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ABSTRACT This review provides a comprehensive overview of the state-of-the-art methods of graph-
based networks from a deep learning perspective. Graph networks provide a generalized form to exploit
non-euclidean space data. A graph can be visualized as an aggregation of nodes and edges without having
any order. Data-driven architecture tends to follow a fixed neural network trying to find the pattern in feature
space. These strategies have successfully been applied to many applications for euclidean space data. Since
graph data in a non-euclidean space does not follow any kind of order, these solutions can be applied to exploit
the node relationships. Graph Neural Networks (GNNs) solve this problem by exploiting the relationships
among graph data. Recent developments in computational hardware and optimization allow graph networks
possible to learn the complex graph relationships. Graph networks are therefore being actively used to
solve many problems including protein interface, classification, and learning representations of fingerprints.
To encapsulate the importance of graph models, in this paper, we formulate a systematic categorization of
GNN models according to their applications from theory to real-life problems and provide a direction of
the future scope for the applications of graph models as well as highlight the limitations of existing graph
networks.

INDEX TERMS Graph neural network, geometric deep learning, graph-structured network, non-euclidean

space.

I. INTRODUCTION

The graph is a variant of data structure that learns the relation-
ship between nodes and explores the relationship among these
nodes. Graph nets have gained researchers’ attention due to
the recent progress in computational devices. A wide range of
applications using Graph Neural Networks (GNNs) demon-
strates the potential of graph reasoning nets in order to explore
modern problems [1]-[7]. Several biological structures can be
represented as graphs including the brain, vascular system,
and nervous system. Additionally, the inter-molecular rela-
tionships among chemical systems can also be visualized as
graphs. Link prediction is one of the most significant topics in
graph networks which allows data to be visualized as graphs
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in which there are edges and nodes. Due to having a non-
euclidean structure, graph reasoning models are generally
applied to node classification and link prediction [8]. Sim-
ply stated, GNN follows deep learning strategies to exploit
relational information via the graph. Additionally, GNN also
picks up the important edges and nodes to perform a given
task using filtering algorithms.

Graph nets also utilize shared weighted local connections
in order to exploit relations among graph elements. Fig. 1
shows a general architecture of a graph neural network where
the input graph is fed into the hidden nodes to learn the rep-
resentations of graph-structured data, and the output graph is
generated from the learned graph-structured representations.
From the observation on convolution operation and graphs,
it can be concluded that Convolution models have a large
impact on designing graph reasoning models as the shared
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FIGURE 1. Illustration of graph neural network.

weights feature dramatically reduces the computational cost
compared with traditional spectral graph theory [9]. Inter-
connected layers develop a bridge in order to extract variant
patterns of various sizes. As CNN can extract useful features
from 2D grid images or 1D text sequences, this strategy is also
used in graph exploitation as instances. To exploit the neces-
sity of sub-graphs, graph embedding is utilized to express
the relations among nodes, edges, and sub-graphs. Graph
embeddings can define nodes and edges in low-dimensional
vectors for further classification or regression.

A directed graph can be represented as the graph direction
from one node to another node. Directed graph and focuses
on a particular node direction containing useful information
for graph representation learning. On the other hand, an undi-
rected graph can be defined as two directed edges presenting
the relationship between two nodes. It is to be noted that
a graph will be undirected only if the adjacency matrix is
symmetric. It is worth noting that the directed graph contains
more valuable information than the undirected graph. This
phenomenon can be observable in knowledge graph feature
learning [10]. On the other hand, the heterogeneous graph
resembles a collection of various nodes. This graph variation
can be processed by simply converting them into one-hot
feature vector added to the original vector representation. The
heterogeneous graph information can work better with meta
path information propagation. With the meta path, the neigh-
bour nodes can be categorized as the distances among nodes
and types. For example, the Graph Inception model uses
this meta path information propagation system for a better
understanding of graph structure data [11]. This network
handles the heterogeneous graph converting it into sub-graph
for the information propagation and finally adds the results
from different sub-graphs for node feature learning process.

To exploit graph-structured data, graph filtering is usually
applied to harvest features or remove irrelevant node rela-
tions. Graph filtering is a filtering process that operates on
graph data as input and gives an output graph signal. The
filtering process can be done on the spatial domain or spectral
domain. The graph filtering process can be divided into sub-
filtering methods — frequency filtering and vertex filtering.
Generally, the graph filtering operation can be expressed as
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a convolution filter on graph-structured data in either the
spatial or time domain. However as graph data does not
have any fixed pattern, graph convolution is quite different
to traditional signal processing. It is should be noted that
the time-domain dependent convolution filter is the inverse
process of Fourier multiplication between spectral featured
data. The graph filtering process can be expressed as linear
combinations of signal components in the vertex field. Math-
ematically, it can be defined as:

Xour()) = wiix() + Y wix() ()
JjEeRG,K)
The neighbourhood nodes in equation 1 can be expressed as
R(i, K) and the combination of the weights can be represented
as {w;;}.Using of K-polynomial filter, the frequency filters
can be presented as vertex filters.

The graph Fourier transform (GFT) is an important element
of graph nets often used for frequency analysis. GFT can be
presented as 1D signal g measured by (&) = (g, e2™%").
The & can be denoted as the frequency of f . It can also be
defined as the complex exponential of an eigen function of
the Laplace operator. The eigenvector of M containing a fixed
value is the complex exponential of a fixed frequency. The
random-walk transition matrix can be presented as a graph
Laplace operator. The eigen decomposition of M = UAUT
contains the corresponding eigenvalue. Now, the Fourier
transform on graph y can be presented as

S00) = (v w) =Y (s (i) )

J=1

Which defines the spectral graph. The vertex graph can be
expressed as

n
i) =50 3)
=1

These filtering processes and preprocessing techniques are
commonly used in the data-driven graph exploitation meth-
ods. The success of DL methods to learn representations of
euclidean data motivated researchers to use the strength of
data-driven methods for non-euclidean data. The application
of GNN includes e-commerce where a graph-based technique
can be applied in order to explore the interactions among
users rating, number of items bought, and products [12].
Aside from this application, GNNs can also be applicable
to social science problems. Fig. 2 shows the exploitation of
molecular structure in the form of a graph net. GNNs have
also been used in text classification providing solutions for
one of the most complicated problems in NLP. Peng et al. [13]
proposed a graph-CNN methods transforming text into graph
embeddings for the further classification process. Traditional
convolutional and recurrent networks exploit the features in
a predefined order. On the other hand, graph models do not
contain a natural order for nodes and edges. This makes those
traditional models fail to explore the possible representation
of graphs. To express the relationship among all possible
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FIGURE 2. Graph molecule embedding structure for graph network.

orders of the graph, the input sequence of these models
cannot handle properly. To solve this issue, GNN utilizes the
propagation method on all nodes overlooking the order of the
nodes. GNNs update the weights of aggregated neighborhood
nodes, so the information propagation system of GNN is sup-
ported by a graphical structure instead of features of nodes.

