3)

where fdis(·) represents the influence of nonlinear distortion.
x = [x1, x2, · · · , xN ]T is the superimposed transmitting
signal without nonlinear distortion, which can be given by

x =
√
ρEs+

√
(1− ρ)Ec, (4)

where ρ ∈ [0, 1] represents the power proportional coef-
ficient (PPC), E denotes the transmitted power of superim-
posed transmitting signal. s ∈ CN×1 is the training sequence
and c ∈ CN×1 is the modulated data symbol.
The complex matrix H ∈ CM×(2N−L+1) given in (1) is an

M × (2N − L + 1) cyclic matrix, which can be defined as

H =



h1 0 · · ·

... h1
. . .

hL
...

. . .

0 hL
. . .

... 0
. . .

...
. . .


, (5)

where h = [h1, h2, · · · , hL]T denotes the finite CIR vector
of L samples memory, and hl represents the complex-valued
channel impulse response (CIR) of the lth path, l =
1, 2, · · · ,L.
With the received signal y given in (1), we employ

ELM network to implement FS using superimposed training,
as well as reducing the influence of nonlinear distortion.

III. ELM-BASED FS
The performance of FS is seriously degraded by the influence
of nonlinear distortion. To conquer this difficulty, the ELM
network is introduced into FS using superimposed training
due to its prominent ability to cope with nonlinear distor-
tion [10]. In the following subsections, we first present the
pre-processing of FS in Section III-A. Then, the ELM-based
FS method is given in Section III-B.

A. PRE-PROCESSING FOR FS
In wireless systems, the FS is usually difficult to obtain,
especially for nonlinear distortion scenarios. In particular,
the error probability of DL-based timing synchronization is
far higher than that of matched filtering in [26]. Similar
behaviors are also observed in ELM-based FS experiments.

TABLE 1. Training procedure.

Thus, a pre-processing of FS is employed to coarsely cap-
ture the features of SM. According to [8], by using the
cross-correlation based method, the SM vector g ∈ RN×1

can be expressed by

g =
∣∣∣SHy∣∣∣2. (6)

Here, theM × N complex matrix S can be written as

S =



s1 0 · · ·

... s1
. . .

sN
...

. . .

0 sN
. . .

... 0
. . .

...
. . .


, (7)

where si, i = 1, 2, · · · ,N , represents the ith entry of train-
ing sequence s. Need to be mentioned that, besides the
cross-correlation based SM in (6), other SMs can also be
applied in our method with the similar processing.

In order to standardize the training of ELM network, the g
given in (6) is normalized as

g = g
/
‖g‖2. (8)

With the normalized SM (i.e., g), an ELM network is
utilized to conquer nonlinear distortion and improve SMs for
superimposed training-based FS, which is described in the
following subsection.

B. ELM-BASED FS
The ELM-based network is employed to improve SMs
and decrease the influence of nonlinear distortion. The
ELM-based FS includes offline and online procedures, which
are elaborated in TABLE 1 and TABLE 2, respectively. The
offline training procedure is described as follows.

1) OFFLINE TRAINING SPECIFICATION
The offline procedure is elaborated in TABLE 1. In the
following, we first describe the data collection for ELM-net
training.
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TABLE 2. Online procedure.

• Data Collection For ELM-Net training
For ELM-net training, Nt samples of input signals and

offset labels, denoted by
{(
gi,Ti

)}
, i = 1, 2, · · · ,Nt are

collected to form a training set. According to the Nt collected
gi forms the input matrix g ∈ RN×Nt , which can be written
as

g =
[
g1, g2, · · · , gNt

]
. (9)

Similarly, Nt offset label vectors Ti are converted to con-
struct the target outputmatrixT ∈ RN×Nt , which can be given
by

