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ABSTRACT In this study, a new approach using a novel ensemble classification algorithm based on ECG
morphological features is proposed for accurate detection of heart ventricular and atrial abnormalities. First,
the raw ECG signal is preprocessed and the main character waves are detected. Second, a combination of
ECG morphological features is proposed and extracted from the selected ECG segments. The proposed
feature set contains morphological parameters, morphological visual pattern of QRS complex, and principle
components of the third level and fourth level of a four-level Sym8 wavelet-decomposed ECG waveform.
Next, a novel ensemble classification algorithm, with the key idea of integrating the knowledge acquired
by several popular classification algorithms for this task into an ensemble system, is proposed so that the
accuracy and robustness over various arrhythmia types could be improved. Finally, the features are applied to
the proposed ensemble classification algorithm for abnormality detection. The proposed approach achieved
an overall accuracy of 98.68%when it was validated on fifteen heartbeat types from theMIT-BIH arrhythmia
database (MITDB), according to the Association for Advancement of Medical Instrumentation (AAMI)
standard. The classification accuracies of the six main types – normal beat (N), right bundled branch blocks
beat (R), left bundled branch blocks beat (L), atrial premature beat (A), premature ventricular contractions
beat (V), and paced beat (P) are 98.75%, 99.77%, 99.70%, 94.81%, 98.57%, and 99.94%, respectively. The
proposed approach proves a solid result in comparison with component classification algorithms as well as
recent peer works.

INDEX TERMS Classification, ECG morphology, Feature extraction.

I. INTRODUCTION
According to a recent report of the World Health Organi-
zation (WHO), cardiovascular disease (CVD) is the leading
cause of noncommunicable disease deaths, which takes an
estimated 17.9 million lives each year, accounting for 44% of
all deaths from noncommunicable diseases in the world [1].
A great number of cardiac arrests are associated with cardiac
arrhythmias, which are caused by abnormal formation and
conduction of electrical impulses through the myocardial
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tissue [2]. Therefore, early and timely detection of cardiac
arrhythmia is crucial for saving people’s lives.

The heart rhythm is controlled by an electrical impulse
originated from the atrial sine node (SA node) located in the
right atrium of the heart. The electrical activity propagating
all over the heart causes electrical potential difference on
the skin surface which could be measured with electrodes
added to patient’s body surface and graphically recorded in
Electrocardiogram (ECG).

ECG is a well-known technique for non-invasively mea-
suring the cardiac activity of a patient. A typical normal
ECG cycle is composed of several individual components
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(P wave, Q wave, R wave, S wave, T wave, and U wave)
and is generally reflected by time-domain features, such as
amplitude, duration, interval, and segment [3], as illustrated
in Fig. 1. The character waves are formed by the successive
atrial depolarization and ventricular depolarization [4]. Since
cardiac arrhythmias can alter the origin of the electrical stim-
ulus and the subsequent physiological diffusion in the heart,
the heart ventricular and atrial abnormalities could cause
irregular waveforms of ECG through which different types of
cardiac arrhythmias, e.g., premature ventricular contraction
beat (V), atrial premature beat (A), and right bundled branch
blocks (R), could be diagnosed.

FIGURE 1. A general structure of an ECG signal waveform.

Since it is a tedious process to manually identify heartbeats
in long-termECG recording, computer-aided cardiac arrhyth-
mia detection system provides a high-efficient way for heart
ventricular and atrial abnormalities diagnosis.

A. RELATED WORKS
Accurate detection of arrhythmia based on ECG signal
depends on the following three steps: 1) preprocessing of
the ECG signals, 2) feature extraction, and 3) heartbeat
classification.

Since raw ECG signals could be contaminated by interfer-
ence of various biological and environmental noises, prepro-
cessing should be performed in the first place. A branch of
filtering techniques has been successfully applied to the ECG
denoising application. The commonly used methods includes
wavelet transform [5], [6], band-pass filter [7], empirical
mode decomposition (EMD) [8], adaptive filter [9], and
independent component analysis (ICA) [10]. For instance,
Alqudah et al. have applied Butterworth band-pass filters
within a range of [0.1, 100] Hz to remove the baseline wander
and the high frequency interference [7]. Daubechies wavelet
filters have been employed for ECG denoising in [6].

After removing the noises contained in the ECG sig-
nals, various features and corresponding extraction methods
have been proposed by researchers. In general, features can
be extracted from two main sources: original ECG signal
(time-domain) and transformations of ECG signal.

The most well-known feature extracted from original
ECG signals is the RR interval which is the time interval
between two successive R waves [11]. Besides, [12] and [13]

have reported that using RR-related features, for example,
local-RR and average-RR, can also improve the detection
accuracy. The other time-domain features are mainly focused
on the morphological variations of the ECG character waves,
such as parameters about amplitude, PP interval, PR interval,
P-wave duration, QRS-complex duration, slope, area, length
of curve, and heart rate variability (HRV) [9], [10], [14]–[21].
For example, an average accuracy of 86.66% in arrhythmia
detection was achieved using intervals, amplitudes, and mor-
phological distance by Zhang et al. [21]. The main advan-
tage of using amplitudes, intervals and durations as features
is that these parametric features have been widely used in
clinical practice. However, these measures are very sensitive
to noise and do not contain information about the waveform
complexity [22].