In GNNGs, relation extraction is one of the primary tasks that
learns the relationship between entities. In some literature,
this setting can also be defined as entity recognition. In [14],
a tree-structured LSTM-RNNs have been developed for com-
plete node feature learning. To explore the relationships
among entities, a GCN has been introduced with a pruning
technique for the input items. The cross-sentence N-array
entity recognition technique utilizes graph algorithms to learn
the relationships among multiple sentences. For this setting,
LSTM networks are generally used to establish the best rela-
tionship among various sentences. The application of GNNs
can also be noticed at event extraction that recognizes event
types that exist in data. Liu ef al. [15] proposed a joint
event extraction system that increases information flow using
attention-guided GCNGs.

To explore these applications of graph-based networks
multiple reviews have been observed. Lee et al. [16] pro-
vided a detailed review of the graph-based attention networks.
Three different categorizations have been introduced and
some methods related to the categorizations are explained.
The author focuses on the superiority of the attention module
and describes the taxonomy according to the attention mech-
anism. Despite having an excellent categorization, the review
only focuses on the attention units. This makes the literature
limited to the special domain of graph-based models.

In [17], A GCN-based categorization has been proposed
in the literature where the GCN-oriented methods have been
divided into the spatial and spectral category and from the
application perspective, GCN has been divided into three sec-
tions : 1) Computer Vision, 2) Natural Language Processing,
and 3) Science. It is to be noted that this survey does not
focus on the analysis of spatial and spectral-based methods
rather than rely on the categorization. Moreover, from the
application point of view, only three types of applications
have been introduced.

Bronstein et al. [18] introduced a review on GCN focusing
non-euclidean space. This review divides the GCN methods
into two sections — spatial and spectral-based methods. The
classification of spectral and spatial based methods depends
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on the types of the convolution operation. As it only focuses
on convolution filters, other types of network structures for
graph models are overlooked. This makes the review limited
to only GCN models.

To overcome the limitation of the existing graph-based
reviews, we introduce a new taxonomy accommodating both
the theoretical and application perspectives. For a solution to
the scarcity of graph-based networks to individual problems,
we provide abundant resources of graph-based models along
with their applications and core-algorithms.

The main contribution of this survey is four fold:

« In contrast to the spatial and spectral-based graph net-
works, an application-oriented graph-based taxonomy
has been proposed focusing on both theoretical and real-
life processes.

« We demonstrate a detailed algorithmic overview of the
SOTA methods focusing on both theoretical and appli-
cation perspective including graph classification and
generation.

o Useful resources of graph-based networks have been
provided along with their core algorithm from both the-
oretical and application perspectives.

o We provide a future direction for application-oriented
graph-based networks as well as discuss the limitations
of existing solutions.

The residue of the manuscript is organized as follows.
Section II provides the preliminary definitions and section II
presents the background studies. In section IV, we provide
an algorithmic overview of SOTA methods according to
categorization. Section V shows a clear application-oriented
taxonomy. In section VI, we provide some directions focusing
on the application of graph-based models. Section V presents
the concluding remark.

Il. BACKGROUND STUDIES

This section explains the commonly studied neural
architecture used for graph exploitation. We discuss both
discriminative and generative models along with the atten-
tion module and sequential model for better perception of
different graph-based architectures.

A. CONVOLUTIONAL NEURAL NETWORKS

CNN has become the backbone of data-driven models for
computer vision tasks [19]. Many applications of standard
CNN are being used in many sectors [20]. Modern machine
vision architectures utilize CNN or convolution operation for
learning complicated features from image patches [21]. The
usage of CNN is also noticeable in exploiting graph networks.
Fully convolutional architecture uses convolution operation
for representation learning and standard CNN utilizes fully
connected layers by flattening into a single dimension. For
CNN, every pixel is given as input for the input layer which
is why the input layer size is showed as n x 1 where n; is the
number of input channels. The n; x 1 input vector through
t kernels with the size of k; x 1 is filtered by the hidden
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FIGURE 3. lllustration of GAN. G defines the generator that samples fake
data to the D. D denotes the discriminator that computers the probability
whether the sample is real or fake.
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convolution layer. The Convolution layer nodes number can

be represented as t x np x 1, and np = n; — kj. The
convolutional layer activation map can be obtained as:
Y (p) = max(0, 5P 4" kTP 5 x7P) @)

J

where, x? and y” are defined as the ith input and the jth
output activation map respectively. 5" is the bias of the jth
output map and * represents convolution. k¥ is represented
as the convolution kernel between the ith input map and the
Jjth output map.

B. GENERATIVE MODELS

In the domain of machine learning, two approaches are
highly appreciated — discriminating learning and gen-
erative learning. Many network architectures have been
proposed including auto-regressive networks, Markov mod-
els, variational autoencoder, generative adversarial network.
These methods are highly appreciated in many real-life
applications [22]-[26]. Recently, generative models are being
exploited to understand the graph structure and achieved
excelled performance on graph data [27]. Among generative
models, GAN has gained popularity due to its adversarial
training process. Fig. 3 depicts the vanilla generative adver-
sarial network architecture. At first, Goodfellow et al. [28]
proposed F¢ layers for both generator G and discriminator
Pp. This approach was utilized on several datasets including
MNIST [29], CIFAR-10 [30] and Toronto face dataset. The
generator develops a mapping from noise distribution p, to a
data point G(z). The generator tries to fool the discriminator
by generating fake samples and maps a distribution p, over
real data X. G generates synthetic data through an adversarial
training process appearing as realistic as real data distribu-
tion. So, the objective function of G is:

m(%n Ez~p [log(1 — Py (G(2)))] &)

P,(x) defines the probability that the possible data distribu-
tion is from real data rather than generated data. Equation (5)
is minimized if Pgq is wrong and is maximized if Py is
right. The goal of Pq is to improve its classification accuracy
to distinguish between real data and fake data. Therefore,
the objective function of Pq becomes:

Max Ex~Py, [log Py (x)] +Ez~p. [log (1 — P4 (G(2)))]
(6)
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The total objection function of the generative model follows
a min-max game that can be expressed as:

ngn n}l)ax Ex~py,, [log Py (x)]—}—EZsz [log (1—-Py (G(z)))]
d
)