T =
[
T1,T2, · · · ,TNt

]
, (10)

where the labelTi can be encoded according to one-hot mode,
i.e.,

Ti =

0, · · · , 0︸ ︷︷ ︸
τi

, 1, 0, · · · , 0︸ ︷︷ ︸
N−τi−1


T

, (11)

where τi is the ith sample’s frame boundary offset.
In this paper, the input weights W ∈ RÑ×N and hidden

layer biases b ∈ RÑ×1 of ELM network (with Ñ hidden
neuron number) are respectively randomly chosen, which
is similar to the standard process of ELM network [21].
It should be noted that the initial values of W and b have a
certain impact on the FS performance, we mainly investigate
the FS method in this paper. Admittedly, initial values can
further improve the FS’s error probability and SD’s BER.
Then, the input weights W and hidden layer biases b are
saved in storage space for later use in the offline and online
procedure.
• Networking Training
As shown in TABLE 1, during the training procedure,

the training data-set {(g,T)}, input wights W and hidden
layer biases b are gradually loaded from storage space. Then,
with {(g,T)},W and b, the output matrix of the hidden layer
H ∈ RÑ×Nt can be given by

H = σ (Wg+ b) , (12)

where σ (·) represents the activation function, e.g., sig-
moid [31], hyperbolic tangent [32], rectified linear units

(ReLU) [33], etc. The sigmoid is used in this ELM net-
work [21]. The objective of ELM network is actually to find
the suitable output weights ϒ ∈ RN×Ñ to approximate the
target output matrix T, which can be expressed as [20]

T = ϒH, (13)

where ϒ =
[
ϒ1, · · · , ϒk , · · · , ϒÑ

]
, ϒk denotes the output

weighting vector connecting the kth hidden neuron and the
output neurons. The LS solution ϒ̂ of T = ϒH with mini-
mum norm of output weights ϒ is given by [20]

ϒ̂ = min
ϒ
‖ϒH− T‖ = TH†, (14)

the output weighting matrixϒ is learned from offline training
of ELM network, which is saved in storage space for online
running.

2) ONLINE DEPLOYMENT
With the learned ELM-based network parameters, the online
running procedure can be implemented in this subsection,
which is shown in TABLE 2.

With the input metric vector q, which can be obtained by
employing the preprocessing procedure according to (6)-(8),
the learned output weights ϒ , the random input weights W
and hidden layer biases b, the ELM network output O ∈
RN×1 can be written as

O = ϒ · σ (Wq+ b) , (15)

where O = [o1, o2, · · · , oN ]T , and the estimation of frame
boundary offset can be expressed as

τ̂ = argmax
1≤j≤N

|oj|2. (16)

With the estimation from (16), the FS is completed by
acquiring the frame’s starting point τ̂ , After FS, the SD is
performed, and the detected symbol ĉ can be represented as

ĉ =
x̃est −

√
ρEs

√
1− ρ

, (17)

where x̃est denotes the estimation of superimposed
transmitting signal in the scenario of nonlinear distortion, and
can be obtained by

x̃est = H†y. (18)

The FS and SD can be achieved according to (6)-(18),
which improve SMs and address the issues about multi-path
interfere and nonlinear distortion.

IV. EXPERIMENTAL ANALYSIS
In this section, numerical results of the proposed ELM-based
FS using superimposed training are given. Firstly, basic
parameters and definitions involved in simulations are given
in Section IV-A. Then, in Section IV-B, the FS’s error proba-
bility and SD’s BER of the proposed scheme with nonlinear
distortion are shown to verify the effectiveness of the pro-
posed ELM-based FS, followed by the robustness of improve-
ment with different parameters is discussed in Section IV-C.
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At last, the computational time complexity is analyzed in
Section IV-D.

A. PARAMETER SETTING
In the simulations, the basic parameters are set as N =

512, M = 2N = 1024, Ñ = 10N = 5120 [20], [34],
L = 8, and Nt = 105. The Zadoff-Chu sequence [35] is
employed as the training sequence s. For the time-division
method in [10], Ns = 16 is considered as the length of
training sequence. By referencing [22] and considering the
total performance of FS’s error probability and SD’s BER,
ρ = 0.3 is adopted in this paper. Themodulated data symbol c
is formed according to the symbol of quadrature-phase-shift-
keying (QPSK)modulation. For the channelmodel, themulti-
path Rayleigh fading channel with an exponentially-decayed
power coefficient η = 0.2 is considered, where each of the
following L − 1 paths is set as zero-valued with a probability
of 0.5 beside the first path to keep the same situation as [9]
and [10]. For the sake of fair comparison, we assume the
superimposed FS and the time-division FS consume the same
energy for transmitting symbols.

