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ABSTRACT Background subtraction (BGS) is a fundamental video processing task which is a key
component ofmany applications. Deep learning-based supervised algorithms achieve very good performance
in BGS, however, most of these algorithms are optimized for either a specific video or a group of videos, and
their performance decreases dramatically when applied to unseen videos. Recently, several papers addressed
this problem and proposed video-agnostic supervised BGS algorithms. However, nearly all of the data
augmentations used in these algorithms are limited to the spatial domain and do not account for temporal
variations that naturally occur in video data. In this work, we introduce spatio-temporal data augmentations
and apply them to one of the leading video-agnostic BGS algorithms, BSUV-Net. We also introduce a new
cross-validation training and evaluation strategy for the CDNet-2014 dataset that makes it possible to fairly
and easily compare the performance of various video-agnostic supervised BGS algorithms. Our new model
trained using the proposed data augmentations, named BSUV-Net 2.0, significantly outperforms state-of-the-
art algorithms evaluated on unseen videos of CDNet-2014. We also evaluate the cross-dataset generalization
capacity of BSUV-Net 2.0 by training it solely on CDNet-2014 videos and evaluating its performance on
LASIESTA dataset. Overall, BSUV-Net 2.0 provides a ∼5% improvement in the F-score over state-of-the-
art methods on unseen videos of CDNet-2014 and LASIESTA datasets. Furthermore, we develop a real-time
variant of our model, that we call Fast BSUV-Net 2.0, whose performance is close to the state of the art.

INDEX TERMS Background subtraction, foreground detection, scene independent, scene agnostic, deep
learning, data augmentation.

I. INTRODUCTION
Background subtraction (BGS) is one of fundamental video
processing blocks frequently used in applications such as
advanced video surveillance, human activity recognition,
autonomous navigation, etc. [1], [2]. BGS can be defined as
binary video segmentation aiming to extract foreground and
background regions in each video frame.

End-to-end BGS algorithms can be loosely grouped
into three categories: (i) Unsupervised algorithms, (ii)
video- or video-group-optimized supervised algorithms and
(iii) video-agnostic supervised algorithms. Unsupervised
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algorithms attempt to mathematically model the background
and extract the foreground pixels accordingly. Several model-
based approaches in this category, such as PAWCS [3]
and WiseNetMD [4], achieve very competitive performance,
however they are currently outperformed by deep learning-
based supervised algorithms.

Several recent papers introduced video- or video-group-
optimized algorithms [5]–[9] and video-agnostic [10], [11]
supervised BGS algorithms. The first category report results
for methods that have been trained and tested on the same
set of videos and their performance on unseen videos is not
reported. On the other hand, video-agnostic algorithms report
results on unseen videos by training and testing on disjoint
sets of videos. One of the most successful video-agnostic
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BGS algorithms, BSUV-Net, uses spatial and semantic infor-
mation from different time scales to improve performance on
unseen videos. However, due to limited amount of labeled
BGS data, BSUV-Net’s performance on very challenging
scenarios is still insufficient for real-world applications.

One of the most successful approaches for increasing the
generalization capacity of computer vision algorithms trained
with limited data is the use of data augmentation. Spatial
data augmentations such as random crops, rotations, color
changes, etc. have proved very successful in image-related
tasks [12], [13]. A simple spatio-temporal data augmentation
was introduced in BSUV-Net [10] to handle illumination
differences between videos and resulted in some performance
improvement. However, to the best of our knowledge, besides
that work there are no other data augmentation attempts
tailored to BGS that make use of both spatial and tempo-
ral information in a comprehensive manner. In this paper,
we introduce a comprehensive suite of spatio-temporal data
augmentation methods and adapt them to BSUV-Net. The
proposed augmentations address some key BGS challenges,
such as PTZ (pan-tilt-zoom) operation, camera jitter and
presence of intermittently-static objects. We conduct video-
agnostic performance analysis and show that these data aug-
mentations significantly increase algorithm’s performance
for targeted categories without any significant loss of per-
formance in other categories. We also show that a network
trained on a combination of several spatio-temporal data
augmentations outperforms state of the art (SOTA) methods
on unseen videos by ∼5% in terms of F-score. Furthermore,
we demonstrate a cross-dataset generalization capacity of
BSUV-Net 2.0 by training it solely on CDNet-2014 and
testing it on LASIESTA [14], a completely unseen dataset.
Here too, BSUV-Net 2.0 outperforms SOTA methods by
∼5% (F-score). The main contributions of this work are as
follows:

1) Spatio-Temporal Data Augmentation: We intro-
duce spatio-temporal data augmentation methods
for BSUV-Net to mimic challenging BGS sce-
narios, such as PTZ operation, camera jitter and
presence of intermittently-static objects (e.g., cars
stopped at a streetlight). Our experimental results
show that these augmentations significantly improve
the performance on unseen videos of corresponding
categories.