On the other hand, several features could be extracted
through implementing transformation of ECG signal, such
as discrete wavelet transform (DWT), power spectrum, hex-
adecimal local pattern (HLP), and structural co-occurrence
matrix (SCM) [16], [23]–[29]. For example, literature [27]
has reported that the arrhythmia classification result could
be improved via use of power spectrum density of the
wavelet-transformed ECG signals. In [25], HLP technique
was adopted to extract pattern features from DWT sub-bands
of a thousand ECG fragments, resulting an accuracy of 95%.
It should be noted that DWT has become as one of the
most popular and frequently used methods for ECG feature
extraction because of its advantage in multi-resolution
analysis [23], [24], [26]. Many statistical features, e.g., mean,
variance, and standard deviation, could be calculated from
coefficients of DWT [26], [30]. Moreover, ICA, principle
component analysis (PCA) and genetic algorithm (GA) were
adopted for reducing the dimension of the features [31]–[35].
In [36], an accuracy of 94.52% was obtained in recognition
of five heartbeat types using high order spectral (HOS) cumu-
lants with PCA.

Afterwards, the feature vectors are used as input to train
an appropriate classifier. Numerous classification algorithms
have been adopted for ECG heartbeat classification, for
example, support vector machine (SVM) [16], [37], deci-
sion tree (DT) [38], [44], logistic regression [39], K-nearest
neighbors (KNN) [31], [42], linear discriminant [40], neural
network (NN) [16], and neuro-fuzzy system [41], among
which KNN, NN, DT, and SVM have been widely used for
ECG analysis. Literature [42] reported that a better accuracy
(99.30%)was obtained usingKNN thanNN and SVM in clas-
sifying nine types of heartbeats. Jha and Kolekar [43] have
employed SVM to classify eight types of heartbeats using the
coefficients at the sixth level of tunable Q-wavelet transform
as features. Mohanty et al. [44] have demonstrated that by
using decision tree algorithm based on temporal, spectral,
and statistical features, an accuracy of 97.02% was achieved
in classification of three types of ventricular arrhythmias.
However, due to use of different ECG feature sets, heartbeat
types, as well as, different data size, it is not easy to make a
direct comparison among these classifiers.
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FIGURE 2. The block diagram of the proposed approach.

Recently, many deep-learning based classification
approaches, such as convolutional neural network (CNN),
have also been applied for ECG heartbeat classifica-
tion [45]–[49]. For example, Sannino and De Pietro [65]
have reported that using a deep neural network (DNN) based
classification could obtain promising result on a testing set of
two heartbeat types. Literature [47] has achieved 95.78% of
accuracy based on CNN in categorizing heartbeats from five
types. Deep-learning based approach has the ability to learn
abstract features [46]. However, a deep learning approach
involves some well-known issues, such as, low interpretabil-
ity, the necessity of a more extensive database, and require-
ment of optimization of numerous parameters [16], [49].

Although many studies have shown promising results in
cardiac arrhythmia classification, due to differences in theory
and the structure of classifiers belonging to different algo-
rithm families, achieving similar results from these classi-
fiers given a common ECG features and training and testing
datasets, cannot be expected. In addition, even if the classifi-
cation accuracy of a classifier for certain type of heartbeat is
superior to other classifiers, the performance characteristics
may not generalize on other types of heartbeats. On the other
hand, many features with mathematical interpretations are
lack of physiological meaning and could not allow physicians
to comprehend intuitively. Therefore, we still have a longway
to go before reliable method could be applied in clinical prac-
tice, which implies that more accurate and stable algorithms
should be developed.

In order to increase the accuracy and robustness of the
classification algorithm, this work proposes a novel approach
for detection of heart ventricular and atrial abnormalities
using a novel classification algorithm based on ensemble
learning and ECG morphological features. And then, the

performance of our proposed approach is compared with the
component classification algorithms as well as other existing
high-performance works.

The main contribution of this paper is summarized
as follows: 1) a novel cardiac arrhythmia classification
algorithm, called KSMAX, is proposed to increase the classi-
fier’s ability of generalizing against various arrhythmia types;
2) extraction of ECG morphological feature sets mostly on
physiological meaning to improve interpretability and dis-
criminating capability of the arrhythmia classification sys-
tem; 3) assessment on a large dataset and 15 heartbeat types;
4) a comparison study of classification performance among
several most popular classification algorithms for this task
based on the common feature sets and data; 5) a reliable
method for cardiac arrhythmia detection with high perfor-
mance as well as physiological meaning.

II. METHODS
The proposed arrhythmia detection approach is illustrated
with a block diagram as shown in Fig. 2. It involves
the following three steps: preprocessing and segmentation,
ECG morphological feature extraction, and heartbeat
classification.

A. PREPROCESSING AND SEGMENTATION
The proposed approach employ the benchmark Pan-Tompkins
algorithm [50] in this stage. First, a band-pass filter is used
to reduce noise interferences from the raw ECG signals.
Next, the slopes of QRS complexes are highlighted using the
derivative operator. Then, a squaring operation emphasizes
the higher values. Subsequently, a moving window integra-
tor (MWI) acquires the onset, offset, and duration of each
QRS complex. At last, the R peak point is attained by
applying threshold adjust.
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FIGURE 3. Example of ECG pattern for similar arrhythmia with type annotations on each R peak: ‘L’ and ‘/’ denote left branch block beat and paced
beat, respectively.

Since each P wave is of a duration 0.11 ± 0.02
seconds [52], 0.20 seconds (72 samples with a sampling
frequency of 360 Hz) before QRS onset are adopted
as P wave. The P wave onset and P wave offset are acquired
using local distance transform method, while peak point of
each P wave is identified as the center of average integral.

