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ABSTRACT The current electric power system witnesses a significant transition into Smart Grids (SG)
as a promising landscape for high grid reliability and efficient energy management. This ongoing tran-
sition undergoes rapid changes, requiring a plethora of advanced methodologies to process the big data
generated by various units. In this context, SG stands tied very closely to Deep Learning (DL) as an
emerging technology for creating a more decentralized and intelligent energy paradigm while integrating
high intelligence in supervisory and operational decision-making. Motivated by the outstanding success of
DL-based prediction methods, this article attempts to provide a thorough review from a broad perspective
on the state-of-the-art advances of DL in SG systems. Firstly, a bibliometric analysis has been conducted
to categorize this review’s methodology. Further, we taxonomically delve into the mechanism behind some
of the trending DL algorithms. We then showcase the DL enabling technologies in SG, such as federated
learning, edge intelligence, and distributed computing. Finally, challenges and research frontiers are provided
to serve as guidelines for future work in the futuristic power grid domain. This study’s core objective is to
foster the synergy between these two fields for decision-makers and researchers to accelerate DL’s practical
deployment for SG systems.

INDEX TERMS Smart grid, deep learning, deep neural networks, edge computing, distributed and federated
learning, power systems.

NOMENCLATURE NN Neural net\.)vork .
Abbreviations PVPF  Photovoltaic power forecasting

DDL Distributed deep learning
DL Deep learning

DRL Deep reinforcement learning I. INTRODUCTION

DRN  Deep residual network Increased concerns about the exponential growth of electric-
EI Edge intelligence ity demand and the bulk integration of Renewable Energy
EPS Electric power systems Sources (RES) brought a set of new challenges on the adapt-
FL Federated learning ability of the traditional grid for such reality [1]. Faced with
IoT Internet of things the ever-growing population and energy demand, the emer-
LSTM Long short-term memory neural network gence of Smart Grid (SG) as the most convenient solu-

tion provides the necessary tools to enhance the services of
the antiquated grid using Information and Communication
The associate editor coordinating the review of this manuscript and Technologies (ICT) [2]. This ICT-enabled grid presents the
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most effective solution to overcome the major issues in the
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outdated grid, such as poor adaptation to outliers and het-
erogeneous sources [2]. The next-generation Electric Power
Systems (EPSs) must satisty the users’ needs in terms of high
flexibility to sudden events and customer behavior, Energy
Management (EM) of distributed renewable energy sources,
and adoption of low-cost and easy-to-deploy technical
solutions [3]-[5].

A. CHALLENGES OF SMART GRID IMPLEMENTATION
Domestic electricity consumption has risen steadily in recent
years due to population growth and rapid industrialization
[6]. To meet the electricity demand, the renewable energy
consumption in the United States is projected to climb from
11.34 quadrillion Btu to 21.51 quadrillion Btu in 2050 with
a nearly 50% increase [6]. The distributed renewable energy
market flourished as the fastest-growing sector with an esti-
mation of surpassing traditional sources in 2050 [1]. For their
smooth and mature penetration, the SG requires a robust
and intelligent coordination platform between the different
elements of EPSs. Traditional automation based on instruc-
tive tasks and traditional methods for tedious routine opera-
tions between the utility grid parts is ineffective in dealing
with unexpected situations and sustainability problems [7].
The use of conventional approaches for electrical operations
through deterministic programming makes the power flow
issues remain difficult to control due to the heterogeneous
multi-agent practitioners for the “‘energy mix”’ generation of
the grid [2]. Furthermore, the conventional automation tech-
niques require manual monitoring restoration and operation
regulation leading to frequent problems and downtimes, espe-
cially with the incorporation of Renewable Energy Sources
(RES) [8], [9]. The SG’s underpinnings tend to automati-
cally communicate with different electrical components and
deduce the future behavior of each section using extensive
calculations in which DL has the main share of their effective
deployment [10].

B. EMERGENCE OF DEEP LEARNING

Several milestones have been reached in presenting Machine
Learning (ML) techniques for various sub-areas in SG [11].
However, shallow neural networks and sample ML models
pose many challenges that make them seldom employed
for complex problems in EPSs [12], [13]. These chal-
lenges broadly lie in two facts: Firstly, the nondeep-learning
algorithms are ineffective for high-dimensional representa-
tions with unreasonable complexities [14], [15]. Secondly,
the accuracy of simple ML models can not be improved with
large amounts of data [16], [17]. To tackle these problems,
the learning paradigm shifts to DL as the most dazzling
flagship of ML for exploiting Big Data (BD) abundance with
hierarchical feature extraction, high efficiency, and timely
manner [18]. Deep Neural Networks (DNNs) have quickly
ascended to the spotlight due to the improvement of com-
puting performance and data capacity. DL paradigm has
achieved great success due to its strong potential to represent
learning. The performance of DL techniques is solidified
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based on multiple processing units to learn feature represen-
tations with several layers of abstraction [19]. Due to its wide
success, there is a significant proliferation in the use of DL
for EPSs to exhibit complex correlations from heterogeneous
data with different formats. Notably, the complexity of SG
has intensified the need for DL to make use of the massive
data from smart meters and Internet of Things (IoT) devices
[20]. Therefore, the SG community has been encouraged to
apply DL methods to solve a range of miscellaneous and
critical problems. These problems broadly include forecast-
ing tasks, fault detection and diagnosis, cybersecurity, and
prediction [21].

C. RELATED WORKS AND MOTIVATION

Despite the rising interest in DL techniques in SG, the recent
review articles are scattered across sub-areas of EPSs. Fur-
thermore, the existing body of knowledge reported so far
in availability published papers lacks a critical standpoint
overview for the recent methodologies that perfectly tailor
DL to EPSs such as distributed DL models and edge intelli-
gence. Pioneering relevant review articles for DL & SG appli-
cations are reported in Table 1 [1], [10], [11], [13], [21], [23].
From Table 1, it can be concluded that the reported research
strategy leads to losing sight of significance in tracing the
development line of the energy field. This paper comes to
provide a systematic review of DL methods applied to SG
to foster the synergy between these two research hotspots.
Beyond reviewing the recent DL methods, their merits, and
limitations, this review will elicit escalating attention on the
emerging DL enabling technologies for EPSs. These tech-
nologies include Federated Learning (FL), Distributed DL
(DDL), Edge Intelligence (EI), Big Data DL (BDDL), Deep
Transfer Learning (DTL), and Incremental Learning (IL).
Finally, a fruitful discussion on the research frontiers that
intersects advanced DL and EPSs is conducted.