2) Fair evaluation strategy for CDNet-2014: Although
CDNet-2014 is an extensive BGS dataset, it lacks a
training/testing split for use by supervised learning
approaches.We introduce a split of CDNet-2014 videos
into 4 groups to be used for cross-validation. In this
way, we can easily evaluate any supervised BGS algo-
rithm on all CDNet-2014 videos in a video-agnostic
manner. This will simplify algorithm performance
comparisons in the future.

3) State-of-the-art and real-time results: Our proposed
algorithm outperforms SOTA on CDNet-2014 and
LASIESTA for unseen videos by ∼ 5%. We also

introduce a real-time variant of BSUV-Net 2.0 which
runs at ∼29 FPS and performs on-par with SOTA.

II. RELATED WORK
A. UNSUPERVISED BGS ALGORITHMS
The early attempts at BGS have relied on probabilistic back-
ground models such as Gaussian Mixture Model (GMM)
[15] and Kernel Density Estimation (KDE) [16]. Follow-
ing the idea of BGS based on background modeling, more
sophisticated algorithms were introduced (e.g., SubSENSE
[17], PAWCS [3], SWCD [18] and WisenetMD). Recently,
VTD-FastICA [19] has applied independent component anal-
ysis to multiple frames, whereas Giraldo and Bouwmans
have introduced a graph-based algorithm that considers the
instances in a video as nodes of a graph and computes
BGS predictions by minimizing the total variation [20], [21].
Finally, RT-SBS [22] and RTSS [23] have combined unsu-
pervised BGS algorithms with deep learning-based semantic
segmentation algorithms, such as PSPNet [24], to improve
BGS predictions.

B. VIDEO- OR VIDEO-GROUP-OPTIMIZED SUPERVISED
BGS ALGORITHMS
The early attempts of deep learning at BGS have focused on
video- or video-group-optimized algorithms, which are tested
on the same videos that they are trained on. Usually, their per-
formance on unseen videos is not reported. Video-optimized
algorithms train a new set of weights for each video using
some of the labeled frames from this very test video, while
video-group-optimized ones train a single network for the
whole dataset by using some labeled frames from the whole
dataset. They all achieve near-perfect results [6]–[8], [25].
Although these algorithms might be very useful for speeding
up the labeling process of new videos, their performance
drops significantly when they are applied to unseen videos
[10], [11], [26]. Clearly, they are not suitable for real-world
applications.

C. VIDEO-AGNOSTIC SUPERVISED BGS ALGORITHMS
Recently, several supervised-BGS algorithms for unseen
videos have been introduced. ChangeDet [27], 3DFR [11],
and 3DCD [26] proposed end-to-end convolutional neural
networks for BGS that use both spatial and temporal infor-
mation based on previous frames and a simple median-based
background model. Similarly, Kim and Ha [28] introduced a
U-Net-based [29] neural network that uses a concatenation
of the current frame and several background models gener-
ated at different time scales as the input. During evaluation,
these methods divided videos of a popular BGS dataset,
CDNet-2014 [30], into a training set and a testing set, and
reported results for the test videos, unseen by the algorithm
during training. Although all three algorithms outperform
unsupervised algorithms on their own test sets, their true
performance is unknown since no results were reported for
the full dataset. Furthermore, these algorithms cannot be
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comparedwith each other since each used a different train/test
split. Recently, BSUV-Net [10] also used U-Net architec-
ture but added a novel augmentation step to handle illu-
mination variations, thus improving performance on unseen
videos. The authors proposed an evaluation approach on the
whole CDNet-2014 dataset by using 18 training/test sets and
demonstrated one of the top performances on the dataset’s
evaluation server. However, their approach with 18 train-
ing/test sets is complicated and makes any comparison of
future algorithms against BSUV-Net difficult.

D. BGS VERSUS VIDEO-OBJECT SEGMENTATION
Several video-object segmentation datasets and challenges
have been introduced in the last few years [31]–[35]. That
body of work can be easily confused with BGS. However,
there exist important differences that make video-object seg-
mentation algorithms not suitable for BGS. For example,
the unsupervised multi-object segmentation dataset in the
DAVIS Challenge [35] includes annotations only for objects
that capture human attention the most. No annotations are
provided for foreground objects that are not in the focus
of attention. Since one of the main applications of BGS is
video surveillance, the detection of every moving object is
critical (e.g., a person on whom the video is not focused
may still act suspiciously). Furthermore, the semi-supervised
multi-object segmentation dataset in the DAVIS Challenge
assumes that semantic segmentation of the first frame of each
video is available. Youtube-video object/instance segmenta-
tion datasets [31], [32] include annotations for objects from
a set of predefined categories. The annotations for a single
category might include both stationary background objects
and moving foreground objects (e.g., there is no distinction
between a parked motorbike [background object] and a mov-
ing motorbike [foreground object]). Thus, a comparison of
object/instance segmentation and BGS is not very meaning-
ful. In this paper, we do not investigate algorithms designed
for video-object segmentation since, despite similarities, they
focus on a different task.