B. ECG MORPHOLOGICAL FEATURE EXTRACTION
Unlike normal heartbeat, heartbeat with heart ventricular and
atrial abnormalities, such as, blocked areas within ventricle,
and ectopic centers, can cause irregular ECG waveforms,
through which physicians can diagnose different types of
cardiac dysfunctions [20]. In other word, ECG morphology
plays an import role in accurate diagnosis. Hence, in order
to increase the interpretability of the arrhythmia detection
system and to yield prediction results closely to those of the
medical experts, this study mainly extract those features with
physiological meaning from ECG morphology in various
forms.

1) PARAMETER-BASED MORPHOLOGICAL FEATURES
As illustrated in Fig. 1, many clinical studied parametric
features could be extracted from character waves.

The morphological parameters of P wave are effective
predictors of atrial abnormalities, such as right or left atrial
hypertrophy. Therefore, P wave amplitude, P wave dura-
tion, and PP interval are contained as features in this work.
Besides, PR interval, also referred as PQ interval, which
depicts how fast the electrical impulse conducts through the
AV (atrioventricular) node to the ventricles, is added to the
feature vector as well. Normally, a PR interval ranges from

0.12 to 0.20 seconds [52]. A PR interval longer than normal
range usually indicates existence of transmission degrada-
tion from the starting of atrial contraction to the onset of
the ventricular contraction. Similarly, since QRS complex
reflects the electrical activity happening in ventricles, several
measures of the QRS complex, including RR interval, R wave
amplitude, and QRS duration are selected as the parametric
features for detecting ventricular abnormalities.

2) VISUAL-PATTERN-BASED MORPHOLOGICAL FEATURES
As the most remarkable component of an ECG cycle,
characteristics of QRS complex are the most utilized.
A normal QRS complex is composed of a downward
deflected Q wave, an upright R wave, and a downward S
wave. However, the morphology of QRS complex could
be deeply alternated if the ventricular myocytes contract
abnormally. For the same reason, the heartbeats of the same
arrhythmia type share similarity in waveform morphology,
as illustrated in Fig. 3. Consequently, the QRS-complex
morphology has been a stipulated predictor for diagnosing
arrhythmias in practice based on ECG [12], [19]. There-
fore, it is a routine for medical experts to diagnose various
arrhythmias through visually examining the ECG morphol-
ogy. In order to make advantage of this prior knowledge and
analyze the QRS-complexmorphological changes as a virtual
image, the QRS-complex visual morphology pattern (VMP-
QRS) is attained as one of the feature elements in this work,
using a K-means based adaptive clustering algorithm [51].

The procedure of obtaining VMP-QRS of each heartbeat is
summarized below.
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Step 1: Considering the sample frequency of ECG
records in MITDB [53] is 360 Hz, segment fifty samples
around R peak, with twenty samples before R peak and
twenty-nine samples after R peak, as the QRS complex. Then
standardize the obtained segments into Z-scores.

Step 2: Place the first instance x1 as the first cluster
centroid µ1 and set the created cluster number C to 1.
Step 3: Assign each instance xi, where i ∈ {1, 2, . . . ,L}

and L is the length of dataset, to the cluster δk whose
centroid µk has the minimum Euclidean distance dmin to xi,
provided dmin is not greater than a threshold Tc; and then
execute Step 5. Otherwise, execute Step 4.

Step 4: If C is less than an estimated cluster number
Cmax or min{d(δi, δj)} (i 6= j), i.e., the minimum Euclidean
distance between two clusters, is no less than dmin, create a
new cluster with xi as the centroid; otherwise, merge the two
nearest clusters before set xi as the centroid of a new cluster.
Step 5: Repeat Step 3 until centroids do not change.
By use of this method, it is possible to cluster QRS seg-

mentations into C patterns, with the number of the centroids
(i.e., C) changing adaptively based on the clustering process.
When the calculation accomplishes, the cluster label δi which
each QRS segmentation xi is assigned to is used as the visual
pattern feature.

3) WAVELET TRANSFORM-BASED MORPHOLOGICAL
FEATURES
Wavelet transform is a mathematic tool which decomposes
signal into frequencies by maintaining a space location.
Many literature has claimed wavelet transform as an effi-
cient method to analyze ECG signal because of its excel-
lent time-frequency localization andmulti-resolution analysis
characteristics [23], [24], [26]. In this paper, wavelet trans-
form was also adopted to extract efficient morphological fea-
tures from the most significant ECG character wave, i.e., the
QRS complex.

Mathematically, continuous wavelet transform (CWT) is
stated as (1):

WTx (a, b) =
〈
x (t) , ψa,b (t)

〉
=

1
√
|a|

∫
+∞

−∞

x (t)ψ∗
(
t − b
a

)
dt (1)

where x(t) is the original signal function; ψ(t) represents
wavelet basis function; a and b represent dilatation and
translation factors, respectively. Since CWT is computation-
ally complex and time-consuming, discrete wavelet trans-
form (DWT) is more often used in practice. If we set a = 2j

and b = k2j, we will obtain the wavelet basis function of
DWT as shown in (2):

ψj, k (t) =
1
√
2j
ψ
(
2−jt − k

)
(2)

There are two crucial parameters for the promising feature
extraction results: the selection of the wavelet basis func-
tion and the number of decomposition levels. In this work,
Symlet 8 (Sym8) wavelet basis function was chosen as

the wavelet basis function, because it is an approximately
symmetric compactly supported wavelet with a shape more
similar to the ECG morphology than other wavelet basis
functions. The wavelet function and scaling function form
of Sym8 wavelet basis function are shown in Fig. 4. On the
other hand, considering 90% of the ECG energy distributes
among 0.5 Hz to 45 Hz, where the energy of QRS complex
is mainly concentrated above the average frequency, a four-
level decomposition was utilized in the proposed method.
The corresponding pass band width at each level is listed
in Table 1.