D. RESEARCH METHODOLOGY AND SYSTEMATIC
REVIEW PROTOCOL

Starting from September 2019, the multiple-methods
approach was conducted [24]. The collection of the main-
stream research papers on SG/AI from Web of Science
(WoS), Scopus, IEEE Xplore, Science Direct, and Google
scholar was conducted as the largest databases of peer-
reviewed articles. Only peer-reviewed articles written in
English, providing experimental results, and having a unique
identifier from the mentioned databases were taken into
consideration, including reviews, research articles, patent
reports, and conference proceedings. The adopted methodol-
ogy for conducting this review article employs a combination
of keywords categorized into three main groups, specifically,
‘Deep Learning’, ‘Smart Grid’, and ‘Prediction’.

The search methodology focuses on the recent research
articles from 2015-2020 to identify the comprehensive statues
of the AI applications on SG. The filtering process results
in 220 research papers from 600 related papers selected based
on their relevance by reading the title, abstract, conclusion,
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TABLE 1. List of the related review papers.

Reference  Year Selected keywords One-sentence summary Coverage
SG DL EI DDL
[23] 2018  DL; DRL; Electric power systems; Optimization The emergence of RL for SG v v - -
[20] 2019 IoT; Edge computing; Fog Computing; DDL The integration of DL in Industrial IoT - v v v
[1] 2020 SG; DRL; IoT; 5G; Cyber-security The implementation of ML in Smart cities v v - -
[13] 2020 Al power electronics; predictive maintenance Al applications for EPSs v - - -
[22] 2020 RES; Forecasting; ML; ensemble models Forecasting models for buildings v - - -
[21] 2020 SG; Grid reliability; RES The importance of SG transition v - - -
[11] 2020 ML; Smart dispatch; DNN; Parallel systems ML Applications of in smart dispatch EPSs v - - -
[10] 2021 SG; AI; EM; distributed grid intelligence Tailoring Al in EPSs and EM v - - -
This paper 2021 SG; DL; DDL; EPSs; federated learning DL applications for SG v v v v
_0.0001 E. STRUCTURE OF THE REVIEW
? 5.00008 Deep learning The information flow of this review is structured in a top-
g Smart grid down manner, as illustrated in Fig.3. Section II emphasizes
&-0-00006 the ultimate need for SG in the energy hub. Section III
& i -
o 0.00004 comprehensively presents the commonly usecli DL. meth
é ods for SG system. These DL methods essentially include
© 0.00002 Multilayer Perceptron (MLP), Recurrent Neural Network

0
1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

FIGURE 1. Frequency of use of terms deep learning and smart grid in
books from 1980 to 2020 (Google Books Ngram Viewer, 2020).

and full text. The filtered articles are tabulated and unified to
facilitate the comparative analysis and assessments accord-
ing to the prediction horizon, applications, used data, error
measures, Al classes, experimental setup, etc. The following
criteria were applied: (i) SG and EPSs are considered. (ii)
the feasibility analysis of the forecasting models is given
high importance in the selection process. (iii) the evaluation
of the forecasting models emphasizes the use of scale-free
metrics. (iv) the future directions and perspectives taking into
consideration the latest research articles to give a general
standpoint of the current status of SG-based DL and future
work. Fig. 1 presents a timescale variations on the frequency
of use of terms SG and DL in scientific books from Google
Books Ngram Viewer. It can be seen from Fig. 1 that the
SG paradigm initially appeared in 1997, while DL achieves
an exponential peak since 2006. This high correlation of the
SG and DL lies in their complementarity to promote their
applicability in real-world policies. A bibliometric analysis
based on a thesaurus file from WoS website is conducted
to shape the review structure, as illustrated in Fig.2. The
aforementioned keywords shape the review structure. Fig.2
shows three topic clusters: DL models, SG, and enabling
technologies (i.e., transfer learning). These clusters are taken
into consideration to structure the content review in the next
subsection.
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(RNN), Convolutional Neural Network (CNN), Restricted
Boltzmann Machines (RBM), Autoencoders (AE), Deep
Reinforcement Learning (DRL), and Generative Adversar-
ial Network (GAN). Section IV presents some insights on
DL enabling technologies underpinning the SG paradigm.
Section V introduces the possible future work and possible
directions for empowering the role of DL in the SG area by
emphasizing the undiscovered fields. Section VI concludes
this review paper.

Il. PRIMER ON SMART GRID

The SG technology presents a potentially powerful concept to
sustainable energy operations. This next-generation network
takes advantage of the customer action and energy stockhold-
ers to empower the energy delivery in a secure, economic
and sustainable manner. A huge amount of data sources and
control points in the grid cope with end-user needs toward
efficient decision-making actions [23]. For realizing two-way
communication, SG elements require efficient integrity to
meet the desired functionalities of SG.

However, the widespread adoption of SG systems intro-
duces several critical challenges. The complexity of SG
and huge amount of data require advanced automation and
information management tools. The bulk penetration of
RES into the electrical grid leads to unstable and volatile
power generation. This volatility requires DL-based models
to address the uncertainty and intermittency of renewable
EPSs [25]. Furthermore, the wide development of Advanced
Metering Infrastructures (AMI) and Wide Area Monitor-
ing Systems (WAMS) intensifies the necessity of DL-based
techniques to deal with the massive data produced.
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FIGURE 2. Bibliometric visualization for the author-supplied keywords, created with VOSviewer Software.
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FIGURE 3. The information flow of the paper.