Definitions involved are listed as follows. The signal-to-
noise ratio (SNR) in decibel (dB) is defined as [36]

SNR = 10log10

(
E
σ 2

)
. (19)

For nonlinear distortion, the HPA effect is taken into account
in these simulations. The nonlinear amplitudeA (x) and phase
8(x) are obtained by [37]

A (x) =
αax

1+ βax2
,8 (x) =

αφx2

1+ βφx2
, (20)

where αa = 1.96, βa = 0.99, αφ = 2.53, and βφ = 2.82 are
considered in the experiments according to [37]. To measure
the distortion intensity, the error vector magnitude (EVM) is
used in this paper, which is expressed as [38]

EVM (%) =

√√√√√√√√
N∑
n=1
|̃xn − Rn|2

N∑
n=1
|Rn|2

, (21)

where x̃n is the n-th distorted symbol through HPA, which
denotes the HPAworkings in saturated region. Rn denotes the
desired linear outputs of HPA given the same input without
amplification distortion. In this paper, the EVM is set as
EVM = 35% except for the robustness analysis against
EVMs.

For simplicity, ‘‘Prop’’, ‘‘TD_Corr’’, ‘‘TD_ELM’’, and
‘‘Sup_Corr’’ are used to denote the proposed ELM-based
superimposed FS, the correlation-based time-division FS
in [8], the ELM-based time-division FS in [10], and
the correlation-based superimposed FS method in [22],
respectively.

FIGURE 1. Error probability of FS vs. SNR, where N = 512, L = 8 and
EVM = 35%.

FIGURE 2. BER vs. SNR, where N = 512, L = 8 and EVM = 35%.

B. FS AND SD PERFORMANCE
To validate the effectiveness of proposed ELM-based FS
using superimposed training, the error probability of FS and
BER of SD under different SNRs are illustrated in Fig. 1 and
Fig. 2, respectively.

The effectiveness of the error probability of FS is presented
in Fig. 1. It could be observed that the ‘‘Prop’’ reaches
the smallest error probability among different methods. This
reflects the ‘‘Prop’’ obtains the best performance of error
probability for FS, and thus can work well in the scenarios
of nonlinear distortion. In addition, some insights of FS with
nonlinear distortion can be achieved in Fig. 1. Firstly, the error
probability of ‘‘Sup_Corr’’ is smaller than that of ‘‘TD_Corr’’
with the same energy consumption, which embodies the
superiority of superimposed FS compared with time division
FS. Secondly, for relatively high SNR (e.g., SNR > 6dB),
the ‘‘TD_ELM’’ has a smaller error probability of FS than
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FIGURE 3. Error probability of FS and BER against the impact of EVM, where EVM = 35%, EVM = 40%, EVM = 45%, and EVM = 50% are considered,
respectively.

those of ‘‘Sup_Corr’’ and ‘‘TD_Corr’’. That is, the ELM
network effectively suppresses the nonlinear distortion for
time division FS in [8], and the ELM-based time-division FS
can further obtain better performance of error probability than
that of superimposed FS in [22]. Although the ELM-based
time-division FS has shown its effectiveness to suppress the
nonlinear distortion, it can only be effective in a relatively
high SNR region, and the merits of superimposed FS have not
been developed. The ‘‘Prop’’ develops the merits of superim-
posed training and ELM network, and thus obtains the small-
est error probability of FS in all given SNR region. Therefore,
the combination of superimposed training and ELM network
in ‘‘Prop’’ possesses its effectiveness to improve the error
probability of FS in the scenarios of nonlinear distortion.