FIGURE 4. Scaling function and wavelet function of the adopted
wavelet.

The decomposition of the signal can be implemented by
repetitive application of high pass filters and low pass fil-
ters. Fig. 5 illustrates a DWT structure based on a two-level
decomposition. As can be seen from Fig. 5, original signal
a0 passes through high pass filter g and low pass filter h to
produce high frequency sub-band component d1 and low fre-
quency sub-band component a1. d1 and a1 are named as detail
coefficients and approximation coefficients, respectively.
The decomposition process in J levels can be represented
as (3), (4):

a (k, j) =
∑
m

a (m, j− 1) h (m− 2k) (3)

d (k, j) =
∑
m

a (m, j− 1) g (m− 2k) (4)

FIGURE 5. DWT structure based on a two-level decomposition.

in which h and g represent scaling function and wavelet
function implemented by low pass and high pass filter respec-
tively; and a(k , j) and d(k , j) are the kth approximation and
detail coefficients at level j (j = 1, 2, . . . , J ).

Afterwards, the PCA is applied on both the third-level
and fourth-level detail coefficients to derive the important
information as several orthogonal principal components.
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TABLE 1. Pass band widths of the 4-level decomposition of ECG signal.

The main steps to perform PCA are as follows:
Step 1: Calculate the covariance matrix C from the data x

and its mean vector x̄ according to (5):

C = (x− x̄) (x− x̄)T (5)

Step 2: Determine the eigenvalues and eigenvectors of
matrix C. Arrange the eigenvalues λ in descending order,
for example, λ1 ≥ λ2 ≥ . . . ≥ λp. Arrange eigenvectors
corresponding to the eigenvalues as l1, l2, . . . , lp, then the
jth principal component Fj could be calculated by (6):

Fj = lTj x (j = 1, 2, . . . , p) (6)

Step 4: Calculate the contribution rate (i.e., variance
explained rate) Crj of the jth principal component and the
accumulative contribution rate Acrj (i.e., accumulative vari-
ance explained rate) of the first j principal components by (7)
and (8), respectively:

Crj =
λi∑ p
k=1λk

(j = 1, 2, . . . , p) (7)

Acrj =

∑ j
k=1λk∑ p
k=1λk

(j = 1, 2, . . . , p) (8)

In this work, we chose the principle components with
Cr value above 1% as the features of the corresponding
sub-bands.

C. HEARTBEAT CLASSIFICATION
The classification stage is vital to the accurate detection of
heart ventricular and atrial abnormalities. Although studies
have reported promising results obtained using the popular
classification algorithms, these classification algorithms may
attain different degree of success due to the fact that each
classification algorithm solves the recognition problem with
different structure and theory. Besides, it should be noted
that superior discriminating capability of an appropriately
designed classification algorithm to other rival classification
algorithms on certain type of heartbeat, cannot be expected
on other types of heartbeat arrhythmia.

To improve the entire classification performance, one solu-
tion is to integrate the knowledge acquired by the different
classification algorithms to increase the robustness against
uncertainties of datasets and arrhythmia types. To this end,
a novel ensemble classification algorithm which integrates
several types of popular classification algorithms for ECG
heartbeat classification task is proposed in this work. The
principles of each component classification algorithm and

our proposed ensemble classification algorithm are described
below.

1) NN
The NN is able to approximate certain function Y though
adjusting network weights among a set of inter-connected
perceptrons. For the implementation of neural network, the
multi-layer feed-forward perceptrons (MLP) was adopted in
this work. Suppose X is the input data, then the output at
iteration k , i.e., Yk , can be defined as (9):

Y k = f (X, W k ), (9)

whereWk represent the network weights upgraded according
to (10):

W k+1 = W k −

[
JT J + µI

]−1
JT e, (10)

in which J represents the Jacobian matrix with first derivative
of errors e in terms of the weight and µ is a dynamic param-
eter [54]. In this study, a MLP model consisting of one input
layer, one hidden layer with 28 perceptrons, and one output
layer was adopted by trial and error method. The training
stage was terminated after a fixed number of iterations (200).

2) SVM
SVM is well known as an efficient method widely used in
classification tasks. The SVM works in the high-dimension
feature space with a separating hyperplane. The separating
hyperplane is optimized in a way to maximize the distance
between the closest representatives of both classes and mini-
mize the empirical classification error [55]. Finally, the opti-
mal separating hyperplane can be represented by a decision
function formulated as (11), (12):

Y =
∑

wiK (x, xi)+ b (11)

K ( x, xi) = exp
(
−γ ‖x− xi‖2

)
, (12)

where xi denotes an instance of dataset {xi, i = 1, 2, . . . ,M},
K (x, xi) represents kernel function, wi is the synaptic weight
of the network generated by Lagrange multiplier, b is the bias
term [56].