Ill. REVIEW OF DL METHODS

Recently, DL arouses a greater attraction at a far faster
pace than even a decade ago. This appears quite obviously
regarding the massive number of technologies where DL
fingerprint is meaningfully marked [26]. Particularly, utility-
scale plants have been remarkably expanding around the
world during the last decade [27]. Due to the fast growth
in global installed capacity, utility-scale generating facili-
ties face multiple challenges in terms of performance mon-
itoring, power losses, faults and failures, large complexity,
and big size across hundreds of acres of land. Stakeholders
and researchers tend to find scalable solutions in such huge
plants to address these challenges [27]. Traditionally meth-
ods of monitoring utility-scale projects become too costly
in the utility-scale. DL techniques contribute toward filling
these gaps by self-monitoring and self-healing, automated
diagnostics provider. Several studies report the increasing
role of DL algorithms in revolutionizing utility-scale systems
[28]. Fascinated by the enticing popularity of DL, the fol-
lowing subsection is devoted to tackling the popular DL
methods to SG.
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A. MLP
Multilayer Perceptron (MLP) is a DNN with densely
connected layers to acquire the strong fitting ability for
nonlinear systems [29], [30]. Over the past decades, neural
networks have achieved a significant evolution from the sim-
ple McCulloch-Pitts Neuron to more complex MLP struc-
tures, as shown in Fig. 4 [31]. Regarding Fig. 4, Neural net-
works architectures have passed by radical transformations
to enhance learning performance [32]. Operational Neural
Networks (ONNs) and Self-ONNs present a diversification of
the conventional MLP that introduces embedding nonlinear
patch-wise transformations for designing more compact net-
works with improved prediction capability [33]. The objec-
tive of these futuristic variants of MLP networks is to boost
generality potential with less network complexity and mini-
mal training data [34]. For formalizing the dynamics of MLPs
model of K hidden layers {hl, hK},{f eR% je [1, K]} is the
nonlinear function described as f (x, ) = Zf‘z (Wi (x, Jp). J;
denotes the weight from the input layer to the hidden node
i and w; denote the weight from the hidden node i to the
output layer. Here, ¢ (i) denotes the activation function, while
o(x,Jp) = qb(]l.Tx) is the output of the ith hidden neuron. ¢ =
{J1,...,Jx, w1, ..., wi} denotes all the model parameters.
Paper [37] proposed MLP based Double Least Absolute
Shrinkage and Selection Operator (dLASSO-MLP) model
for measuring quality variables of soft sensors in industrial
processes. The dLASSO-MLP model retrieves the redun-
dant hidden nodes to avoid overfitting. An Iterative Residual
blocks Based DNN (IRBDNN) model has been introduced
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FIGURE 4. Timescale evolution of Artificial Neural Networks with ONNs:
Operational Neuron Networks, GOPs: Generalized Operational
Perceptrons, +: under improvement. Super Networks belongs to Super Al,
which meets the technological singularity (These concepts are purely
speculative for the time of writing this review and may not exist in the
future) [35], [36].

to predict individual occupants’ short-term strength require-
ments by exploring the underlying Spatio-temporal correla-
tions of customers behaviors [38]. It has been concluded from
the implementation of IRBDNN that the spatial correlations
between different appliances used in a household and the
iterative residual blocks can boost the model performance
[38]. However, the data representation in communication net-
works can potentially increase the accuracy of the IRBDNN
model [38]. The authors in [39] employed MLP for mali-
cious attack detection of SG networks. The proposed solution
provides a 99% accuracy over 10000 simulations. In [40],
the authors have developed an MLP model for STLF based on
smart meter data. According to the simulation results, MLP
achieved better performance than conventional ML tech-
niques [40]. However, the training time is relatively slow [40].
MLP reveals several features that promote its implementation
for nonlinear problems of single and multi-complex tasks
such as distributed representation and computation, map-
ping capabilities, powerful generalization, and high-speed
information processing [41]. There are several advantages
of MLP model, especially in higher-dimensional settings,
still, the loophole lies in algorithm complexity, long-training
time for large MLPs, and higher computational burden [41].
By stacking multiple layers, constructing and training this
DNN model can be computationally expensive [42].

B. RNNs
RNN is designed for sequential time series data where the
output of the network is fed back to the input as illustrated
in Fig. 5(a). The recursive processing of RNN contains hidden
layers to with feedback loop to provide a useful information
about the past states [43]. For a sequence of input x; =
(x1, ..., x7) € RV*T and output vectors y, = (y1, ..., yr) €
RM*T the hidden states are , = (hy, ..., hy) € REXT,
Let’s consider /; and s, the hidden state at time f and ¢t — 1,
respectively. Here, h; can be written as: iy = fr,(Wyx; +
Whinhi—1 + br), where fj, denotes the nonlinear function such
as the sigmoid function o. Wy, Wy, and W), represent the
input, hidden, and output weights, respectively. by, and b,
denote the hidden and output bias. The network output y, can
be written as y, = Wjyyh,+by. Fig.5.(a) shows the architecture
of the proposed model.

In [44], an intrusion detection system-based RNN has
been introduced for detecting network attacks and fraudulent
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(©) (d)

FIGURE 5. Structure of (a) RNN (b) LSTM (c) GRU, and (d) AL.

transactions in the blockchain-based energy network. The SG
attacks are avoided by generating blocks with short signatures
and hash function [44]. The RNN model has achieved an
overall accuracy rate of 98.23%. The merit of RNN lies
in its internal memory. However, RNNs are prone to the
vanishing and exploding gradient dilemma [45]. For real
EPSs applications, this shortage makes RNN usually replaced
with two types of memory gated structures: Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) [46].

1) LSTM

The major success of LSTM model is accorded to its excel-
lent ability in temporal feature extraction from input data
x1,...,x7 with O < r < T. The LSTM mechanism consists
of the deployment of three memory gates, namely, input gate
ir = o(Wix; + Uih,—1 + by), forget gates f; = o(Wrx; +
Urh;—1 + by), and output gate o, = o (Wox; + Uoh;—1 + by)
as shown in Fig. 5(b) [45], [47]. Where x;, o, and ¢; denote
the input sample at time 7, the activation function, and the
memory unit, respectively. (by,b;,b,) and (Wy,W;,W,) stands
for the bias and weight matrix for each gate, respectively. The
symbol O is the corresponding multiplication of the elements
[45]. A comparative study of some popular nonlinear activa-
tion functions is presented in Table 5.

The authors in [49] employed LSTM and an aggrega-
tion function based on Choquet integral for Solar irradia-
tion forecasting. The proposed architecture provides a clear
information about the largest consistency among the con-
flicting forecasting results by aggregating different LSTM
networks [49]. The simulation results based on six datasets
collected from different regions in Finland demonstrated the
performance superiority of the proposed approach compared
to four standalone LSTM models with different configura-
tions [49]. A STLF method based-LSTM and Multivariable
Linear Regression (MLR), named LSTM-MLR, is pro-
posed to capture the time series variations of STLF using
ensemble empirical-mode decomposition [50]. However, the
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TABLE 2. Nonlinear activation functions.