In this paper, we improve the performance of BSUV-Net
by introducing multiple spatio-temporal data augmentations
designed to attack the most common challenges in BGS.
We name our improved algorithm BSUV-Net 2.0 and show
that it significantly outperforms state-of-the-art BGS algo-
rithms on unseen videos. We also introduce a real-time ver-
sion of BSUV-Net 2.0 and call it Fast BSUV-Net 2.0. Finally,
we propose a 4-fold cross-validation strategy to facilitate
fair and streamlined comparison of unsupervised and video-
agnostic supervised algorithms, which should prove useful
for future BGS algorithm comparisons on CDNet-2014.

III. SUMMARY OF BSUV-NET
BSUV-Net is among the top-performing BGS algorithms
designed for unseen videos. We briefly summarize it below.

BSUV-Net is a U-Net-based [29] CNN which takes a
concatenation of 3 images as input and produces a prob-
abilistic foreground estimate. The input consists of two

background models captured at different time scales and
the current frame. One background model, called ‘‘empty’’,
is a manually-selected static frame void of moving objects,
whereas the other model, called ‘‘recent’’, is the median of
previous 100 frames. All three input images consist of 4
channels: R, G, B color channels and a foreground probability
map (FPM). FPM is an initial foreground estimate for each
input image computed by DeepLabv3 [36], a semantic seg-
mentation algorithm that does not use any temporal informa-
tion. For more details on network architecture and the FPM
channel of BSUV-Net, please refer to the original paper [10].
BSUV-Net uses relaxed Jaccard index as the loss function:

JR(Y, Ŷ)=
T +

∑
m,n

(Y[m, n]Ŷ[m, n])

T+
∑
m,n

(
Y[m, n]+Ŷ[m, n]−Y[m, n]Ŷ[m, n]

)
where Ŷ ∈ [0, 1]w×h is the predicted foreground probability
map, Y ∈ {0, 1}w×h is the ground-truth foreground label, T
is a smoothing parameter and m, n are spatial locations.

The authors of BSUV-Net also proposed a novel data-
augmentation method for video that addresses illumination
differences (ID) often present between video frames. In an
ablation study, they demonstrated a significant impact of
this augmentation on the overall performance. In this paper,
we expand on this idea and introduce a new category of
data augmentations designed specifically for spatio-temporal
video data.

IV. SPATIO-TEMPORAL DATA AUGMENTATIONS
In this section, we first introduce mathematical notation.
Then, we propose new spatio-temporal augmentations and
also describe the illumination-difference augmentation which
was proposed in BSUV-Net. Fig. 1 shows one example of
each of the proposed augmentations.

A. NOTATION
Let us consider an input-label pair of BSUV-Net. The input
consists of IE, IR, IC ∈ Rw×h×4 an empty background,
a recent background and the current frame, respectively,
where w, h are the width and height of each image. Each
image has 4 channels: three colors (R, G, B) plus FPM
discussed in Section III. Similarly, let IFG ∈ {0, 1}w×h be
the corresponding foreground label field where 0 represents
the background and 1 – the foreground.

Although the resolution of input images varies from video
to video, it is beneficial to use a single resolution during
training in order to leverage parallel processing of GPUs.
Therefore, the first augmentation step we propose is spatio-
temporal cropping that maps each video to the same spatial
resolution. In the second step, we propose two additional
augmentations that modify video content but not size.

In our two-step process, in the first step we use different
cropping functions to compute ĨE, ĨR, ĨC ∈ Rw̃×̃h×4 and
ĨFG∈{0, 1}w̃×̃h from IE, IR, IC and IFG where w̃, h̃ are the
desired width and height after cropping. In the second step,

VOLUME 9, 2021 53851



M. O. Tezcan et al.: BSUV-Net 2.0: Spatio-Temporal Data Augmentations for Video-Agnostic Supervised BGS

we apply post-crop augmentations to compute ÎE, ÎR, ÎC ∈
Rw̃×̃h×4 and ÎFG∈{0, 1}w̃×̃h from ĨE, ĨR, ĨC and ĨFG. Below,
we explain these two steps in detail.

B. SPATIO-TEMPORAL CROP
Here we describe 3 augmentation techniques to compute
ĨE, ĨR, ĨC, ĨFG from IE, IR, IC, IFG, each addressing a differ-
ent BGS challenge.We begin by defining a cropping function,
to be used in this section, as follows:

C(I, i, j, h,w) = I
[⌈
i− h

2

⌉
:
⌈
i+ h

2

⌉
,

×
⌈
j− w

2

⌉
:
⌈
j+ w

2

⌉
, 1 : 4

]
where i, j are the center coordinates, h,w are height and width
of the crop, d·e denotes the ceiling function and a : b denotes
the range of integer indices a, a+ 1, . . . , b− 1.

1) SPATIALLY-ALIGNED CROP
This is an extension of the widely-used spatial cropping
for individual images. Although this is straightforward, we
provide a precise definition in order to clearly define steps in
subsequent sections.

The output of a spatially-aligned crop is defined follows:

Ĩk = C(Ik , i, j, h̃, w̃) for all k ∈ {E, R, C, FG},

where i, j are randomly-selected spatial indices of the center
of the crop. This formulation allows us to obtain a fixed-size,
spatially-aligned crop from the input-label pair.