C. ATTENTION MECHANISM

Attention mechanism was first introduced as self-attention
mechanism in [31] in order to perform computer vision
tasks inspired by the way that retinas fixate on necessary
parts of the optic array. However, for NLP this idea has
been utilized to do machine translation tasks. Then the term
‘visual attention’ has become popular boosting the classifica-
tion performance of spatial images. Aside from boosting the
results, the attention module can effectively interpret aspects
of neural architecture that are quite difficult to understand.
This mechanism can also adaptively focuses on important
parts of the image or text and can simply ignore the irrel-
evant parts. A robust attention mechanism can fabricate a
relationship between the data-driven neural structure and
intuitive representation learning. Computed weights by the
attention module can accurately harvest effective structural
image patches and provide an excellent explanation of the
neural system. Attention mechanism has been widely used in
many tasks [32]-[35]. With significant performance in NLP,
attention mechanism has also gained popularity due to its
robust feature learning process in computer vision. Several
types of application of attention mechanism are noticeable
in different sectors of computer vision including [36]-[39].
To learn long-term contextual details, self-attention module
has been adopted in these methods. This module enables
parallelizability leveraging modern computational devices
developing long-distance interactions. The Self-attention unit
can also be used as a standalone-unit for neural compu-
tation [40]. To learn spatial dependencies, spatial-attention
is also utilized in those methods. It can be mathematically
expressed as:

T T
Yij = Z SOftmaXab(ql‘j kab + ql'j ra—i,b—j)vab 8
a,beNi(i,))
In equation (8), r,—;p—; is the concatenation representa-
tions of row and column vectors. The measured probability
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between the query and elements are parameterized with the
element position N (i, j) and distance.

D. LONG SHORT-TERM MEMORY MODELS

Hochreiter and Schmidhuber et al. [41] proposed the long
short-term memory (LSTM) model that reduces the gradient
vanishing problem of RNN. The LSTM model consists of
recurrent networks where every node of hidden layers is
exchanged by memory cells. Each memory cell of LSTM is
composed of self-connected recurrent edge that has a fixed
weight. This allows the gradient to flow throughout the net-
work without vanishing. The memory cells in LSTM can
be denoted as c. LSTM is developed on the idea of holding
long term information for a certain time period. The LSTM
model leverages memory storage in the form of short-term
activations.

The input node receives the input activation from the input
sequence x) at the present time step and the current time
step is processed from the previous time step 4! which
can be defined as hidden states. Generally, the weighted sum
is calculated using the tanh activation function, but the main
paper [41] utilizes the sigmoid activation function. Individ-
ual memory cell is connected via linear activation that can
be denoted as 5. As already mentioned, there exist self-
connected recurrent cells that hold the internal state. This
edge flows according to time steps with fixed weighted value
without causing gradient exploding. The vectorized expres-
sion of internal state is as s®) = g® . ) 4 50— where - is
element-wise multiplication.

In [42], the forget gate was introduced demonstrating a
technique to delete the contents of the internal state. It helps
the gradient to flow throughout the network smoothly. Now,
the internal state with forget gate can be described as:

s = g0 00 4 fO g (=D )

The output value v, processed by the internal state is multi-
plied by output gate value o.. Usually, in the output gate, for
a non-linear function, the rectified linear unit is utilized that
has a greater range than other activation functions.

In the forward gradient propagation, the internal state
controls the gradient through activation. When the internal
cell and output cell are closed, the activation is trapped
inside the memory cell without any change to the inter-
mediate time steps. In backward gradient propagation, the
constant error carousel makes the model backpropagate
following the time steps. Multiple memory cells improve
the LSTM network to learn more dependencies from the
input sequence. This model successfully removes the exist-
ing problem of recurrent networks and proves itself as
a robust sequential model. LSTM model as a sequential
model is being used in many sectors including hyperspectral
imagery [43] and medical imaging [44]. In modern deep
learning architecture, LSTM is usually used to capture long-
term dependencies or spatio-temporal information. Thus,
LSTM has provided a better solution leveraging long-term
information for post-processing.
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IIl. APPLICATION OF VARIOUS GRAPH MODELS

To shed light on the applications of various graph-based
methods, we provide a novel categorization that explores the
graph-based models from both theoretical and application
perspectives. Table 1 presents an useful resource of these
methods covering the real-world applications, which covers
the applications of both theoretical and application-oriented
methods. It is to be noted that the table 1 not only provides
a collection of GNN-based methods but also show the core
algorithms for proper understanding of these state-of-the-art
methods. In Fig. 5, we have shown our featured taxonomy
for graph-based strategies. From Fig. 5, it can be noticed that
the proposed taxonomy divides all graph-based methods into
three branches — 1) Graph theory as the data-driven graph
strategies, 2) Methods focusing on real-world problems, and
3) General application-oriented methods. A brief description
of these three sections are described as below:

« Data-driven graph exploitation methods. This branch
provides a theoretical perspective of different solutions
for graph exploitation such as pooling-based, attention-
based strategies. The graph theory-based branch focuses
on exploiting different algorithms for variant graph-
oriented tasks including classification, clustering and
generation. Pooling-based methods provide different
pooling operations for graph exploitation.

« Real-world application-oriented methods. In this part,
we focus on the methods that prioritize real-world
applications including knowledge-based solutions and
computer vision strategies. As graph-based networks
have been highly appreciated among computer vision
researchers, they are also well known for the variety of
their applications solving many real-world problems.

o General application-oriented methods. Despite hav-
ing various applications on real-world problems, graph-
based models have also been used to exploit different
branches of theoretical problems. This branch explains
the adaptation of graph networks in other sectors includ-
ing reinforcement learning, graph generation and graph
clustering, etc.

IV. OVERVIEW OF THE THEORETICAL AND

APPLICATION-ORIENTED METHODS
This section provides a number of methods related to the

three branches from graph network categorization. This
section divides these branches into two sub-section for better
understanding.

A. DATA-DRIVEN METHODS FOR GRAPH EXPLOITATION
In this sub-section, we provide a number of graph-data
exploitation methods for non-euclidean space data explo-
ration. These data-driven methods include different types of
graph-based methods as well as some of their limitations.

a: GRAPH NEURAL NETWORK
Scarselli et al. [45] first introduced the graph network lever-
aging neural network for data exploration in the graph
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TABLE 1. Various graph structured networks and their applications.