Function Advantages Drawbacks
ReLU -Suitable for hidden layers ~ -Dying neuron problem
[48] -Less time and complexity
Sigmoid  -Supports  backpropaga-  -Vanishing gradient
[48] tion -Computationally costly
-Suitable ~ for  output
neurons
Softmax  -Useful for multiclass -Can not be used for hid-
[46] classification den layers
-Suitable  for  output
neurons
ELU -Fast -Exploding gradient
[46] -Suitable for hidden layers
Leaky -Prevents dying neuron -Exploding gradient
Relu -Computationally
[48] proficient
Tanh -Supports  backpropaga-  -Vanishing gradient
[48] tion -Slow convergence
-Has a smooth slope
Softplus  -High sparsity -Incomplete saturation
[46]
Swish -Self-gated function -Less popular
[48] -Fast

computational complexity can limit the proposed LSTM-
MLR from the practical adoption in real power systems.
In [51], a parallel LSTM-CNN model has been proposed
for STLF. Reference [52] introduced a hierarchical dilated
LSTM model for mid-term electric load forecasting. Mul-
tilayer LSTM is equipped with dilated recurrent skip con-
nections and a spatial shortcut path from lower layers for
better forecastability and universality potential [52]. This
model was based on the winning submission to the M4 fore-
casting competition for monthly data in 2018 [52]. In [53],
a rapid islanding detection method-based LSTM classifier
has been proposed, demonstrating the applicability of LSTM
for classification problems. From these studies, it can be con-
cluded that LSTM model dramatically improved the State-
Of-The-Art (SOTA) of RNN in time series prediction. This
improvement is due to its strong ability to learn long-tailed
temporal dependencies using memory units and customized
gates [45]. However, the LSTM structure has limited potential
in learning spatial features.

2) GRU

GRU network has been proposed to alleviate the compu-
tational burden from the LSTM architecture by using only
two gates instead [45]. These gates are a reset gate and
an update gate (Fig. 5(c)) [45]. The update gate has the
same functionality as the forget gate of an LSTM, which
decides if the information is useful or forgotten. The reset
gate is used to decide if the information would be saved or
removed. Paper [54] used a Residual GRU (ResGRU) with
CNN for fault diagnosis in PV arrays. The proposed ResGRU
model has a strong anti-interference ability to effectively
identify single and hybrid faults with an accuracy of 98.61%.
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Unfortunately, the ResGRU model’s computational com-
plexity poses the problem of massive waveform storage,
especially with online fault diagnoses [54]. In [55], Par-
ticle Swarm Optimization (PSO) method is used to tune
GRU model, which shows that GRU is very sensible to
the initial state of parameters. A Fault type classification
method based-GRU has been presented, which makes use
of discrete wavelet transform for data pre-processing [56].
Despite the high flexibility, GRU architecture is prone to
poor spatial feature representation and high computational
efficiency, making its trustworthy practical implementation
questionable. [31].

3) ATTENTION MECHANISM

Inspired by the selective visual mode of human beings,
the attention-based RNN locates discriminative regions of
interest. The Attention Mechanism (AM) operates by attribut-
ing different weights for different features at different time
steps as shown in Fig.5(d). The Attention Layer (AL) focuses
on a discrete aspect of the information or lessens the inter-
ference of irrelevant or noisy information brought by the
global features. The AM can be classified into kinds of
attention: deterministic Soft Attention (SA) and stochas-
tic Hard Attention (HA) [57]. SA is a fully differentiable
deterministic mechanism that can be plugged into an exist-
ing system. Alternatively, instead of using all the hidden
states in HA as an input for the decoding, the system
samples a hidden state y; with the probabilities s;. Com-
pared to HA, SA is easier to implement [57]. Two variant
attention mechanisms are introduced: Self-Attention mech-
anism (SAM) and Multi-Head Attention Mechanism (MHM)
[58]. The self-attention is employed to capture spatial dimen-
sions in the nonlocal feature dependence, which is hard
to be extracted by convolution kernels. Meanwhile, MHM
employs multiple self-attention mechanisms. Extensive stud-
ies found that MHM is more efficient than SAM for selective
attention.

Attention-based models have been frequently used in
EPSs. For instance, paper [58] employed SAM and Multi-
Task Learning for Photovoltaic Power Forecasting (PVPF).
Despite the fundamental role of SAM in enhancing the
RNN-based models’ performance, a massive number of addi-
tional learn-able hyperparameters have been added into the
prediction system, which requires extensive tuning, mak-
ing it unsatisfactory for real-world scenarios [58]. In [59],
the authors used a multi-head CNN-RNN architecture for
anomaly detection. From the simulation results, the type of
anomalies in the learning library for fault identifications are
diagnosed, specifically, point, context-specific, and collective
[59]. In real applications, the multi-head CNN-RNN model
could face other unknown types of fault samples, and at this
time, the proposed model may fail [59]. Paper [60] introduced
a gated dual attention unit (GDAU) for predicting bearing
Remaining Useful Life (RUL). The GDAU model combines
AM and GRU to improve the prediction accuracy and con-
vergence speed [60].
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4) BIDIRECTIONAL MECHANISM

Bidirectional mechanism (BiM) is proposed for uni-
directional-based schemes to capture both past and future
semantic information from the forward and backward direc-
tions simultaneously [61]. The bidirectional modeling uses
two separately computed directions of information process-
ing: one forward neural network scanning the sequence from
left to right and one backward network reading the sequence
in the other direction [61]. Assuming the input of time ¢ is the
embedding lay;ci wy,at time ¢ — 1, the output of the forward
hldden unit is h ;_1,and the output of the backward hidden
unit is h +1, Then the output of the backward and_())f the hid-
den unit at time ¢ is equal as follow: h , = L(w;, h,_1, ¢/71,
h ¢ = L(wy, h 41, c;41) where L() denotes the hidden layer
operation g the LSTM hidden layer [61]. The forward output
vector is h, € R'™H and the backward output vector is
h € RYH and they should be combined to obtain the text
feature. It should be clarlf_l)ed tgat H denotes the number of
hidden layer cells:H, = h || h;. Owing to the advantages
of BiM, it has been used for forecasting applications. The
authors in [62] employed Bidirectional LSTM (BiLSTM)
for wind speed interval prediction. A sequence-to-sequence
mechanism based on the bidirectional GRU for type recog-
nition and time location of combined power quality distur-
bance has been introduced [63]. Unfortunately, the details
about computational time and the network size were miss-
ing, limiting the model generalization. A feature-attention
mechanism-based BiGRU method for RUL prediction for
electrical assets has been proposed [64]. Despite achieving
STOA performance, the high complexity of the proposed
model, the hyperparameter optimization may lack conver-
gence guarantees [64].