Since the training sequence s is superimposed on the mod-
ulated data symbol c, it needs to be verified whether the
superimposed interference (from the superimposed training)
degrades the detection performance of data symbols. In this
paper, the BER of SD is used to measure the detection per-
formance and is plotted in Fig. 2. From Fig. 2, the ‘‘Prop’’
achieves the smallest BER for almost all given SNRs. Thus,
for the same energy consumption, the superimposed inter-
ference does not degrade the BER performance. On the
contrary, the BER of ‘‘Prop’’ effectively benefits from the
proposed FS, especially for the relatively high SNR region
(e.g., SNR > 10dB). That is, with simple processing of
interference cancellation given in (17), the ‘‘Prop’’ achieves
the best BER performance among all given FS methods.
In particular, the advantages of superimposed training and
ELM network can be separately demonstrated from Fig. 2.
Without using superimposition approaches, ‘‘TD_ELM’’
obtains smaller BER than that of ‘‘TD_Corr’’, which reflects
the effectiveness of ELM network to deal with nonlinear

distortion. We can also observe that the BER of ‘‘Sup_Corr’’
is smaller than that of ‘‘TD_Corr’’. That is, the superimposed
training used in ‘‘Sup_Corr’’ is useful to improve the BER
performance of ‘‘TD_Corr’’. Thus, by combining the super-
imposed training and ELM network, the BER performance is
improved.

As a whole, compared with the ‘‘TD_Corr’’, ‘‘TD_ELM’’,
and ‘‘Sup_Corr’’, both the FS’s error probability and the SD’s
BER in the scenarios of nonlinear distortion are improved
by ‘‘Prop’’. Especially, compared with the ‘‘TD_Corr’’ and
‘‘TD_ELM’’, the ‘‘Prop’’ can obtain the chance to trans-
mit more data symbols, and thus can further improve the
spectrum efficiency. By the way, with different modulation
conditions (e.g., BPSK and 16QAM), the proposed method
still improves the FS’s error probability and SD’s BER from
Fig. 1 and Fig. 2.

C. ANALYSIS OF PARAMETER IMPACT
In this subsection, the robustness of the proposed scheme
against parameter variation is analysed. The impact of EVM
is first discussed, followed by the number of multi-path
(i.e., L), the transmitted frame-length N , and the PPC ρ. It is
worth noting that, besides the change of the impact parameter
(i.e, EVM, L, N , and ρ), other basic parameters remain the
same as those given in Section IV-A during the simulations.

1) IMPACT OF EVM
EVM is usually used to measure the distortion intensity.
To analyze the robustness of the proposed method against
different distortion intensities, Fig. 3 respectively plots the
curves of FS’s error probability and SD’s BER with different
EVMs (i.e, EVM = 35%, EVM = 40%, EVM = 45%, and
EVM = 50%).
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FIGURE 4. Error probability of FS and BER against the impact of L, where L = 4, L = 6, L = 8, and L = 10 are considered, respectively.

From Fig. 3, compared with those of ‘‘TD_Corr’’,
‘‘TD_ELM’’, and ‘‘Sup_Corr’’, the ‘‘Prop’’ method achieves
the smallest error probability for each given EVM. That is,
relative to the existing methods, the proposed FS scheme
still improves the FS’s error probability against varying
EVMs. With the increase of EVM, the FS’s error probabili-
ties for all curves in Fig. 3 (i.e., ‘‘TD_Corr’’, ‘‘TD_ELM’’,
‘‘Sup_Corr’’, and ‘‘Prop’’) increase due to the rise of dis-
tortion intensity. However, the FS’s error probability of
‘‘Prop’’ is smaller than those of ‘‘TD_Corr’’, ‘‘TD_ELM’’,
and ‘‘Sup_Corr’’, especially for the high SNR region. This
reflects the proposed scheme can improve the FS’s error
probability against varying EVMs.

For the SD, Fig. 3 shows the BER of ‘‘Prop’’ is smaller
than those of ‘‘TD_Corr’’ and ‘‘Sup_Corr’’ in almost all given
SNR regions. Especially, in a relatively high SNR region, e.g.,
SNR ≥ 12dB, we can observe the BER of ‘‘Prop’’ is smaller
than those of ‘‘TD_Corr’’, ‘‘Sup_Corr’’, and ‘‘TD_ELM’’.
Thus, for different EVMs, the ‘‘Prop’’ achieves similar or
better BER performance.

As a result, against the impact of EVM, the ‘‘Prop’’ pos-
sesses its robustness for improving FS’s error probability and
SD’s BER.