2) RANDOMLY-SHIFTED CROP
One of the most challenging scenarios for BGS algorithms is
camera jitter which results in random spatial shifts between
consecutive video frames. However, since the variety of such
videos is limited in public datasets, it is not trivial to learn
the behavior of camera jitter using a data-driven algorithm.
In order to address this, we introduce a new data augmenta-
tion method by simulating camera jitter. As a result, spatially-
aligned inputs become randomly shifted. This is formulated
as follows:

Ĩk = C(Ik , ik , jk , h̃, w̃) for all k ∈ {E, R, C, FG},

where ik , jk are randomly-selected, but such that iC = iFG and
jC = jFG to make sure that the current frame and foreground
labels are aligned. By using different center spatial indices for
background images and the current frame, we emulate camera
jitter effect in the input.

3) PTZ CAMERA CROP
Another challenging BGS scenario is PTZ camera operation.
While such videos are very common in surveillance, they
form only a small fraction of public datasets. Therefore,
we introduce another data augmentation technique specific
to this challenge.

Since PTZ videos do not have a static empty back-
ground frame, BSUV-Net [10] handles them differently than
other categories. Instead of empty and recent backgrounds,

the authors suggest to use recent andmore recent background,
where the recent background is computed as the median
of 100 preceding frames and the more recent background
is computed as the median of 30 such frames. To simulate
this kind of behavior, we introduce two types of PTZ camera
crops: (i) zooming camera crop, (ii) moving camera crop.

The zooming camera crop is defined as follows:

Ĩk = C(Ik , i, j, h̃, w̃) for all k ∈ {C, FG},

Ĩk =
1
N z

N z
−1∑

n=0

Ĩnk for all k ∈ {E, R}, where

Ĩnk = R
(
C
(
Ik , i, j, h̃(1+ nzk ), w̃(1+ nzk )

)
, h̃, w̃

)
where zE, zR represent zoom factors for empty and recent
backgrounds and N z represents the number of zoomed in/out
frames to use in averaging. In our experiments, we use
−0.1 < zE, zR < 0.1 and 5 < N z < 15 to simulate real-
world camera zooming.R(I, h̃, w̃) is an image resizing func-
tion that changes the resolution of I to (w̃, h̃) using bilinear
interpolation. Note, that using positive values for zk simulates
zooming in whereas using negative values simulates zooming
out. Fig. 1(d) shows an example of zoom-in.
Similarly, the moving camera crop is defined as follows:

Ĩk = C(Ik , i, j, h̃, w̃) for all k ∈ {C, FG},

Ĩk =
1
Nm
k

Nm
k −1∑
n=0

Ĩnk for all k ∈ {E, R}, where

Ĩnk = C(Ik , i+ np, j+ nq, h̃, w̃)
where p, q are the vertical and horizontal shift amounts
per frame and Nm

E ,N
m
R represent the number of empty and

recent moving background crops to use for averaging. This
simulates camera pan and tilt. In our experiments, we use
−5 < p, q < 5 and 5 < Nm

E ,N
m
R < 15 to simulate real-

world camera movements.

C. POST-CROP AUGMENTATIONS
In this section, we define several content-modifying aug-
mentation techniques to compute ÎE, ÎR, ÎC, ÎFG from
ĨE, ĨR, ĨC, ĨFG. These augmentations can be applied after any
one of the spatio-temporal crop augmentations.

1) ILLUMINATION DIFFERENCE
Illumination variations are common, especially in long
videos, for example due to changes in natural light or lights
being turned on/off. A temporal data augmentation technique
to handle illumination changes was introduced in BSUV-Net
[10] with the goal of increasing the network’s generalization
capacity for unseen videos. We use this augmentation here as
well, formulated in our notation as follows:

Îk [i, j, c] = Ĩk [i, j, c]+ dk [c]

× for k ∈ {E, R, C}, c = 1, 2, 3

where dE,dR,dC ∈ R3 represent illumination offsets applied
to RGB channels of the input images.
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2) INTERMITTENT-OBJECT ADDITION
Another challenge for BGS are scenarios when objects enter
a scene but then stop and remain static for a long time. Even
very successful BGS algorithms, after some time, predict
these objects as part of the background for they rely on
recent frames to estimate the background model. BSUV-
Net overcomes this challenge by using inputs from multiple
time scales, however it still underperforms on videos with
intermittently-static objects. To address this, we introduce
another spatio-temporal data augmentation specific to this
challenge.

We use a masking-based approach for intermittently-
static objects as follows. In addition to the cropped inputs
ĨE, ĨR, ĨC, ĨFG, we also use cropped inputs from videos
with intermittently-static objects defined as ĨIOE , Ĩ

IO
R , Ĩ

IO
C ∈

Rw̃×̃h×4 and ĨIOFG ∈ {0, 1}
w̃×̃h. We copy foreground pixels

from the intermittently-static input and paste them into the
original input to synthetically create an intermittent object.
This can be formulated as follows:

ÎE = ĨE
Îk = ĨIOFG � ĨIOk + (1− ĨIOFG)� Ĩk for k ∈ {C,R},

ÎFG = ĨIOFG + (1− ĨIOFG)� ĨFG

where� denotes Hadamard (element-wise) product. Fig. 1(f)
shows an example of intermittent object addition. Note, that
this augmentation requires prior knowledge of examples with
intermittently-static objects which can be found in some pub-
lic datasets.