C. CNNs

The CNN layers were initially used to capture the semantic
correlations of underlying spatial features between slice-wise
representations by convolution operations in multiple-
dimensional data [65]. The feature mapping of CNN con-
tains k filters spatially repartitioned into different channels
[66]. The pooling operation is applied to shrink the width
and height of the feature map. The convolutional layer y; is
calculated as y; = fa(zi kijx;) [61]. where x;, k;,and y; denote
the feature input, the convolutional kernel, and the hidden
layer of the ith iteration, respectively while f;, represents the
activation function. The pooling layer equation for j x k
metric dimension is given as y;jx = max(x; jip k+q). Where
p and g denote the vertical and horizontal index in local
neighborhood. The fully connected layer v is generated as
follows v = f,(W'y + b) where b and w denote the bias,
weight matrix [67].

CNNs analyze the hidden patterns using pooling layers
for scaling, shared weights for memory reduction, and fil-
ters for capturing the semantic correlations by convolution
operations in multiple-dimensional data [68]. Thus, CNN
architecture acquires a strong potential in understanding

54564

spatial features [69], [70]. Despite the CNN potential, CNN
model suffers from its disability in capturing special features
[70]. The authors in [71] implemented GRU for Long-term
load forecasting. In [72], a Temporal Convolutional Network
(TCN) has been associated with Light Gradient Boosting
Machine (LGBM) to address the issue of unsatisfying accu-
racy in STLE. As an enhanced variant of CNN, TCN model
associates a sequence of dilated causal convolutions and
residual connections for better effectiveness for stacking
deep layers [73]. A CNN with Squeeze-and-Excitation mod-
ules (CNN-SE) has been proposed for STLF [74]. In the
CNN-SE architecture, SE mitigates the redundancy caused
by the massive number of input channels while the CNN
model aggregates micrometeorological data from different
acquisition sites [74]. The proposed model provides a SOTA
multi-dimensional analysis using the squeeze-and-excitation
block [74]. In [75], a CNN-based locational detection algo-
rithm has been proposed for multi-label classification of
false data injection attack. For better accuracy, a Bad Data
Detector (BDD) has been employed to refine data quality on
IEEE-14 and 118 bus systems [75]. However, the training
difficulty increases with the depth and number of CNN layers
[56]. Therefore, the number of hidden layers of CNN is
preferred to be small, which can decrease its performance
[56], [75]. From the previous CNNs applications, the CNN
model contributes to the prediction system with efficient
spatial feature extraction and distributed implementation.
However, the downsides of CNN include a lack of temporal
data modeling and long training time [76].

D. RBMs
The Deep Belief Network (DBN) is a deep feedforward
neural network with input A° and L computational layers
h';(i = 1,2,...,L). Each layer i’ is an RBM layer RBM".
The RBM model comprises visible units v € {0, 1}$" and
hidden units & € {0, 1}8" with g, and g; denote the number of
visible and hidden units, respectively. The shallow Boltzmann
machine (BM), shown in Fig.6(a), is found ineffective for
its poor learning potential and high calculation complexities.
Therefore, RBMs restrict BMs without linking the hidden-
hidden and visible-visible connections among units on the
same layer, as shown in Fig.6(b). The RBM is a two-layer
training model in the construction of a DBN (Fig.6(c)).

The RBM layer employs a generative graphical model
that encodes the probability density function of its input

Hidden layer

(h)Hidden layer
(h1) (h) (hs

vi) (v) (v3) (v4

2 Visible Tayer
(a) (b) (©)

visible layer

visible layer

FIGURE 6. Structure of (a) BM (b) RBM (c) DBN, respectively.
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layer 4"~ ! into its latent feature vector . The RBM uses an
energy function E(v, h) with inputs modeled with the Gaus-
sian function. The energy function equation can be written as
follows:

8 8h gh

ZZW,,V’h Z(V’_’ th (1

i=1 j=1
with W;; denote the weight between visible and hidden units,
o; denote the Gaussian standard deviation of the visible units,
and a; and b; denote the bias terms. For DBN with multiple
RBMs, it can be built using the layer-wise greedy pretraining
through the above procedure for each RBM.

In [77], the authors employed an improved DBN for STLF
using meteorological data, load demand data, and demand-
side management data. The improvement methodology con-
sists of a virtue of processing units, specifically, Hankel
matrix and gray relational analysis for correlation analy-
sis, Gauss-Bernoulli RBMs for identifying the probability
density of data, Bernoulli-Bernoulli RBMs for processing
binary data, and mixed pre-training and GA for parameter
optimization. The proposed model in [77] is found outper-
forming other benchmarks with a MAPE=6.07%. A DL
model-based Factored Conditional RBM (FCRBM) has been
firstly introduced for STLF [78]. The proposed FCRBM algo-
rithm conducts dimensionality reduction and hyperparameter
optimization using modified mutual information and genetic
wind-driven algorithm [78]. A Conditional DBN (CDBN) has
been proposed for detecting false data injection attacks in
real-time [79]. According to the simulation experiments using
IEEE 118-bus and 300-bus test systems, the CDBN provide
a powerful capability of learning high-level representations
of raw input data [79]. From the obtained results, a general
conclusion can be drawn that giving higher importance to
demand-side management data and the electricity price data
enhances the prediction accuracy of the proposed model [79].
However, the proposed methodology requires four different
kinds of data to operate. This condition is difficult to satisfy
in practical industrial applications [79].