Types References Algorithm Applications
Duvenaud et al. (2015) [55] GCN Learning Molecular Fingerprints
Science Zitnik et al. (2018) [56] GCN Modeling Polypharmacy Side Effects
(Chemistry Knyazev et al. (2018) [57] GCN Exploiting Relationships in Molecules
& Jin et al. (2018) [58] GAN Molecular Optimization
Biology) Xu et al. (2019) [59] GCN Structured Entity Interactions Prediction
Dai et al. (2019) [60] GNN Retrosynthesis Prediction
Yu et al. (2017) [61] GCN Traffic Forecasting
Guo et al. (2019) [62] GCN Traffic Flow Forecasting
- Wang et al. (2019) [63] GCN Passenger Demand Modeling
Traffic Network Hu et al. (2019) [64] GCN High Resolution Routing
Bai et al. (2019) [65] GCN Multi-step Passenger Demand Forecasting
Zhang et al. (2020) [66] GNN City-Wide Parking Availability Prediction
Li et al. (2019) [67] GNN Political Perspective Detection in News Media
Social Peng et al. (2019) [68] GCN Fine-grained Event Categorization
Network Wau et al. (2020) [69] GCN Social Spammer Detection
Bian et al. (2020) [70] GCN Rumor Detection
Computer Network modeling and
Netvl&:ork Rusek et al. 2019) [71] GNN Optimization in SgDN
Ma et al. (2018) [72] VAE Semantically Valid Graphs
Li et al. (2018) [73] GNN Graph Generation
Graph De et al. (2018) [74] GAN Small molecular graphs
Generation Bojchevski et al. (2018) [75] GAN Graph Generation
Grover et al. (2019) [76] VAE Graph Generation
Grover et al. (2019) [77] GNN Code Generation
Liao et al. (2019 ) [78] RNN Graph Generation
Nowak et al. (2017) [79] GNN Quadratic Assignment
Lier al. (2018) [80] GCN Combinatorial Optimization
Combinatorial Kool et al. (2018) [81] Attention Network Attention Solves
Optimization Prates et al. (2019) [82] GNN NP-Complete Problems
Sato et al. (2019) [83] GNN Combinatorial Problems
Luo et al. (2020) [84] GNN Topological Denoising
Sun et al. (2019) [85] GCN MOIecgﬁ;pirocfl’::gﬁi;‘fﬁm“ &
Zheng et al. (2020) [86] GAN Node Classification
Luo et al. (2020) [87] GNN Arbitrary Machine Leaning Tasks
Wang et al. (2020) [88] VAE Graph Clustering & Classification
Graph Xu et al. (2019) [89] GRU+Attention Module Node Classification
Classification Yu et al. (2019) [90] GAN+Attention Module Link Prediction Learning

Xu et al. (2019) [91]
Bai et al. (2019) [92]
Al et al. (2019) [93]

GRU+Attention Module
Attention Network
GNN + Attention Module

Node Classification
Graph Classification
Graph Classifcation

Peng et al. (2020) [94] GCN + Attention Module Graph Classification
Wei et al. (2020) [95] GNN Probabilistic Type Inference
Wang et al. (2019) [96] MDP Node Classification
Zambaldi et al. (2018) [97] DRL Reasoning Inter-Object Relations
Reinforcement Learning | Ammanabrolu et al. (2018) [98] DRL Playing Text-Adventure Games
Liu et al. (2020) [99] GNN + Attention Module Multi-Agent Game Abstraction
Chen et al. (2019) [100] DRL Natural Question Generation
Paliwal et al. (2019) [101] Genetic Algorithm + RL Optimizing Computation Graphs
Program Allamanis et al. (2017) [102] Gated GNN Represent Programs
Representation Cvitkovic et al. (2019) [103] GNN Graph-Structured Cache
MGatrCaEl'; . Fey et al. (2020) [104] GNN (SpliceCNN) Matgg’?g’ g;igzmus
Zugner et al. (2018) [105] GNN Graph Structured Data
Dai et al. (2018) [106] GNN Graph Structured Data
Ad . Wu et al. (2019) [107] GCN Attack and Defense
versarial
Attack Xu et al. (2019) [108] GNN Topology Attagk and Defense
Zhu et al. (2019) [109] GCN Adversarial Attack
Bojchevski et al. (2019) [110] GNN Node Embeddings
Bojchevski ez al. (2019) [111] GNN Graph Perturbations
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TABLE 1. (Continued.) Various graph structured networks and their applications..

Types

References

Algorithm

Applications

Natural Language Processing

Johnson et al. (2016) [112]

Peng et al. (2017) [113]

Bastings et al. (2017) [114]
Marcheggiani ez al. (2017) [115]
Nguyen et al. (2018) [116]
Song et al. (2018) [117]
Zhang et al. (2018) [118]
Song et al. (2018) [119]
Song et al. (2018) [120]
Beck et al. (2018) [121]

Zhang et al. (2018) [122]

Rahimi et al. (2018) [123]
Sorokin et al. (2018) [124]
Zayats et al. (2018) [125]

Palm et al. (2018) [126]

Graphical State Transitions

Graph LSTM

Graph Convolutional Encoders
GCN
GCN
GNN
GCN
Graph-State LSTM
LSTM
Gated GNN

Sentence-State LSTM

GCN
Gated GNN
Graph-Structured LSTM

Recurrent Relational Networks

Discovering the rules for governing
cellular automation
Cross-Sentence
Relation Extraction
Machine Translation
Semantic Role Labeling
Event Detection
Multi-hop Reading Comprehension
Relation Extraction
Relation Extraction
AMR-to-Text Generation
Text Generation
Text Representation
Learning
User Geolocation
Question-Answering
Conversation Modeling
Puzzle Solving,
Question-Answering

Knogledge-Based

Schlichtkrull et al. (2018) [127]
Wang et al. (2018) [128]
Kim et al. (2018) [129]
Park et al. (2019) [130]
Nathani et al. (2019) [131]
Xu et al. (2019) [132]
Xu et al. (2019) [133]

Shang et al. (2019) [134]

Wang et al. (2019) [135]
Zhang et al. (2020) [136]

GCN
GCN
Dynamic Graph Generation Network

GNN

Graph Attention Network

Graph Matching Neural Network
GNN
Structure-Aware
Convolutional Networks
Logic Attention Based
Neighborhood Aggregation

GNN

Modeling Relational Data
Knowledge Graph Alignment
Relational Knowledge Generation
Node Importance Estimation
Relation Prediction
Knowledge Graph Alignment
Knowledge Graph Reasoning
Knowledge-Base
Completion