This work uses LIBSVM [57] for building up a
SVM classifier. The error penalty factor C that controls over-
fitting was set as 32 and γ was equal to 0.02.
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3) KNN
KNN is a popular supervised classification algorithm based
on instance [58]. During the classification process, an
instance x is categorized based on the closeness of the
K-nearest training instances accessible in the feature space to
that instance. There are several distance metric forms used to
measure the distance between two instances xi and xj. In this
work, Euclidean distance was used as the distance metric,
which is formulated as (13):

d
(
xi, xj

)
=

( p∑
k=1

(
xi (k)− xj (k)

)2)1/2

(13)

where p denotes the dimension of the instance. The vector x is
classified to the nearest class which has the major votes of the
K-nearest neighbors. The appropriate K value was concluded
to be 31 at which the best accuracy for the test samples was
obtained in evaluation.

4) ADABOOST
Adaptive Boosting (AdaBoost) is a well-known and widely
used boosting algorithm, belonging to the category of ensem-
ble learning [59]. The main idea of boosting method is to
train a series of weak classifiers iteratively to attain a more
accurate prediction than that of a single weak classifier.
In AdaBoost algorithm, weak classifiers can be focused on
the misclassification instances by assigning higher weights
on those incorrectly classified instances from the training set.
In this work, DT was adopted as the base classifier of the
AdaBoost because DT is a popular classification algorithm
used for ECG heartbeat classification as well as a typical
selection for AdaBoost. The optimal parameters, learning
rate and the maximum number of iterations was found to
be 0.1 and 200 using cross validation and grid search.

5) XGBOOST
The eXtreme gradient boosting (XGBoost) is an opti-
mized scalable tree boosting system originally developed by
Tianqi Chen as an enhancement to the gradient boosting
algorithm [60]. In the machine learning world, XGBoost
algorithm has been a well-received tool which solves many
data science problems in a fast and accurate way. XGBoost
utilizes sequences of DTs that seek to generate a strong
classifier. The residual algorithm principle is applied to iter-
atively generate a new DT using the residual of the prior
tree as the target variable for the current tree. In addition,
regularization items are added to the loss function to control
the complexity of the XGBoost model. Also, XGBoost is
capable of parallel processing so that the speed of the algo-
rithm is greatly improved. In this study, the parameters of the
XGBoost model, including, learning rate, maximum depth of
the decision tree, and maximum number of iterations were
concluded to be 0.1, 8, and 150, respectively, with which the
best accuracy was achieved in grid search.

6) THE PROPOSED ENSEMBLE CLASSIFICATION ALGORITHM
The main idea of ensemble learning is to attain a better
generalization capability, as well as to decrease prediction
error of learning algorithms by integrating a set of component
classifiers into one ensemble system. Since different types of
classifiers perceive a recognition task with their own appro-
priate inherent structures and theories, this work proposes
a novel classification algorithm based on ensemble learning
for combining the knowledge acquired by the component
classifiers so that the classification performance over various
arrhythmia types could be improved.

The selection of component classifiers is vital to the suc-
cess of the entire ensemble learning algorithm. In this work,
we select SVM, KNN, NN, and DT-based AdaBoost, and
XGBoost as the component classifiers due to two reasons.
First, although the weak algorithm could categorize instances
better than random, strong algorithm classify instances more
accurately. Hence, in practical applications, strong algorithms
are often chosen as the component classifiers. As to the ECG
classification scenario, SVM, KNN, NN, and DT are four of
the most popular algorithms found in literature for this task.
Selecting component classifiers based on these four strong
algorithms is favorable to involve less component classifiers
and could learn from some existing experience, establishing
good prospects for integration their results. Second, these
classifiers are heterogeneous with diverse structures and the-
ories, which means the correlation among the predictions
of these classifiers is relatively low and could facilitate the
improvement of the robustness and generalization capability.

After selection of the component classifiers, a stacking
ensemble technique is adopted to combine the prediction
of each component classifier. Stacking aims at correct-
ing the errors of the component classifiers by building a
meta-classifier with the outputs of the base classifiers as the
metadata to predict the final results [61].

The proposed classification model of this paper is com-
posed of two layers of classifiers, as illustrated in Fig. 6.
The first level consists of KNN, SVM, MLP, and DT-based
Adaboost. The XGBoost algorithm is chosen as the
meta-classifier of the second level considering its benefits
of efficiency, accuracy, and fast speed. Therefore, we use
the combination of initial letter of each component classi-
fier, i.e., KSMAX (KNN-SVM-MLP-AdaBoost-XGBoost),
to represent our proposed ensemble classifier in this paper.
The feature vectors are used as input of the four base
classifiers whose predictions are fed into the second-level
classifier, i.e., XGBoost, as input data. The output of the
second-level classifier is considered as the final prediction of
the KSMAX model.

However, if the base classifiers are trained on the full train-
ing data and produce predictions as the input for the meta-
classifier training, there will be risk of overfitting. Therefore,
the training and testing procedure in this work is optimized
using the following method so that the stability and reliability
of the entire stacking model could be improved.

VOLUME 9, 2021 54763



H. Yang, Z. Wei: Novel Approach for Heart Ventricular and Atrial Abnormalities Detection

FIGURE 6. The proposed KSMAX ensemble model.

FIGURE 7. The diagram of the training and testing process of a single base classifier (e.g. classifier t) of the proposed KSMAX classification
algorithm.