E(v, h) =

E. AUTOENCODERS

An Autoencoder (AE) is an auto-associative feedforward
Neural Network (NN) [80]. It can learn effective repre-
sentations from the raw input in an unsupervised manner
[61]. The AE is essentially introduced for feature extraction
or dimensionality reduction using three elements: encoder,
coding layer, and decoder, as illustrated in Fig.7(a). Let’s
consider xg) = (x1,%2,...,xx)7,x € R™ and y4) =
01,2, ...,yv) .y € R™ the normalized unlabeled input
vector and the ouptut vector, respectively. The AE maps the
input vector x = ()Acl ,A)ACQ, ceey )ACN)TA as: yx) = O’(W(k)X(k_l) +
bwy) and Xy = o Wg)y-1) + bw))- Here, x) and xg—1)
denote the inputs of the kth layer and (k — 1) layer, respec-
tively. W) and W, denote the weights while by, and
E(k) denote the bias. The classic AEs have several bottle-
necks in terms of overfitting, poor generalization ability, and
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sensibility to noise inference. To suppress the adverse effects
of auto-encoding architecture, several models have been
proposed, including Sparse AE (SAE) (Fig.7(b)), Stacked
AE (StAE), Variational AE (VAE), Stacked Denoising AE
(SDAE), Stacked Contractive AE (SCAE), and Convolutional
AE (ConvAE) [81]. Stacked AE consists of stacking multiple
AEs layer by layer to better find the encoding-decoding
scheme than AE by mapping the input vector towards a lower-
dimensional manifold. The AE is trained by minimizing the
squared reconstruction error L(x, X) = % > llx—%||%. How-
ever, Stacked AEs are prone of overfitting in case of a high
risk copying the input to the output with any feature learning.

To fill this gap, SDAE has been proposed to create a noise
corruptions in feature extraction [82]. The DAE is trained in
an unsupervised bottom-to-up manner to reconstruct the best
clean input x from a corrupted version of input x’. The SDAE
acquires a more flexible mapping than the classical AE. VAE
is an NN-based generative probabilistic graphical model. The
core idea of VAE consists of computing an efficient Latent
Space Regularization (LSR) to enable generative process.
Using a variational inference for latent representation learn-
ing, the probability density distribution of the LSR of a VAE
typically matches that of the training data much closer than
an original AE. Suppose that Z and py(X Z) denote the latent
variable and the variational approximation of the intractable
posterior, respectively. The generator network g(Z,60) =
po(X Z)p(Z) approximates the generative process pg(X) =
Po(X Z)pg(Z) as illustrated in Fig.7(c).

Paper [83] used stacked AE to extract the relevant features
such as land use maps for spatial load forecasting. A data-
driven bottom-up spatial and temporal STLF approach is con-
ducted and demonstrated its generalization potential on larger
areas, and diverse regions [83]. A Joint Latent VAR (JLVAR)-
based monitoring method for gearbox failure detection of
wind turbines has been proposed and proved its feasibility on
Supervisory Control and Data Acquisition (SCADA) systems
[84]. For electricity price forecasting, the authors proposed
SDAE, RS-SDAE, a Random Sample Consensus (RANSAC)
with Stochastic Neighbor Embedding (SNE), and SDAE for
obtaining a robust representation of feature inputs [85]. Due
to the hybridization approach, the additional hyperparam-
eters dramatically decrease the model’s learning efficiency
[85]. In [86], an unsupervised DL scheme-based cyberat-
tack detection system for transmission protective relays has
been proposed using a 1-dimensional convolutional-based
AE. A comparative study of AE and its variants is presented
in Table 3.
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TABLE 3. AE variants with their advantages and restrictions.

Model and Ref. Advantages Restrictions
SDAE [87] -Improves the stability and robustness of AE -Prone to the vanishing of errors
-The repair ability minimizes the loss function -Problems with memorizing the training data
SAE [88] -The sparsity penalty prevents overfitting. -The scale information is not considered
- Uses a limited number of hidden nodes -potential spectral distortion and noisy results
StAE [61] -Efficient in handling high-dimensional data -Higher chances of overfitting.
-Final encoding layer is compact and fast -Poor feature representation from noisy data
SCAE [89] -Robust encoding representation -Difficult selection of activation functions
-Noise removal without knowing noise sensibility -Low generalization for complex problems
ConvAE [90] -Ability to extract the local features -Problems with learning meaningful features
-Efficient noise reduction -Regularization mechanism is necessary
VAE [91] -Significant control of latent distribution -Computationally expensive

-High continuity in the latent space

-Low expressiveness in capturing the true posterior distribution
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FIGURE 8. DL models with (a)GAN structure (b)DRL structure.
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F. DEEP REINFORCED MODELS AND DEEP
UNSUPERVISED LEARNING

1) DEEP GENERATIVE MODELS (DGM)

GAN has gained tremendous interest as a mainstream super-
resolution model. GAN uses a Generator Network (GN) and
Discriminator Network (DN) to create synthetic data that
follows the same distribution from the original data set as
shown in Fig. 8(a) [92].

More specifically, the GN mimics the data distribution
using noise vectors to confuse the discriminator in differenti-
ating between the fake image and the real image. The GN is
trained to boost the probability of fooling the DN by making
the new data indistinguishable from the real one. The dis-
criminator’s role is to be trained to distinguish generated fake
image created by the generator from the original image fol-
lowing the two-player zero-sum game [93]. For discrete data,
GAN is frequently employed for Data Augmentation (DA).
For example, paper [50] proposed a Signals Augmented Self-
Taught Learning (SASLN) network for Fault Diagnosis of
Wind turbine Generation (FDWG). Here, GAN is used for
signal augmentation to be fed to SLN model [50]. A fusion
between CNN and GAN resulting in Wasserstein GAN with
Gradient Penalty (WGANGP) model has been proposed to
increase the size of data for PVPF [92]. Thirty-three mete-
orological weather types are reclassified into ten weather
types [92]. The WGANGP was used to synthesize new, real-
istic training data samples by simulating input samples for
improved training data sets. Despite the good performance
generalization, the CNN-WGANGP may misclassify some
confusing samples into a particular weather type, leading to
lower prediction accuracy [92].
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In [94], a Conditional Wasserstein GAN with gradi-
ent penalty (CWGAN-GP) has been introduced to model
the uncertainties and the variations of the load. However,
the CWGAN-GP lacks unexplained behavior of the network
and specific rule for the determination of inner mechanism
[94]. A GAN-based super-resolution reconstruction method
for low-frequency electrical measurement data has been pro-
posed [95]. The proposed architecture employs a generator
based on DRN and a discriminator based on CNN to provide
high reconstruction accuracy while sacrificing the computa-
tional complexity [95]. Reference [96] employs Wasserstein
GAN with gradient penalty to capture the real distribution of
the electricity consumption data for electricity theft detection.
Reference [97] employs GAN for power loss mitigation of
active distribution networks. Despite the large popularity of
GAN:Ss, the GAN training and assessment is quite challenging
and unstable. Moreover, the applicability of GAN is limited to
non-discrete data such as computer vision and image recog-
nition applications.