Knowledge Graph Embedding

Logic Reasoning

Computer Vision

Teney et al. (2017) [137]
Qi eral (2017) [138]
Lieral (2017) [139]

Qi et al. (2018) [140]
Norcliffe et al. (2018) [141]
Narasimhan et al. (2018) [142]
Wang et al. (2018) [143]
Guo et al. (2018) [144]

Gated Recurrent Unit
3D GNN

GNN

Graph Parsing Neural Networks

GCN + Graph Learner Module
GCN

Graph Reasoning Model

GCN

Visual Question-Answering
Semantic Segmentation
Situation Recognition
Human-Object Interactions
Interpretable Visual Question Answering
Factual Visual Question Answering
Social Relationship Understanding
Action Recognition

Few-shot and
Zero-shot Learning

Lee et al. (2018) [145]
Gidaris et al. (2019) [146]
Liu et al. (2019) [49]
Liu et al. (2020) [147]
Yao et al. (2020) [148]
Chauhan et al. (2020) [149]
Baek et al. (2020) [150]

GRU

GNN
Attention Network
K-Nearest Neighbor

GNN

GNN

GNN

Structured Knowledge Graphs
Generating Classification Weights
Graph Meta-Learning
Attribute Propagation Network
Knowledge Transfer
Graph Spectral Measurement
Extrapolate Knowledge

Recommendation Systems

Berg et al. (2017) [151]
Ying er al.) (2018) [152]
Zhang et al. (2019) [153]
Wang et al. (2019) [154]
Xu et al. (2019) [155]
Gong et al. (2019) [156]
Wang et al. (2019) [157]
Wang et al. (2019) [158]
Zhang et al. (2019) [159]
Chen et al. (2020) [160]

GCN
GCN
Star-GCN
Distilling GCN
Self-Attention Network
Maximal Clique Optimization
Attention Network
GCN
GNN
Linear Residual GCN

Matrix Completion
Web-Scale Recommender Systems
Recommender Systems.
Collaborative Filtering
Session-based Recommendation
Exact-K Recommendation
Exact-K Recommendation
Recommender Systems
Inductive Matrix Completion
Collaborative Filtering

Science
(Physics)

Raposo et al. (2017) [161]
Raposo et al. (2017) [161]
Santoro et al. (2017) [162]
Watters et al. (2017) [163]
Xu et al. (2019) [59]
Wang et al. (2020) [164]

GNN
VAE
Relation Networks
Interaction Networks
GNN
GNN

Predicting Scene Images
Objects Discovery and Relations
Relational Reasoning
Physics Simulator from Video
Interacting Systems
Climate Observation

Security Analysis

Zhou et al. (2019) [165]
Tehranipoor et al. (2019) [166]
Chen et al. (2020) [167]
Wang et al. (2020) [168]
Pei et al. (2020) [169]

GNN
RNN
GCN
GCN
GCN

Effective Vulnerability Identification
Breaking Logic Encryption
Obfuscation Policy Development
Data Management & Anomaly Detection
Malware Detection
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FIGURE 5. Overview of our proposed categorization of graph networks.
domain. GNN model tends to learn a featured embedding can be defined as:
that is composed of nodes’ neighbourhood information. For a P
node classification problem, the individual node v is defined loss = Z(fj —0j) (13)
by its feature and a ground truth label G. The GNN targets to j=1

predict the labels of unlabeled data. Mathematically, it can be
represented as:

hy = f (v, Yeo[v]» hne[v], yne[v]) (10)

Yeolv] defines the representations of the edges attached with
v and Ayepy and yye[y) define the embedding and features of
the neighbourhood nodes of v respectively. The f function
defines the transition function that transforms the input vec-
tor into a d dimensional space. In order to get a particu-
lar solution for #,, the Banach fixed point theorem can be
applied [46], then equation (10) goes through an iterative
update process that can be expressed as:

H'™' = F(H,Y) (11)

This process is known as message passing or neighborhood
aggregation. Now, the output function of GNN becomes:

oy, = G(hy, W) (12)

F() and G() functions are feed-forward fully connected net-
work. /1 loss function is minimized via gradient descent that
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GNN has shown significant performance utilizing the
data-driven strategy for graph-structured data. Despite the
outstanding performance, this method does not learn long-
term information and focuses on all nodes equally. Thus,
many irrelevant node are also considered for the desired task.
Moreover, GNN has an arbitrary inductive bias, that can cause
poor generalization while applying GNN on other kinds of
data e.g. images, videos.

b: GRAPH CONVOLUTIONAL NETWORK

GCN makes an effort by combining graph nets and CNN
together in order to exploit the power of CNN and applying
to graph reasoning models [47]. The Graph Convolution Net-
work is based on the layer-wise propagation rule. Spectral
convolutions on graphs defined as the multiplication of a
signal in the Fourier domain:

hg x x = QhOQ* (14)

In equation 14, Q is the eigenvector matrix of the normal-
ized graph laplacian L = Iy — D~Y/2AD™12 = (QQ,
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with a diagonal matrix of its eigenvalues being the graph
Fourier transform. GCN as the first approach utilizes convo-
lution operation for exploiting graph-structured data. As this
approach relies only on a convolution operation, it focuses
on fixed receptive regions learning from fixed feature space.
As GCN focuses on the arbitrary inductive bias, more local
descriptors along with GCN will improve the overall classi-
fication performance.

¢: GRAPH ATTENTION NETWORK

In [48], an attention network has been proposed to exploit
graph-structured data with an attention mechanism. Graph
Attention Network (GAN) works on both inductive and trans-
ductive problems leveraging the power of the attention unit
to learn from different regions of feature space. In AGQN,
the input node features can be defined asi = iy, &2, . . . iy, ij €
RF . Here, F and N are denoted as the number and features of
nodes respectively. To perform the self-attention mechanism,
the initial input features need to have a weighted shared
transformation. After the tragsfgrmatiog, we get a new set of
features defined as F', i’ = A A iJ’. € Rf/, as output
and the weight matrix can be denoted as W € RF*F,

Now, the self-attention transformation becomes a : RF" x
RF" — R and the co-coefficients can be expressed as:

ejk = a(Wi;, Wiy) (15)

This mechanism learns the relative positional vector among
i and j suppressing minor structural details. The computed
attention neighborhood learns across various nodes all using
softmax function.

exp(ejk)

—_ 16
Zle]\/j exp(ejl) (16

ajk = softmaxi(ejk) =

As the self-attention mechanism is computationally costly,
this method will perform better in large scale graph data rather
than all sorts of non-euclidean data.