2) IMPACT OF L
The FS’s error probability and SD’s BER are usually
impacted by the number of multi-path (i.e., L). To demon-
strate the robustness of the proposed FS scheme against the
impact of L, the error probability of FS and BER of SD curves
are given in Fig. 4, where L = 4, L = 6, L = 8, and L = 10
are considered, respectively.

From Fig. 4, relative to the ‘‘TD_Corr’’, ‘‘TD_ELM’’,
and ‘‘Sup_Corr’’, the ‘‘Prop’’ achieves the minimal error
probability of FS for each given L. This reflects the ‘‘Prop’’

improves the FS’s error probability of the existing meth-
ods with the variations of L. In addition, with the increase
of L, the FS’s error probabilities of ‘‘Prop’’, ‘‘TD_Corr’’,
‘‘TD_ELM’’, and ‘‘Sup_Corr’’ rise with the enlargement of
multi-path interference. Even so, the ‘‘Prop’’ still presents the
ability to cope with the nonlinear distortion and multi-path
interference under different values of L, and thus obtains the
smallest FS’s error probability. As a whole, against the impact
of L, the ‘‘Prop’’ can robustly reduce FS’s error probability.

From the curves of SD’s BER in Fig. 4, the ‘‘Prop’’
achieves the smallest BER for relatively large L (e.g., L ≥ 8).
This reflects the ‘‘Prop’’ possesses better BER performance
comparedwith the existingmethodswhen L ≥ 8. For the case
where 4dB≤ SNR ≤ 12dB and L = 4, the BER of ‘‘Prop’’
is slightly higher than that of ‘‘TD_ELM’’. This is because
the ‘‘TD_ELM’’ consumes additional bandwidth resources to
avoid the superimposed interference of ‘‘Prop’’. Moreover,
the ELM network is also employed by ‘‘TD_ELM’’, and
thus effectively suppresses the nonlinear distortion as well.
Nevertheless, compared with ‘‘TD_ELM’’ for the case where
4dB ≤ SNR ≤ 8dB, the ‘‘Prop’’ has only slightly higher
BER, while transmitting more data symbols to obtain higher
spectrum efficiency. Besides, the BER of ‘‘Prop’’ is still
smaller than that of ‘‘TD_ELM’’ when SNR ≥ 12dB.
To sum up, against the impact of L, the ‘‘Prop’’ can

effectively reduce the FS’s error probability and SD’s BER,
especially for the cases of relatively large L and relatively
high SNR.

3) IMPACT OF N
Usually, the FS’s error probability and SD’s BER perfor-
mance are influenced by the frame-length, i.e., N . To validate
the robustness against the impact of N , the error probability
of FS and BER of SD are illustrated in Fig. 5 with different
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FIGURE 5. Error probability of FS and BER against the impact of N , where N = 256, N = 512, N = 768, and N = 1024 are considered, respectively.

values of N (i.e., N = 256, N = 512, N = 768, and
N = 1024).
From Fig. 5, for the cases where N = 512, N = 768, and

N = 1024, the ‘‘Prop’’ obtains a smaller FS’s error probabil-
ity than those of ‘‘TD_Corr’’, ‘‘TD_ELM’’, and ‘‘Sup_Corr’’.
This reflects the ‘‘Prop’’ could reduce the error probability of
FS against the varying N . When N = 256 and SNR ≤ 8dB,
the ‘‘Prop’’ can still obtain the minimum error probability
of FS to embodies the robustness against the impact of N .
However, for SNR ≥ 10dB, such situation could not be held.
As can be seen in Fig. 5(a), the FS’s error probability of
‘‘Prop’’ is higher than that of ‘‘TD_ELM’’. This is because
the ‘‘TD_ELM’’ can also suppress the nonlinear distortion as
that of the ‘‘Prop’’, while the relatively shortN brings ‘‘Prop’’
the difficulty to combat the superimposed interference from
the data symbol c. Even so, compared with the ‘‘TD_ELM’’,
the ‘‘Prop’’ saves the bandwidth resources and significantly
reduces FS’s error probability in a relatively low SNR region
(e.g., SNR ≤ 8dB). In particular, relative to the ‘‘TD_ Corr’’
and ‘‘Sup_Corr’’, the ‘‘Prop’’ clearly reduces the error proba-
bility of FS for all given SNRs. In addition, with the increase
of N , the FS’s error probability of ‘‘Prop’’ decreases. This
reflects the elongated N can effectively suppress the super-
imposed interference of the ‘‘Prop’’, due to the elongation of
the superimposed training sequence s.
Compared with ‘‘TD_ELM’’, ‘‘TD_Corr’’, and