2) DEEP REINFORCEMENT LEARNING

DRL is the combination of DNNs and RL [98]. The basic idea
behind DRL consists of assigning rewards and punishments
for an agent to shape its policies. Here, the goal of DRL is
to maximize the computing reward functions with reasonable
actions (a;), as illustrated in Fig. 8(b). The DRL mechanism
consists of generating an autonomous agent that can navigate
the search space and provide an optimal policy of actions. The
DNN represents a large number of states (s;) and approximat-
ing the action values to learn the best action choices over a set
of states through the interaction with the environment [99].
DRL can be classified into value-based models, such as Deep
Q-learning (DQL), Double DQL, Duel DQL, and policy-
gradient-based models such as Deep Deterministic Policy
Gradient (DDPG) and Asynchronous Advantage Actor Critic
(A3C) [100], [101].

The authors in [102] proposed a Multi-Agent DRL
(MADRL) model for EV charging stations with Energy Stor-
age Systems (ESSs) and photovoltaic (PV) systems. The
cooperative MADRL model-based on CommNet provides
active and intelligent energy management while handling
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real-time dynamic data [102]. Paper [103] introduced a
Cyber-Attack Recovery Strategy for SG-based DRL. The
proposed DRL has been employed for re-closing the tripped
transmission lines at the optimal re-closing time [103]. Unfor-
tunately, the proposed DRL may suffer from parameter insta-
bility during training [103]. In [104], the authors proposed
a Multi-Agent DRL-based Volt-Var Optimization (VVO)
framework for unbalanced distribution power systems. The
actions are attributed to different agents to mitigate the action
dimension of each agent [104]. The simulation results proved
that DQL can be used with continuous actions [104]. A
deep Q-network (DQN) based approach has been used for
accurate STLF [105]. In [106], a cyberphysical vulnerabil-
ity assessment approach based DQN has been introduced,
which requires sufficient power system data acquired to cor-
rectly identify the contingencies. From the previous studies,
DRL models have some bottlenecks, such as the lack of
compatibility with continuous action spaces and slow policy
convergence.

G. OTHER APPROACHES

Beyond the cited DL methods, Capsule Networks (CN) and
Deep Spiking neural network (SNN) are employed for SG
applications. CN are an advanced form of CNN comprising a
group of vector neurons, primary capsules layer, convolution
layer, and digit capsules layer [107]. Capsules in CN identify
spatial patterns between the lower-level entities and applies a
dynamic routing algorithm to recognize these relationships.
From the authors’ work in [108], a weight-shared capsules
network is employed to further supplement the generalization
capability of the original CN. Nevertheless, the proposed
model is dependent on the quality of labeled data to perform
fault diagnosis of machinery. This data is difficult to acquire,
especially when the faults happen rarely.

SNN was introduced as one of the third generation ANN
[109]. SNNs are considered as efficient models for tem-
poral coding in neurons where the neurons interact with
other nodes through excitatory or inhibitory spikes. Fur-
thermore, SNNs can support huge parallel processing using
neurons cluster, which significantly accelerates the execu-
tion time [110]. The proposed forecasting system in [110]
associates SNN with a group search optimizer for auto-
matic hyperparameter tuning to perform probabilistic fore-
casting with excellent performance and a short training time
of 1.31 seconds.

H. HYBRID MODELS-BASED

DL algorithms have their strengths and weakness in terms
of hyperparameter settings, data exploration of the com-
putational burden [9]. Table 4 reports the advantages and
downsides of DL models. According to Table 4, it can be
remarked that the reported downsides of DL methods impede
them from becoming canonical approaches in the power
industry. Each DL method has the characteristics that make
it tailored to a specific application of the SG area better
than the other methods. To overcome the DL shortcomings,
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FIGURE 9. Pictorial representation of the DL Models applied to SG
in 2015-2021 (WoS, 2021).

hybrid models have been extensively proposed based on
single DL models to tackle EPSs bottlenecks, as shown
in Fig. 10. For the sake of following the share of DL meth-
ods usage for SG systems limited to 01/01/2015-21/01/2021,
several popular DL models have been coupled with “Smart
grid” and searched on Google scholar research engine. As a
result, a pictorial representation of the most popular DL
techniques correlated to SG with their frequency of use is
illustrated in Fig. 9.

We can see that CNN and RNN models have a high
applicability and universality potential rather than the newly
developed models. Paper [111] proposed a hybrid method
for wind energy forecasting. The proposed method combines
DBN and Support Vector Regression (SVR). DBN is a super-
vised DL technique having I-layers and parabolic hidden
cells [111]. The proposed model outstrips individual models’
accuracy (SVR and DBN). However, the proposed method
is time-consuming [111]. The authors in [112] combine
Long Short-Term Memory (LSTM) and CNN for power
demand forecasting. In [92], the authors used GAN and
CNN for a day ahead PVPF. Wasserstein GAN with Gradient
Penalty (WGANGP) is proposed to classify thirty-three mete-
orological weather types for generating synthetic training
data. Authors in [113] employ CNN, and GRU models to
learn spatio-temporal representations for probabilistic wind
power forecasting. From the loss versus epoch variation,
it worth saying that the convergence of the model was reached
in the first ten iterations, which may lead to serious over-
fitting problems [113]. In [114], a cybersecurity diagnosis
and localization method using hybridization of AE, RNN,
LSTM, and DNN has been proposed. Despite the model’s
universality potential to cope with other networked industrial
control systems, it has been found that this hybrid design
can not detect unknown attack/fault types [114]. A novel
Graph Neural Network (GNN) based framework, combining
graph convolutional network (GCN) and LSTM model has
been proposed for multi-task multi-task transient stability
classification [115]. The hybrid design of GNN is found able
to effectively analyze complex spatio-temporal patterns in the
IEEE 39 Bus system and IEEE 300 Bus system [115]. The
fly in the ointment is that the GNN-based models require
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TABLE 4. Mainstream DL architectures with their advantages and limitations.