d: GATED PROPAGATION NETWORK

Liu et al. [49] proposed a gated propagation network (GPN)
that resolves the problem of graph exploitation using the
meta-learning approach. This meta-learning solution aggre-
gates messages among classes to generate new classes for
classification. Usually, a multi-head attention module is uti-
lized to get the weighted vectors of similar messages looking
around the neighborhood. A gate mechanism is implemented
to check whether the aggregated messages are from the neigh-
borhood or itself. This mechanism is applied to all classes and
for multiple time steps. The attention module learns identi-
cal messages and avoids multiple messages from the same
classes. Fig. 4 denotes the multi-head attention mechanism
learning aggregated messages. Now, for a task 7" holding a
subset of classes y! and an N-way-K-shot training set D7 .
The initial message prototype for each class y € V7 can be
calculated by measuring the average of all K-shot examples
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that belong to the y class [50]. Mathematically,

1
P2
Y { @iy € DTy =y} Z

(xi.y)€DT yi=y

f ) A7)

Through each iteration, for each class y € Y7 this prop-
agation system is updated with a new prototype Py,. Now,
the multi-head attention measuring the neighborhood aggre-
gated messages NV, and itself can be calculated as:

P 2 a(PLP) P
zeNy
ap. q) = (h1(p), ha2(9)) (18)
A1 > 1h2()l
In equation (18), the elements ®P"P of the meta-learning
parameters © are the learning transformations /41 (-) and their
parameters h>(-). To overcome the problem of identical pro-
totype message passing, each class y is sent to its own end-
step prototype P} to itself, i.e., P;t}y = Py Then the gated
mechanism decides whether to accept the message or not

+1 ; ; 11
Py from its neighbors or message P\"/.

[I>

P2 opitl 41— g)Pj\nyl_)y,,
exp [y cos (P(y), P;ﬂ})]
g =
exp [y con (P, P171) e[y cos (PP )
g
19)

In the equation, the similarity index between two vector
matrix p and ¢, and y is denoted as cos(p, ¢g) giving a smooth
probability distribution using the softmax activation. To grab
various types of relations for joint propagation, k modules of
the attentive and gated mechanism have been used with untied
parameters for i (-) and hy(-) [S1].

k
1
t+1 _ t+1p-
Pt = EZI:PY [i] (20)
1=

where the i-th head’s output is P;,“ [i] following the same
procedure of P;“ . The Same procedure has been repeated for
T steps to get the final prototype for y class. Mathematically,

Py 2 xP)+(1—x) xP! 1)

The GPN is designed to work in life-long settings that can
learn relative tasks at various time steps using a memory
of prototypes. These prototypes contain information on pre-
vious prototypes. This propagation helps to learn complex
architecture and real-world graph problems for many classes.
But when the dot-product attention unit cannot learn rele-
vant neighborhood information, GPN cannot be well trained.
Moreover, if the initial set of GPN is incorrect, it will suf-
fer from poor results. Aside from these, GPN is capable of
learning robust graph data structure building relation among
classes and generating classes when possible.
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B. DISCUSSION ON DATA-DRIVEN

GRAPH-BASED METHODS

The data-driven graph exploitation strategies have entirely
removed the traditional hand-crafted graph theory models.
But there exist some limitations of graph network-based
methods. The intuitive graph representations of GNN do
not rely on local information. GNN models usually rely on
message passing protocols exploiting graph-structured data.
Thus, a very strong permutation invariant function is required
in order to exploit variance graph data. Moreover, these data-
driven graph-based methods do not consider the potential
of hidden states of the nodes for neighborhood informa-
tion. Existing solutions rely on different hyper-parameter for
different information layers. More general settings can be
introduced for the stability of node representation learning.

C. APPLICATION-ORIENTED METHODS
This subsection explains some solutions focusing on the
general applications and real-world applications of graph

networks including deep reinforcement learning (DRL) and
NLP.

a: GRAPH ATTENTION CONVOLUTION

In [52], a graph attention convolution (GAC) has been intro-
duced leveraging the robustness of graph attentional convolu-
tion for point-cloud segmentation. GAC is fabricated to learn
the features from a weighted function 7 : P¢ — P? that maps
the input features H to a unseen set of vertex representations
S = {s1,$2,...,sv}and s; € PP. It also maintains the struc-
tural connection among output features. Traditional graph
models learn fixed neighbor relations among features but
GAC learns dynamic neighbor features containing weighted
sharing property. The sharing property is calculated using
attention unit 8 : P3*C — PP relying on the important
parts of neighbors. The dynamic features of each neighboring
vertex are measured as:

bij = B (Aryj, Aly),  jeNG) (22)

The attention weighted vectors are expressed as l~9,~j =
.,BU,K] e PP from the vertex j to i. The
representations for the mapping function is denoted as M, :
PC¢ — PP for the multilayer perceptrons Arj = 1 — 1
and Al; = M, (lj) — M, (I;). The expression B defines
the spatial nature of neighborhood vertices. It accelerates to
learn useful representations of nodes for graph exploitation.
The differentiable attention unit ¢ is composed of multiple
multilayer perceptrons expressed as :

[bij,l ,bijo, ..

o (Apjj, Aly) = Mq ([Apyil Aly]) (23)

where the concatenation operation is denoted as || and M,
defines the multilayer perceptron.

In order to handle different sizes neighbors across var-
ious scales and vertices, the attention-aware weights are
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normalized around all neighbors.
exp (bia )
Dl (i) €XP (551,01)

where lMJU, « 1s the weighted attention vectors fromj to i vertices
at d-channel. Thus, the final output of GAC becomes:

si= Y bjOM () +a (25)
JeN ()

bija = (24)

where a; € PP is the learnable bias and ©® defines the
Hadamard product, that gives the output of the element-wise
multiplication of two vectors. GAT creates a new direction
using graph-based convolution strategies for point-cloud seg-
mentation but consumes a lot of memory. A light-weight
approach towards segmentation using graph networks will be
useful in many terms.

b: GRAPH CONVOLUTION TRANSFORMER

The success of transformer in NLP has led researchers
to use the potential of the transformer in graph-structured
data. Transformer searches all meaningful representations in
the attention spaces. GCT establishes weighted connections
among all possible nodes creating a bridge between treatment
codes and diagnosis codes. It uses conditional probabilities
for fabricating weighted connections. The conditional prob-
abilities can be defined as P € [0.0, 1.0]I*I¢l and the
normalized softmax can be explained as (&IL}OI) ). It should
be noted that the mask M and conditional probabilities P
have the same sizes. Taking into account both M and P, GCT
tries to build connections by learning useful representations.
Therefore, GCT can be formulated as:

6 ROLOT
AV .= softmax [ ——— + M) (26)
(7

The self-attention measurement can be defined as:

E® = FE (PECW) wheni = 1

E® — FE? (ﬁ“‘)E("—”W(V")) wheni>1  (27)
Now calculating the loss function:

LY = Dy <P||f;<">) when i = 1

reg

LY = Dy (1%<"*1>||1§<">) when i > 1
Liotal = Lprediction + A ZLﬁé?g (28)
l
In general terms, attention modules are used in the first
unit of transformer. These settings enable the transformer
to learn sophisticated connections. But GCT utilizes con-
ditional probabilities followed by masked attention units.
Therefore, GCT does not need any previously learned dis-
tribution for further processing. GCT combines the NLP and
non-euclidean space in a supervised setting but a more robust
technique is needed for better performance.
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c: DEEP ATTENTIONAL EMBEDDED GRAPH CLUSTERING
The Deep Attentional Embedded Graph Clustering method
utilizes a graph attentional encoder-decoder architecture for
efficient integration of structure and contextual details to
gather information about latent vectors [53]. The major prob-
lem of graph clustering is the non-existence of label guidance.
As the whole process is unsupervised, it becomes a difficult
task to learn optimized embedding. To solve this problem,
considering these latent vectors, a self-training module is
introduced for performance improvement. The total objective
loss function is defined in two terms.

Loverall = Lreconstruction + Lclustering (29)

From the equation (29), it can be observed that the overall loss
function is the total sum of the reconstruction and clustering
loss. This method explores the graph data in an unsupervised
fashion. Using embedding graph clustering, this method has
several advantages in exploiting non-euclidean space data
but needs more clarification for harvesting robust graph data
details.

d: ADAPTIVE GRAPH CONVOLUTION

Li et al. [54] proposed a k-order graph convolution opera-
tion for solving the attributed graph clustering problem. This
method uses high-order graph convolution to collect global
contextual information and adaptively finds out the most
appropriate order for different graph structures.

X=(- %MS)kX (30)

In equation (30), k is the corresponding integer, M represents
sate update, J is the initial node data and the corresponding
graph filter is:

G=( - M) =0 -m)fu G

The frequency response is calculated as:
LB
P(hgy) =(1— qu) (32)

This method proves to provide a better solution in an unsuper-
vised setting boosting the performance in multiple metrics.
It uses high-order convolution operation for global details
pooling. Despite the performance, it learns from static fea-
ture space which makes the network limited to constrained
receptive regions.

e: VARIATIONAL GRAPH AUTOENCODERS

Graph VAE is composed of a neural encoder and a neural
decoder. The encoder works as an inference layer and the
decoder acts as a generative layer. Fig. 6 depicts the struc-
ture of the graph VAE model. The adjacency and identity
matrix is given as input to the inference layer and a generated
adjacency matrix is given as output from the decoder that
processes a generated graph. Let denotes an undirected and
unweighted graph as ¢ = (v, ¢) with N = |v| nodes. Now,
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FIGURE 6. lllustration of graph variational autoencoder.

the stochastic latent variables z; are aggregated by N x F'. The
parameterized inference becomes:

N
921, A) = [ [ aGlY, A),
i=1
withg(zil Y, A) = N(ilp, diag(e?))  (33)

u = GCN,(Y,B) can be defined as the mean of vector
representations w;.Now, the generative VAE becomes:

N N
pBIZ) =[] r®Biylzi ),

i=1 j=1
with p(Bjj = 1|zi,z) = 0z} z7)  (34)

Bjj are the components of o(-) and A (adjacency matrix)
followed by a sigmoid activation function. Now, the optimiza-
tion process can be written as:

L = Eqz)y,p)llog p(A|Z)] — KLI¢(Z|Y, B)lIp(Z)] (35)

Now for real-valued label function /,, : E — IR on G, which
is constrained to take a specific value [,(v) = y,, at node
v € V C E. In our context, [,(v) = 1 if user finds the item
relevant and has engaged with it, otherwise /,(v) = 0. Now
let’s assume that the adjacency matrix in the KG is similar to
the relevant label. So the energy function E becomes:
EeB)=75 Y Bile)— L) (36

e,—eE,ejeE

This method aims to solve the graph representation learn-
ing problem with a generative model but lacks high-quality
reconstruction result.

f: CONTEXTUAL GRAPH MARKOV MODEL

Bacciu et al. [27] introduced a generative markov model
learning cyclic structures in an unsupervised manner. To prior
our knowledge, this is the first attempt to use a generative
model for variable-length graphs. The generative encoders
gather important representations from the data that boosts the
classification accuracy leveraging unlabeled examples in a

VOLUME 9, 2021



N. A. Asif et al.: GNN: Comprehensive Review on Non-Euclidean Space

IEEE Access

semi-supervised manner. The model uses an automatic recon-
struction of the network in supervised tasks. Locally con-
nected layers have been used without any iteration process.
For each layer of this model, let denote L ™'/ as a set of layers
and the present layer as /. 2]1[\}e(u) defines the neighborhood
nodes of the network for the set of layers I’ € L=Y(1). Now,
the likelihood L(6|H) of the network can be measured as:

Vi, C
L) = [T X PoulR = DP(R, = i) G7)
heH u=1 i=1
This method uses Markov models for learning graph repre-
sentation as a generative model. The optimization process
showed minimum time complexity but the result can be
improved with weighted attention units.

g: GRAPH CONVOLUTIONAL REINFORCEMENT LEARNING
Jiang et al. [170] exploited graph convolution in a multi-
agent environment. This approach utilizes the relation ker-
nel in order to capture the simulation between agents using
relational kernels. To measure the interaction between agents
this method adopts a multi-head attention module. This can
be explained as:

m exp(t - Xpth; - (X"hp)T)
U Y kes., exp(z - X hi - (X"h)T)

In equation 38, T is denoted as scaling factor. To measure
weighted attention, the value of all input features are calcu-
lated and joined together for agent i and j. Later, the output
of all multi-head attention M are processed through F. and
ReLU activation function to the final output /.