D. COMBINING SPATIO-TEMPORAL AUGMENTATIONS
While the augmentations defined above can all be used by
themselves to improve the BGS performance on related cate-
gories, combining multiple or even all of them might result
in a better algorithm for a general unseen video of which
the category is unknown. However, combining the crop algo-
rithms is not trivial since it is not practical to apply more
than one crop function to a single input. Thus, we use online
augmentation, wherewe randomly augment every input while
formingmini-batches. The augmentation steps are as follows:

1) randomly select one of the spatial crop augmentations
and apply it to the input,

2) apply the illumination change augmentation using ran-
domized illumination values,

3) apply intermittent object addition to p% of the inputs.
Clearly, a different combination of augmentations will be
applied to the same input in different epochs. We hope this
will significantly increase the generalization capacity of our
network.

V. VIDEO-AGNOSTIC EVALUATION STRATEGY FOR
SUPERVISED ALGORITHMS
The most commonly used BGS datasets with a variety of sce-
narios and pixel-wise ground-truth annotations are CDNet-
2014 [30], LASIESTA [14] and SBMI2015 [37]. Among
these 3 datasets, only CDNet-2014 has a well-maintained

FIGURE 1. Image augmentation examples. Each row shows an example
for one of the augmentations: (a) original input, (b) spatially-aligned
crop, (c) randomly-shifted crop, (d) PTZ camera crop, (e) illumination
difference, (f) intermittent-object addition.

evaluation server, that keeps a cumulative performance record
of the uploaded algorithms. Moreover, it has been the most
widely-used dataset for BGS in recent years with publicly-
available evaluation results for nearly all of the published
BGS algorithms.

Since one of our aims is to compare the performance of
BSUV-Net 2.0 with SOTA video-agnosticBGS algorithms on
unseen videos, the availability of public results for these algo-
rithms is critical. Therefore, we use CDNet-2014 as our eval-
uation dataset. CDNet-2014 is a comprehensive dataset that
provides some ground-truth frames from all 53 videos to the
public, but keeps others internally for algorithm comparison.
Since it does not include any videos with no labeled frames,
it is not directly suitable for testing of video-agnostic super-
vised algorithms. Consequently, most of the leading algo-
rithms are either video-optimized or video-group-optimized
and achieve near-perfect results by over-fitting the training
data. However, these results are not generalizable to unseen
videos [10], [26], [27]. Several researchers addressed this
problem by designing generalizable networks and evaluating
their algorithms on unseen videos by using different videos
in training and testing [10], [11], [26]–[28]. Yet, there is no
common strategy for testing the performance of supervised
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BGS algorithms on CDNet-2014 for unseen videos. Some
of the recent papers divide the dataset into two folds, train
their algorithm on one of the folds and test on the other one.
Since they only report the results on the test videos that they
selected, their results might be biased towards their test set
and not directly comparable with unsupervised algorithms.
While BSUV-Net [10] proposes a video-agnostic evaluation
strategy for the full CDNet-2014 dataset by using 18 train-
ing/testing video sets, this strategy might also be biased and
is computationally expensive.

In this paper, we introduce a simple and intuitive 4-fold
cross-validation strategy for CDNet-2014. We grouped all
videos in the dataset and each category into 4 folds as evenly
as possible (Table 1). The proposed video-agnostic evaluation
strategy is to train any supervised BGS algorithm on three of
the folds and test on the remaining fold and replicate the same
process for all 4 combinations. This approach will provide
results on the full CDNet-2014 dataset which can be uploaded
to the evaluation server to compare against SOTA.We believe
this cross-validation strategy will be very beneficial for the
evaluation of future BGS algorithms.

VI. EXPERIMENTAL RESULTS
A. DATASET AND EVALUATION DETAILS
We evaluate the performance of our algorithm on
CDNet-2014 [30] using the evaluation strategy described in
Section V. In CDNet-2014, the spatial resolution of videos
varies from 320 × 240 to 720 × 526 pixels. The videos are
labeled pixel-wise as follows: 1) foreground, 2) background,
3) hard shadow or 4) unknown motion. As suggested in [30],
during evaluation we ignore pixels with unknown motion
label and consider hard-shadow pixels as background.

In performance evaluation, we use metrics reported by
CDNet-2014, namely recall (Re), specificity (Sp), false pos-
itive rate (FPR), false negative rate (FNR), percentage of
wrong classifications (PWC), precision (Pr) and F-score
(F1). We also report two ranking-based metrics, ‘‘average
ranking’’ (R) and ‘‘average ranking across categories’’ (Rcat ),
which combine all 7 metrics into ranking scores. A detailed
description of these rankings can be found in [38].