Fig. 7 illustrates the training and testing process of a single
base classifier t (t ∈ {1, 2, . . . , 4}) in this work. Assume
L = D1 ∪ D2 ∪ . . . ∪ D9 and D10 represent the subsets
for training and testing respectively in one fold of a ten-fold
cross validation method. To train and test the base classifier t ,
the training data L is randomly partitioned into five subsets,
namely,L=L1∪L2∪. . .∪L5,Li∪Lj = ∅ (i, j ∈ {1, 2, . . . , 5},
i 6= j) based on a five-fold cross validation method. As shown
in Fig. 7, each fold of the five-fold cross validation can be
divided into two steps. In the first step, retain a single subset
(e.g., Lj, j ∈ {1, 2, . . . , 5}) as the validation data for testing,
and train the base classifier t using the remaining four subsets
Li(i 6= j). In the second step, apply two datasets on classifier t
for testing: 1) the retained subset Lj, generating output aj; and
2) D10, generating output bj.
This two-step process is repeated five times, obtaining

several outputs, i.e., a1, a2, a3, a4, and a5 as well as b1, b2, b3,
b4, and b5. Hence, to concatenate the a1, a2, a3, a4, and a5,
we could attain the complete testing results (denoted as A1)

on the training dataset L, with each of the five subsets used
exactly once as the validation data. The five predictions of
D10, i.e., b1, b2, b3, b4, and b5, can be averaged to produce a
single prediction (denoted asB1) ofD10 from base classifier t .

Above is the complete training and testing process of a
single base classifier t (t ∈ {1, 2, . . . , 4}) in this study. Since
there are four base classifiers, after performing this process on
each base classifier, we could obtain the training dataset for
the second-level classifier by concatenating horizontally the
generated A1, A2, A3, and A4. Similarly, the testing dataset of
the second level can be produced by concatenating horizon-
tally the generatedB1,B2,B3, andB4. Then, the second-level
classifier can be trained and tested with these data and yield
the final predictions.

III. EXPERIMENTAL RESULT
The arrhythmia heartbeats were classified using the proposed
feature set and KSMAX classification algorithm as described
in the previous sections.
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FIGURE 8. The ECG signal example with lead MLII and lead V1 from MITDB.

A. ECG DATA DESCRIPTION
In this study, we adopted realistic ECG data from
MITDB [53] to validate the effectiveness of our proposed
method for atrial and ventricular abnormalities detection. The
MITDB consists of ECG recordings of 47 patients. Each
ECG recording contains two channels, lead MLII and V1
(sometimes V5, V2 or V4). One segment of recordings
from the MITDB is depicted in Fig. 8. Considering the
character waves corresponding to the ventricular and atrial
abnormalities are highlighted by lead MLII, the lead MLII is
one of the most utilized lead and was also adopted in this
study. The heartbeat types fromMITDB aremapped toAAMI
standard [62]. In this study, all of the 15 heartbeat types
compatible with AAMI standard were involved, with a total
of 104986 heartbeats obtained with proposed feature set from
the MITDB. The distribution of these heartbeats is presented
in Table 2.

B. EVALUATION METRICS
The ten-fold cross validation was applied to evaluate the
classification performance. During each fold, the training and
testing of each level of the KSMAX model was performed
in the way as described in Section II. C. 6). When the ten-
fold cross validation accomplished, accuracy (Acc), precision
(P+), and F1 score could be calculated by four concepts: true
positive (TP), false positive (FP), true negative (TN), and false
negative (FN), as defined in (14), (15), and (16):

Acc =
TP+ TN

(TP+ FP+ TN+ FN)
(14)

Precision =
TP

(TP+ FP)
(15)

F1 score =
Precision× Recall
(Precision× Recall)

× 2 (16)

in which Recall could be calculated according to (17), rep-
resenting the ratio of true positives to all instances in actual
True class.

Recall =
TP

(TP+ FN)
(17)

C. RESULTS
In our proposed approach, morphological features, namely,
parameters, principle components of detail coefficients, and
VMP-QRS, were used as input of the KSMAXmodel. To bet-
ter investigate the improvement of discrimination capability
in our proposed feature vectors, we grouped features into
two feature sets, i.e., the classical ECG parameters (feature
set1) and the combination of principle components of detail
coefficients and VMP-QRSs (feature set2).

After performing PCA on sub-band detail coefficients of
the DWT, there were eleven principle components obtained as
features. An example of the detail coefficients attained in the
four-level decomposition of a random ECG signal segment is
illustrated in Fig. 9. As shown in Fig. 9, the morphological
information of QRS complex was concentrated on decom-
position level of three and four. Fig. 10 shows the resulting
Cr and Acr of the derived principle components. From the
third-level detail coefficients, the first six principle compo-
nents with the Cr value above 1% were regarded as six fea-
tures in this work. The accumulative variance they explained
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TABLE 2. The corresponding relationship between AAMI standard and heartbeat types in the MITDB as well as the summary of the data size adopted in
this study.

was up to 97.86%, which means most of the morphology
alternation information was retained while the feature dimen-
sion has been effectively reduced. Similarly, the first five
principle components, with the Cr values above 1% and an
Acr value of 98.92%, were attained as morphological features
from the fourth-level detail coefficients.

As to the visual morphological pattern feature, the param-
eter Cmax was set to 15 because fifteen heartbeat types were
involved in the study and heartbeats from each type have
generally similar-looking morphology. However, it should
be noted that the number of clusters could change during
the clustering process. The choice for Tc was concluded to
be 0.78. As a result, there are 21 VMP-QRSs obtained. Some
extracted VMP-QRSs are presented in Fig. 11, with gray
line representing the centroid of each pattern; while lines in
other colors representing original QRS complex segments
assigned to the corresponding patterns. Therefore, feature
set2 consisted of twelve features, representing eleven prin-
ciple components and one visual morphological pattern.