(38)

h; = o(concatenate[ Z ai Xy'hi, Ym e M) (39)
JE€B4i

At the final phase, this output is fed into temporal regulariza-
tion and KL divergence is calculated. This method combines
the reinforcement learning and graph convolution operation.
As the multi-head attention module works as relation kernel,
a more light-weight approach can be considered to explore
the simulation process between agents.

h: ADVERSARIAL TRAINING ON GRAPH

GAN is a kind of generative model based on min-max the-
ory. The generator tries to generate random samples and the
discriminator tries to differentiate whether the data sample
is from G(fake) or real data. GAN has proved to generate
high-resolution photo-realistic images and removed blurry
artifacts. Wang et al. [171] introduced GraphGAN fusing
generative models with graphs. In GraphGAN, the genera-
tor tries to calculate the true connectivity distribution and
generates important vertices. The discriminator tries to clas-
sify the connectivity for the vertex pair. The discriminator
gives an output vector calculating the probability of an edge
existing. Lt denotes a graph as G = (L, Q)), the nodes
as L = {Ly...,[r} and the edges as E = {Qij}iL,,':y The
probability distribution for nodes can be defined as pyye(Z]1c)-
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Now, for N'(I.) samples G(I|l.; 8¢) tries to learn the underly-
ing distribution of the real samples and D(l, l.; 6p) aims to
discriminate whether it is real or not. Mathematically, it can
be presented as:

l
ming, maxg, [(G. D) = > (Qi~pec-lipllog DL, Le: 6p)]
c=1
+ Ei~G(.J1,:00)[log(1=D(, Ic; 6p))])
(40)

Training a GAN model is not an easy task due its convergence
failure and mode collapse problem [172]. A more stable
adversarial training process for the graph is yet to be explored.

D. DISCUSSION ON APPLICATION-ORIENTED METHODS
Application-oriented methods demonstrated excellent perfor-
mance in terms of various performance metrics on the graph
data analysis. These strategies create a new direction by
combining different sections, including generative models,
reinforcement learning with graph-structured data as well
as also focusing on real-world applications. But these solu-
tions are still in the preliminary stage as they only provided
a new way of exploring graph-based networks. Generative
models on graphs such as variational autoencoder, Markov
models, adversarial networks and sp forth tend to focus on
the reconstruction quality of graphs rather than learning the
representations of nodes and neighbors.

V. LIMITATIONS & FUTURE DIRECTIONS

In this section, we show the limitations of existing GNN
methods and provide a future direction towards the applica-
tion of GNNs from a theoretical and application perspective.

A. THEORETICAL PERSPECTIVE
In this subsection, we discuss the limitations and future
scopes of graph-based methods from a theoretical perspective.

a: ATTENTION MODULES

The potential of the attention network has been previously
discussed. But the usage of attention units in GNN is still lim-
ited to traditional attention architecture such as self-attention.
Despite the superiority of self-attention, it is computationally
costly for CPU usage. Moreover, for larger graph inputs
self-attention unit becomes very computationally resourceful.
Lightweight attention modules should be focused to develop
computationally effective graph-based models.

b: MULTISCALE NETWORKS

Multiscale networks learn from various receptive areas in
order to perform specific tasks [173]. The multiscale prop-
erties harvest intuitive representation from different loca-
tions of feature spaces [174]. This makes the network more
effective to learn robust node features. Despite the success
of multiscale networks in spectral imagery, this feature has
been overlooked in graph networks. The usage of multiscale
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FIGURE 7. Link prediction with graph networks.

networks can be used to produce structural features such as
small-world entities as well as sociological interactions.

¢: DYNAMIC CONVOLUTION

Existing graph-based models rely on fixed receptive regions
for the feature extraction process. This makes the model
limited to explore fixed receptive areas (RFs). Dynamic con-
volution can explore various Rfs harvesting features from
various nodes providing better performance. Despite the use
of dynamic Rfs in many computer vision applications, it is
still being unused in graph exploitation.

d: TRANSFER LEARNING

Inductive learning (IL) in GNN can discover unseen data
more effectively than transductive learning. IL can handle
graph-based models dynamically that creates this strategy to
solve real-world problems [175]. This setting also enables the
use of transfer learning (TL) [176]. Transfer learning is an
approach that uses a pre-trained model trained on a dataset to
use on a different dataset. Despite the success in the euclidean
domain, it is still not popular in the non-euclidean domain.
The attention-weighted transfer learning approach to graphs
will be an interesting concept for non-euclidean space data
exploitation.

e: REINFORCEMENT LEARNING

Deep Reinforcement Learning (DRL) is a sub-set of data-
driven learning focused on agent interactions in an environ-
ment. The power of reinforcement learning creates a new
direction for autonomous driving. Fig. 8 shows the basic
structure of the RL processing system. In RL, the agent per-
forms direct interaction with the ambiance and increases its
efficiency through trial and error. It is worth to be mentioned
that while performing this task, there is no need for labeled
data. Value function approximation is one of the vital ele-
ments of RL that measures the possible return output in order
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to find the optimal policy. Despite the success of RL in solv-
ing various real-life problems the combination of attention
unit, multiscale networks, reinforcement learning with graph
models is still yet to discover. The representation learning
capability of RL methods is not much capable of long-term
aggregation. The potential of graph models with aggregated
learning with RL can be a sophisticated approach towards
GNNeE.

B. APPLICATION PERSPECTIVE

This subsection focuses on the application perspective of
graph-based models not only pointing to the limitations
of these but also providing a future direction for graph
researches.

a: LINK PREDICTION

Link prediction is one of the most popular applications of
graph-based networks. Fig. 7 shows a general structure of link
prediction using a graph neural network. This network con-
verts the data into sub-graphs learning different transformed
features from the data. In order to learn the relation between
entities, this approach is quite naive to learn long-distance
relationships among entities. A Transformer model can be
used to alleviate that problem.

b: EEG SIGNAL ANALYSIS

Brain signal decoding has brought much attention and is
being used in many applications including brain-computer
interface (BCI) and creating connections with peripheral
devices. For BCI, the EEG signal is being used by a data-
driven strategy for classification purposes. Multiple solutions
have been proposed using deep learning techniques for EEG
signal classification. But a very few graph-based works are
being explored for this task. Robust graph-based generative
models can be utilized to learn valuable EEG features for
classification purposes.
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FIGURE 8. Overview of the reinforcement learning process. The state,
action and reward of the trial-and-error process in the environment are
denoted as St, At and R! respectively.

VI. CONCLUDING REMARKS

Recent progress on graph networks has shown superior per-
formance on multiple performance metrics. Motivated by
the great success of graph-based models, we provided an
application-oriented general categorization of graph-based
methods. In this paper, we depict a clear algorithmic review of
state-of-the-art methods of graph models presenting various
tasks including graph classification, generation, and opti-
mization. Though this paper presents a sophisticated catego-
rization of graph networks, in future works, we will focus on
spectral and spatial-based taxonomy of graph-based models.
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