In order to better understand the performance of
BSUV-Net 2.0 on unseen videos, we also performed a cross-
dataset evaluation by training our model on CDNet-2014 and
testing it on a completely different dataset, LASIESTA [14].
LASIESTA is an extensive BGS dataset which includes
24 different videos from various indoor and outdoor sce-
narios. It includes a ‘‘Simulated Motion’’ category that is
comprised of fixed-camera videos that are post-processed to
mimic camera pan, tilt and jitter [14].

B. TRAINING DETAILS
In order to train BSUV-Net 2.0, we use similar parameters
to the ones used for BSUV-Net. The same parameters are
used for each of the four cross-validation folds. We used
ADAM optimizer with a learning rate of 10−4, β1 = 0.9,

TABLE 1. Sets used in 4-fold cross-validation on CDNet-2014.

and β2 = 0.99. The mini-batch size was 8 and the number of
epochs was 200. As the empty background frame, we used
manually-selected frames introduced in [10]. We used the
median of preceding 100 frames as the recent background.

In terms of spatio-temporal data augmentations, we use
an online approach to randomly change the parame-
ters under the following constraints. The random pixel
shift between inputs is sampled from U(0, 5) where
U(a, b) denotes uniform random variable between a to
b. The zooming-in ratios are sampled from U(0, 0.02)
and U(0, 0.04) for recent and empty backgrounds, respec-
tively, while the zooming-out ratios are sampled from
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TABLE 2. Comparison of different spatio-temporal augmentations on CDNet-2014 based on F-score. SAC: spatially-aligned crop, RSC: randomly-shifted
crop, PTZ: PTZ camera crop, ID: illumination difference, IOA: intermittent object addition. The values in boldface font show the best performance for each
category.

U(−0.02, 0) and U(−0.04, 0). We use N z
= 10.

The horizontal pixel shift for moving camera augmentation
is sampled from U(0, 5) with Nm

E = 20 and Nm
R = 10.

We perform no vertical-shift augmentation since CDNet-
2014 does not include any videos with vertical camera move-
ment. For illumination change, assuming [0, 1] as the range
of pixel values, we use dR[k] = dC[k] = I + Ik where
I ∼ N (0, 0.12) and Ik ∼ N (0, 0.042) for k ∈ {1, 2, 3}.
Similarly, dE[k] = dC[k]+ IE + IEk where IE ∼ N (0, 0.12)
and IEk ∼ N (0, 0.042) for k ∈ {1, 2, 3}. Lastly, for intermit-
tent object addition, we always use the ‘‘intermittent object
motion’’ inputs from the current training set and apply this
augmentation to p = 10% of the inputs only. Details of
the training and evaluation implementation, with all of the
defined augmentations, will be made publicly available upon
publication. During inference, binary maps are obtained by
thresholding network output at θ = 0.5.

C. ABLATION STUDY
We assess the impact of each spatio-temporal data augmen-
tation method defined in Section IV. As the baseline net-
work, we use BSUV-Net with only spatially-aligned crop
augmentation and random Gaussian noise sampled from
N (0, 0.012). We evaluate the proposed spatio-temporal aug-
mentations against this baseline by including the spatially-
aligned crop among spatial crop augmentations, as explained
in Section IV-D. In PTZ camera crop, for each input, we ran-
domly select one of the following: zooming in, zooming out,
moving right or moving left. Table 2 shows F-scores for
each category of CDNet-2014 computed locally1 for frames
with publicly-available ground truth. We report the median of
results for every 5th epoch between 150th and 200th epochs to
disregard small fluctuations in the learning process. We per-
form this across all four splits proposed in Table 1.
Fig. 2 shows some visual results for these algorithms

for 5 videos. It can be observed that each augmentation
type significantly improves the performance on related cat-
egories (randomly shifted crop – on ‘‘Camera jitter’’, PTZ
camera crop – on ‘‘PTZ’’, illumination difference – on
‘‘Shadow’’, intermittent object addition – on ‘‘Intermittent
object motion’’), but combining all augmentations decreases

1We provide only locally-computed results because if the results of the
ablation study were uploaded to the CDNet-2014 evaluation server, they
would have not been made public since they all come from the same algo-
rithm. Moreover, this simplifies corroboration of our results by independent
parties by not requiring uploads to the evaluation server.

TABLE 3. Efficiency vs performance trade-off for BSUV-Net 2.0 on
CDNet-2014. FPS is calculated using PyTorch 1.3 implementation on a
node with single Nvidia Tesla P100 GPU.

the performance significantly on some categories (e.g., night
and intermittent object motion). We believe this is due to
trade-offs between the effects of different augmentations. For
example, when a static background object starts moving it
should be labeled as foreground, but a network trained with
a randomly-shifted crop augmentation can confuse this input
with an input from the ‘‘Camera jitter’’ category and continue
labeling the object as background. Still, the overall perfor-
mance (last column in Table 2) of BSUV-Net 2.0 that uses all
augmentations handily outperforms the overall performance
for individual augmentations.