The accuracies obtained with our proposed KSMAX clas-
sifier and component classifier using different feature sets are
given in Table 3, which indicates that the proposed morpho-
logical features (feature set1 & set2) produced a better clas-
sification result compared to the classical ECG parameters.

To further compare the classification performance of the
KSMAX classifier with the component classifiers, the classi-
fication accuracies with respect to heartbeat type and feature
set are visualized in Fig. 12.

The results of F1 score and P+ using the proposed
approach are summarized in Table 4. To better understand
the classification performance, the F1 score and P+measures
of the MLP, SVM, KNN, AdaBoost, XGBoost and KSMAX
with respect to heartbeat type are visualized in Fig. 13 and
Fig. 14, respectively.

IV. DISCUSSION
This paper provides a novel approach for heart ventricular
and atrial abnormalities detection using a novel ensemble
classifier based on ECG morphological features. In general,
the experimental results have verified the effectiveness of the
proposed method. In the following, we present the discussion
of the raised approach in details.

A. PERFORMANCE OF THE PROPOSED APPROACH
As shown in Fig. 12, all classifiers obtained a remarkable
improvement in classification accuracy using the proposed
feature set (i.e., feature set1 & set2) than that of using clas-
sical parameters, with an increasement of 13.32%, 13.26%,
12.04%, 11.47%, 10.22%, and 8.43% for MLP, SVM, KNN,
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FIGURE 9. Four-level decomposition (detail coefficients) of the ECG signal using Sym8 wavelet basis
function.

AdaBoost, XGBoost, and KSMAX, respectively. The best
result in terms of the overall accuracy was 98.68% achieved
using our proposed KSMAX classifier and feature set. These
results indicate that the raised approach is effective in this task
for atrial and ventricular abnormalities detection.

One explanation for this result is because the extracted
ECG morphological features is efficient in reflecting hidden
information in the ECG recordings. The VMP-QRS exam-
ples illustrated in Fig. 11 imply that abnormal conduction
in ventricle can cause dramatic alternation in ECG morphol-
ogy. Consequently, the VMP-QRS is efficient in distinguish-
ing one heartbeat type from others in shape. In addition,
VMP-QRS can be used as a visual medical predictor for a
long-term ECG-based arrhythmia diagnosis.

Moreover, the extracted visual morphological patterns also
allow the doctors to comprehend intuitively because doctors
routinely infer and diagnose arrhythmia type in way of visu-
ally examining ECG morphology patterns. As to the eleven
features extracted through PCA and DWT, we visualize some
feature examples (principle components) of eight normal (N)
and premature ventricular contraction (V) heartbeats from
the third and fourth level of detail coefficients in form of
heatmap in Fig. 15. As illustrated in Fig. 15(a) and (b), the
first principle components of the eight premature ventricular

contraction (V) heartbeats are much lighter in color than
the counterparts of normal heartbeats. Whereas, the fifth
principle components in Fig. 15(b) are much darker than
those in Fig. 15(a). Similar contrast in color can also
be found in the first and fourth principle components in
Fig. 15(c) and (d). Other principle components of the nor-
mal and premature ventricular contraction have less but still
notably difference in color. These differences further verify
their discriminating power in this arrhythmia classification
study.

The proposed classifier, i.e., KSMAX, contributed to the
classification result as well. Utilizing KSMAX and the pro-
posed feature set, the accuracies for the six main heartbeat
types, namely, N, L, R, V, A, and P, that consist of roughly
98.41% of all samples, were 98.75%, 99.70%, 99.77%,
98.57%, 94.81%, and 99.94%, respectively. As demonstrated
in Fig. 12, the proposed KSMAX classifier is superior to the
component classifiers in overall accuracy. In addition, this
advantage does generalize for both feature sets and almost
all heartbeat types. Hence, the reliability and effectiveness of
the propose KSMAX classifier is verified.

From assessment with respect to the F1 score, as shown in
Fig. 13, using the proposed approach has obtained the highest
F1 score for almost all the types. Especially, compared to
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FIGURE 10. Variance explained rates of the principle components from the third-level detail coefficients
(a) and the fourth-level detail coefficients (b), respectively.

FIGURE 11. Examples of extracted visual morphological patterns of QRS complex for heartbeats from the MITDB. Gray line represents the centroid of
each pattern; while lines in other colors represent original QRS complex segments assigned to the corresponding patterns.

54768 VOLUME 9, 2021



H. Yang, Z. Wei: Novel Approach for Heart Ventricular and Atrial Abnormalities Detection

FIGURE 12. Comparison of accuracy achieved using combinations of feature sets and different classifiers (KNN, SVM, MLP, AdaBoost,
XGBoost, and KSMAX) in terms of heartbeat type and accuracy.
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FIGURE 13. Comparison of F1 achieved using the proposed feature set and different classifiers (KNN, SVM, MLP, AdaBoost, XGBoost, and KSMAX)
in terms of heartbeat type.

FIGURE 14. Comparison of P+ achieved using the proposed feature set and different classifiers (KNN, SVM, MLP, AdaBoost, XGBoost,
and KSMAX) in terms of heartbeat type.