‘‘Sup_Corr’’, the ‘‘Prop’’ has similar or smaller BER, which
demonstrates the ‘‘Prop’’ obtains the similar or better SD’s
BER performance with different values of N . Relative to
‘‘TD_Corr’’ and ‘‘Sup_Corr’’, the ‘‘Prop’’ reduces the BER
for each given N , especially in relatively high SNR region
(e.g., SNR ≥ 10dB). Meanwhile, for the case where

TABLE 3. Time complexity comparison.

N = 256 and 0dB≤ SNR ≤ 10dB, the ‘‘Prop’’ obtains
similar BER performance as that of ‘‘TD_ELM’’. When
SNR ≥ 10dB, the BER of ‘‘Prop’’ is slightly higher than that
of ‘‘TD_ELM’’. The reasons are given as follows. On the
one hand, the nonlinear distortion is also suppressed by
employing the ELM network in ‘‘TD_ELM’’. On the other
hand, the ‘‘TD_ELM’’ consumes additional bandwidth to
avoid superimposed interference. Moreover, the correspond-
ing FS’s error probability of ‘‘TD_ELM’’ is smaller than that
of ‘‘Prop’’, which also deteriorates the SD’s BER perfor-
mance. Even so, the ‘‘Prop’’ can save the bandwidth resource
and obtains similar BER performance as that of ‘‘TD_ELM’’
when N = 256. Especially, for relatively large N (e.g.,
N ≥ 512), the ‘‘Prop’’ can achieve lower BER than that of
‘‘TD_ELM’’ when SNR ≥ 12dB.
On awhole, with the varying ofN , the ‘‘Prop’’ can improve

the performance of FS’s error probability and SD’s BER, and
this improvement possesses good robustness.

D. COMPLEXITY ANALYSIS
The training time and online running time between the
correlation-based superimposed FS method in [10] (i.e.,
‘‘TD_ELM’’) and the proposed ELM-based superimposed
FS (i.e., ‘‘Prop’’) are illustrated in TABLE 3 to compare the
computational time complexity.

For a fair comparison, 105 experiments are conducted
for ‘‘Prop’’ and ‘‘TD_ELM’’ on the same server with Intel
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Xeon(R) E5-2620 CPU 2.1GHz_16 by using Matlab soft-
ware, respectively. During the experiments, only running time
is considered, (i.e., the time to generate data sets and through
channel is not included). From TABLE 3, in the training
phase, the ‘‘TD_ELM’’ consumes about 19.6 minutes, while
the ‘‘Prop’’ costs about 20.2 minutes. In the online running
stage, the ‘‘TD_ELM’’ consumes about 11.6 minutes, and
the ‘‘Prop’’ costs about 11.7 minutes. We can see that the
average training and online running time of ‘‘Prop’’ is slightly
more than that of ‘‘TD_ELM’’ in each experiment, while
the ‘‘Prop’’ improves the spectrum efficiency with similar or
better performance of FS’s error probability and SD’s BER
relative to the existing methods.

V. CONCLUSION
In this work, we integrated superimposed training-based FS
and ELM network to investigate an ELM-based FS scheme
using superimposed training in nonlinear distortion scenarios.
Firstly, a preprocessing procedure is employed to coarsely
reap the features of SM. Then, an ELM network is introduced
to conquer the impact of nonlinear distortion and to obtain
the estimation of frame boundary offset. Compared with
some existing methods, the proposed method can improve the
error probability of FS and BER of SD, and those improve-
ments are robust against parameter variation. In future works,
we will investigate the generalization method of ELM-based
FS to alleviate the difference between the data set from
simulation and the data set in real scenarios.
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