Since BGS is often applied as a pre-processing step in
real-time video processing applications, computation speed
is critical. As discussed in our previous work [10], one of the
main bottlenecks of BSUV-Net is the computation of FPM for
each channel – it decreases the overall computation speed sig-
nificantly. On the other hand, either removing the FPM chan-
nel or predicting BGS by thresholding the FPM channel alone
decreases the performance to values that are lower than that
of some unsupervised algorithms [10]. In this work, we show
that the performance of our model, even without the FPM
channel but with augmentations, is better than the current
state-of-the-art. We call this version of BSUV-Net 2.0, which
uses 9 instead of 12 channels on input, Fast BSUV-Net 2.0.
Table 3 shows a speed and performance comparison of the
two versions. Clearly, while Fast BSUV-Net 2.0 has lower
performance, it can be used in real-time applications at
320× 240 spatial resolution, which is very similar to the
resolution used in training. For higher-resolution videos, one
can easily feed decimated frames into Fast BSUV-Net 2.0
and interpolate the resulting BGS predictions to the original
resolution.

D. COMPARISON WITH STATE OF THE ART
Table 4 shows the performance of BSUV-Net 2.0 and Fast
BSUV-Net 2.0 compared to state-of-the-art BGS algorithms
that are designed for and tested on unseen videos. We did
not include the results of video- or video-group-optimized
algorithms since it is not fair to compare them against
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FIGURE 2. Visual comparison of different spatio-temporal augmentations on sample frames. Columns 1 and 2 show the current frame and its
ground truth. The subsequent columns show predictions of our network trained with augmentations listed at the top of each column. The last
column shows predictions of BSUV-Net 2.0 trained using a combination of all proposed augmentations. The dark-gray areas represent pixels
outside of CDNet-2014 regions of interest.

TABLE 4. Official comparison of top BGS algorithms evaluated on unseen videos from CDNet-2014.

TABLE 5. Official comparison of top BGS algorithms according to the per-category F-score on unseen videos from CDNet-2014.

video-agnostic algorithms. This table shows official results
computed by CDNet-2014 evaluation server,2 so the results
of our models slightly differ from those in Tables 2 and 3
(different ground-truth frames). We compare BSUV-Net 2.0
with some of the top-performing video-agnostic algorithms
reported by this server. RTSS [23], 3DCD [26], 3DFR [11],
ChangeDet [27] and Kim and Ha [28] are not included in
this table since their results are not reported. Video-agnostic
results of FgSegNet v2 are taken from [10]. BSUV-Net 2.0
outperforms all SOTA algorithms by at least ∼5% in terms

2Full results can be accessed from jacarini.dinf.usherbrooke.
ca/results2014/870/ and jacarini.dinf.usherbrooke.
ca/results2014/871/

TABLE 6. F-score comparison of BSUV-Net 2.0 with video-agnostic
supervised BGS algorithms that are not reported in
changedetection.net. Each column shows test performance of the
algorithm by using the training/testing split provided in respective paper.

of F-score (0.8387 versus 0.7986 in Tables 4, 5). Fast BSUV-
Net 2.0 also outperforms all state-of-the-art algorithms while
being ∼5 times faster than BSUV-Net 2.0 during inference
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TABLE 7. Per-category F-score comparison of the cross-dataset performance of BSUV-Net 2.0 with the top-performing unsupervised BGS algorithms on
LASIESTA.

TABLE 8. Per-video F-score comparison of BSUV-Net 2.0 trained on two different configurations with the top-performing supervised BGS algorithms on
unseen videos from LASIESTA. BSUV-Net 2.0 is trained only on CDNet-2014, as explained in Sec. VI-E. BSUV-Net 2.0∗ is trained on videos from LASIESTA
that are not from the test set as described in [26].

(Table 3). Table 5 shows the comparison of F1 results
for each category. This table includes RTSS using results
reported in the paper [23]. In 7 out of 11 categories, either
BSUV-Net 2.0 or Fast BSUV-Net 2.0 achieve the best per-
formance, including most of the categories that we designed
the augmentations for (an exception is the ‘‘Night’’ cate-
gory). However, note that the best-performing algorithm in
the ‘‘Night’’ category is BSUV-Net which uses only the
illumination-difference augmentation. Thus, it focuses on
videos with illumination differences such as night videos.

Fig. 3 qualitatively compares the performance of
BSUV-Net 2.0 with state-of-the-art video-agnostic BGS
algorithms on a few example videos from CDNet-2014.
BSUV-Net 2.0 clearly produces the best visual results in a
variety of scenarios. Results for Camera jitter and PTZ cate-
gories show the effectiveness of BSUV-Net 2.0 in removing
false positives resulting from camera motion. In the example
from Intermittent object motion category, the car on the left
is starting to back-up from the driveway and most of the
algorithms produce false positives at the location where the
car was parked whereas BSUV-Net 2.0 successfully elimi-
nates these false positives. Results for Dynamic background
show that BSUV-Net 2.0 is very effective in accurately
delineating the boundary between foreground objects and the
background.

As discussed in Section II, 3DCD [26], 3DFR [11],
ChangeDet [27] and Kim and Ha [28] are also among the best
video-agnostic supervised algorithms, however each reports
performance on a different subset of CDNet-2014, with the
algorithm trained on the remaining videos. Table 6 shows the
comparison of BSUV-Net 2.0 with these algorithms using
the training/testing splits provided in respective papers in
each column. BSUV-Net 2.0 clearly outperforms all four
competitors, while Fast BSUV-Net 2.0 beats 2 out of 4, and
does so with real-time performance.