XGBoost, a remarkable increase of 15.69% in F1 score was
achieved using the proposed KSMAX classifier for aberrated
atrial premature (a) type. As to the P+ measures, there was a
notably improvement for normal (N) type which accounts for
71.17% of all the instances. Although the performance of the
KSMAX in P+measure for the rest heartbeat types was very
close to the component classifiers in Fig. 14, when it comes to

the F1 score which takes both Recall and P+ into account, the
result implies that our proposed approach is superior to MLP,
SVM, KNN, AdaBoost, and XGBoost. Moreover, a better
generalization capability is achieved through an ensemble
of these diverse and strong component classifiers. Conse-
quently, the reliability and accuracy of the proposed approach
is further justified.
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FIGURE 15. Heatmaps of the extracted principle components from third-level detail coefficients of eight normal heartbeats (a) and eight
premature ventricular contraction heartbeats (b); and those from fourth-level detail coefficients of eight normal heartbeats (c), and eight
premature ventricular contraction heartbeats (d), respectively.

TABLE 3. A summary of the accuracy achieved using component classifiers and the proposed KSMAX based on feature set1 (FS 1) and our proposed
feature set1 & set2 (FS 1&2), respectively.

However, since there are very limited instances of
atrial escape type (e), supraventricular premature type (S),
and unclassifiable type (Q) in the MITDB, it is insuf-
ficient for completing a reliable learning. Thus, all the
classifiers involved reported limited results with these
types.

B. A COMPARISON WITH RECENT APPROACHES
The comparison of this work with relevant peerworks,
in terms of the feature, classifier, data size, type number, and
accuracy, is reported in Table 5.

In [28] and [48], ensemble algorithm obtained a higher
accuracy (95%) than neural system when they were both
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TABLE 4. A summary of statistical indicators using the proposed feature set and KSMAX classifier in the assessment. The metrics are: F1score (F1) and
precision (P+).

TABLE 5. Comparison of the classification performance of the proposed method with recent approaches.

trained with power spectral density (PSD). Literature [63]
applied SVM in discriminating abnormal heartbeats from
normal heartbeats and obtained a highest accuracy of 96.00%.
Literature [50] reported a method combing CNN and LSTM
techniques could categorize five types of heartbeats with
98.10% accuracy. In [45], DL-CCANet was proposed to clas-
sify 3350 heartbeats and obtained a 95.20% overall accuracy.
The method proposed by Liu et al. [64] achieved an accu-
racy of 96.25% for classifying four classes of beats using
SVM-RBF along with bispectrum and 2D-graph Fourier
transform features.

In order to make a fair comparison, two items should be
noted. First, the data size influences the evaluation result
of the method. Second, the number of heartbeat types mat-
ters. In our work, the validity of the proposed approach was
evaluated with 104986 heartbeats from MITDB. In addition,
the assessment adopted all the heartbeat types listed in AAMI
standard. Since the proposed approach has been evaluated
with the widely-used evaluation measure (i.e., Acc) in lit-
erature considering the aspects discussed above, the results

can be more similar to what it would produce when applied
in real clinical practice. Therefore, from comparison of this
work with peer works, it can be verified that the proposed
approach outperforms the other methods.

Besides as wearable IoT devices that include ECG acquisi-
tion (e.g. smart watches and smart t-shirt) are becoming more
and more popular, the proposed approach would be feasible
and reliable when serving as a ubiquitous medical system
for diagnosis of heart ventricular and atrial abnormalities
due to the advantages of no stress of prohibitively expensive
hardware, reduced set of features, and fewer parameters to
set up.

V. CONCLUSION
In this paper, we propose an effective approach for detec-
tion of heart ventricular and atrial abnormalities. Each
heartbeat is represented by a feature vector consisting
of morphological parameters, principle components of the
third-level and fourth-level detail coefficients of a four-level
DWT decomposition, as well as VMP-QRS. In addition,
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a novel classification algorithm, KSMAX, is proposed
through an ensemble of five algorithms: KNN, SVM, MLP,
AdaBoost, and XGBoost, which are heterogeneous and
diverse in structures and theories. The proposed approachwas
validated on fifteen heartbeat types from MITDB, according
toAAMI standard and obtained 98.68%overall accuracy. The
accuracies for the six main types, namely, N, L, R, V, A,
and P were 98.75%, 99.70%, 99.77%, 98.57%, 94.81%, and
99.94%, respectively. The proposed approach is then com-
pared with some peer works and proves a higher accuracy in
heart atrial and ventricular abnormalities detection scenario.

Due to the solid result achieved, the methodology in this
study can be used in the research and development of cardiac
arrhythmia detection system and telemedicine applications.
Since the extracted features are mostly associated with phys-
iological meaning, it is easy for physicians to comprehend
intuitively and would effectively reduce the workload of man-
ual examination of the long-term ECG recordings.

Since we mainly utilized some of the algorithms which
have been frequently reported to yield promising results for
this task, as our component classifiers, many other classi-
fiers are out of scope. In addition, the principle components
and visual patterns were extracted from the most signifi-
cant wave in ECG signal. Further study should investigate
the performance improvement by involving more ECG seg-
ments and other classification algorithms. In addition, more
ECG records for rare heartbeat types should be collected
in future to further improve the performance of the pro-
posed system. Finally, the application of Local Interpretable
Model-Agnostic Explanations (LIME) framework [66], [67]
which might help adding some form of interpretability in
the classification algorithm would be recommended as future
work.
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