E. CROSS-DATASET EVALUATION
In this section, we perform a cross-dataset evaluation to
show the generalization capacity of BSUV-Net 2.0. We train

TABLE 9. F-score comparison of cross-dataset performance of different
spatio-temporal augmentations on moving camera and simulated motion
videos of LASIESTA. SAC: spatially-aligned crop, RSC: randomly-shifted
crop, PTZ: PTZ camera crop.

BSUV-Net 2.0 using CDNet-2014 videos from S2, S3, S4 sets
shown in Table 1 and use S1 as a validation set to select
the best performing epoch. Then, we evaluate the results
on a completely different dataset, LASIESTA [14].3 Table 7
shows the comparison of BSUV-Net 2.0 with top-performing
unsupervised algorithms reported in [14]. Since the authors
reported results only for categories of LASIESTA recorded
with static cameras, we report results only on these categories.
Clearly, BSUV-Net 2.0 outperforms its competitors on a com-
pletely unseen dataset by a significant margin.

In [26], Mandal et al. performed a video-agnostic evalua-
tion of some supervised learning algorithms by training with
10 of the LASIESTA videos and evaluating on 10 unseen
videos from LASIESTA. Table 8 shows a comparison of
BSUV-Net 2.0 with unseen video performance of the algo-
rithms reported in [26]. We show the results of BSUV-Net 2.0
trained with two different datasets. BSUV-Net 2.0 row shows
the results of cross-dataset training whereas BSUV-Net 2.0∗

row shows the results of using the same training set that is
used in [26] for a fair comparison. BSUV-Net 2.0 achieves
significantly better results than state of the art even if the
training set does not include any videos from LASIESTA.
Since we train BSUV-Net 2.0∗ with videos from LASIESTA,
it performs even better than BSUV-Net 2.0. This shows that
the proposed spatio-temporal data augmentations are not
specific to CDNet-2014 and can be very effective on other
datasets as well. Note that the performance of BSUV-Net 2.0
is significantly better than that of BSUV-Net 2.0∗ on OSN-2,

3The empty backgrounds of LASIESTA videos are computed automati-
cally as the median of all frames in the video. The recent backgrounds are
computed similarly to CDNet-2014, as the median of previous 100 frames.
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FIGURE 3. Qualitative comparison of top BGS algorithms on sample frames from different categories of CDNet-2014.

an outdoor video recorded in heavy snow. This is due to the
fact that the training videos of LASIESTA do not include
a heavy-snow video, however the training set of CDNet-
2014 does. This also shows the importance of scene variety
in the training dataset. Both Table 7 and 8 clearly show that
BSUV-Net 2.0 is not specific to a dataset that it was trained
on, but can successfully predict BGS of an unseen video.

In addition to the videos reported in Table 7, LASIESTA
includes several BGS videos that are either recorded with
a moving camera or post-processed to look like they were
recorded with a moving camera.We group these videos under
4 categories:

1) Indoor pan & tilt videos (IMC-1, ISM-1, ISM-2,
ISM-3),

2) Outdoor pan & tilt videos (OMC-1, OSM-1, OSM-2,
OSM-3),

3) Indoor jitter videos (IMC-2, ISM-4, . . . , ISM-12),
4) Outdoor jitter videos (OMC-2, OSM-4, . . . , OSM-12).

Table 9 shows the F-score comparison of BSUV-Net 2.0
trained with different combinations of spatio-temporal data
augmentations on these 4 categories. As expected, the ran-
domly shifted crop augmentation achieves the best per-
formance for videos with camera jitter whereas the PTZ
augmentation achieves the best results for PTZ category.
This further shows that the impact of spatio-temporal data
augmentations is generalizable to different datasets.

VII. CONCLUSION
While background subtraction algorithms achieve remark-
able performance today, they still often fail in challenging

scenarios such as shaking or panning/tilting/zooming cam-
eras, or when moving objects stop for an extended period of
time. In the case of supervised algorithms, this is largely due
to the limited availability of labeled videos recorded in such
scenarios – it is difficult to train end-to-end deep-learning
algorithms for unseen videos. To address this, we intro-
duced several spatio-temporal data augmentation methods
to synthetically increase the number of inputs in such sce-
narios. Specifically, we introduced new augmentations for
PTZ, camera jitter and intermittent object motion scenarios,
and achieved significant performance improvements in these
categories and, consequently, a better overall performance on
CDNet-2014 dataset. We also introduced a real-time version
of BSUV-Net 2.0 which still performs better than state-of-
the-art methods and we proposed a 4-fold cross-validation
data split for CDNet-2014 for easier comparison of future
algorithms. Finally, we demonstrated a strong generalization
capacity of BSUV-Net 2.0 using cross-dataset evaluation on
LASIESTA in which the proposed model significantly out-
performs the current state-of-the-art methods on a completely
unseen dataset.
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