Model Ref. Advantages Limitations
MLP [45], [71], [117] - Reveal the highly nonlinear relationships - Inefficient for high-dimensional input space
- Easy to implement - Slow learning and difficult parameter tuning
LSTM [45], [71], [117] - Able to capture abstract temporal features - Poor spatial features representation
- Alleviate the vanishing gradient problems - Difficult implementation
GRU [45], [71], [117] - Fast convergence with minimum parameters - Poor spatial features representation
- Capture the temporal information of data - Difficult parameter tuning
CNN [70] - Ability at capturing spatial correlations - High computational cost
- High generalization potential - Difficult parameter tuning
AE [54] - Do not need unlabeled data for training - Extensive processing time and fine-tuning
- Excellent performance for feature abstractions - Training can suffer from the vanishing of the errors
CN [107], [118], - Overcome the deficiency of max-pooling - Large number of parameters
[119] - High robustness to affine transformation - Low generalization ability
RBM [120] - Can learn a complex probability distribution - Low robustness for noisy data
- Powerful representation capability - Limited applications due to the binary units
GNN [121], [122] - Powerful in learning on graph data - Poor performance with different class labels
- End-to-end training fashion - Low accuracy with dissimilar features
DRL [123]-[126] - Unsupervised learning potential - Overfitting problems
- High effectiveness with complex problems - High complexity
DRN [127] - Robustness against the vanishing gradients - Problem of diminishing feature reuse
- Powerful with spatio-temporal dependencies - Long training time
DBN [123]-[126] - Unsupervised training - Disable to process multi-dimensional
- High effectiveness for feature extractions - Training can be very slow and inefficient
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FIGURE 10. Hybrid deep learning models [116].

to compute not only the input data feature but also topo-
logical information, which can cause poor generalization
potential [115].

IV. POTENTIAL DL ENABLING TECHNOLOGIES

The enabling technologies behind the deployment of DL
are tackled in this section, including DDL, FL, EI, DTL,
BDDL, and IL.

A. DISTRIBUTED DEEP LEARNING

DL achieved a quantum leap for making use of complex algo-
rithms to achieve a SOTA performance. However, training
large DL models may come with an incredible number of iter-
ations, heavy hyper-parameter optimization, enormous com-
puting time, and burden. With the existing non-distributed
computing approach, the calculation of billions of param-
eters for DL models can be terribly slow and expansive.
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DL more productive and exhibit the desired behavior whilst
lessening the burden on the cloud. Multi-Central Processing
Unit clusters and Tensor Processing Unit (TPU) provide
the required tools for scaling up the training to achieve an
effective computing performance.

Several DL libraries that allow multi-node computing can
be used, including Horovod, distributed Tensorflow. Paral-
lel Computing (PC) illustrated by Data Parallelism (DP)
(Fig.11(a)) or Model Parallelism (MP) (Fig.11(b)), or Layer
Pipelining (LP) (Fig.11(c)). DP divides the data into parti-
tions according to nodes, while MP shares the calculations
of different nodes of DL model by different computers.
Compared to DP, MP is an ambiguous concept in terms
the model repartition method not fixed on a clear basis. In
[131], the authors employed a distributed deep AE for Phasor
Measurement Unit (PMU) detection. Paper [132] employed
a distributed DRL for load scheduling in residential SG. In
[133], the authors propose a cloud-based DDL framework
for phishing and Botnet attack detection and mitigation.
The proposed solution is composed of security mechanisms
working cooperatively: Distributed CNN (DCNN) method
and a cloud-based temporal LSTM network model. In [134],
Double DQL-Based Distributed operation has been proposed
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FIGURE 11. Distributed training of DNN with PC.

for managing the operation of a community battery energy
storage system. A DDL-based IoT/Fog network attack detec-
tion system has been introduced in [135]. The proposed sys-
tem proves that distributed attack detection using DDL can
achieve better performance centralized algorithms in terms
of accuracy using the sharing of parameters [135].

B. FEDERATED LEARNING

FL method employs distributed training process over end
devices equipped with Al chips and siloed data centers
on edge [136]. Thus, IoT devices compute model training
with localized data and its storage capabilities instead of
transferring data to central computing facilities. FL provides
a suitable solution to lessen the communication costs, pri-
vacy concerns and the adverse effects of data centralization
[137]. This method provides a privacy-preserving mecha-
nism, which can be extremely beneficial, especially for highly
distributed systems.

Smart cities sensing make use of three classes of FL:
namely, horizontal, vertical, and transfer FL described in
[136]. In [138], a probabilistic solar irradiation forecasting
based on Bayes LSTM-NN has been proposed with a FL.
scheme shown in Fig.12. In [139], a FL mechanism-based
DRL has been proposed for EM of multiple smart houses.
The weakness of this study is that the proposed algorithm
may suffer from overestimating the state-action values [139].
Paper [140] shed light on DeepFed, a federated DL scheme
for Intrusion Detection. The proposed model proved that FL-
based solutions can trade off between model performance and
privacy concerns. Reference [141] proposed a GAN-based
synthetic feeder generation mechanism to ingest power sys-
tem distribution feeder models using a device-as-node repre-
sentation. The disadvantage is that this model does not reduce
the dimension of the data, so the computational burden of
the proposed architecture is relatively high [141]. From these
studies, the challenging points can be summarized in two
major points: 1) The limited bandwidth of wireless communi-
cation of the current IoT devices. Thus, collaborative learning
can be heavy. 2) The FL process relies on collaborative
computing from [oT devices that must fully participate in the
learning process. In case of a sudden interruption, before the
learning process converges, the disconnected devices could
significantly affect the learning quality.

C. EDGE INTELLIGENCE
DL workloads witnessed significant growth with the large
availability of voluminous data and hardware and software
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improvement. Consequently, it is estimated that a single SG
system produces 22 gigabytes of data per day for two million
users [142]. Alternatively, on-board processing and Cloud
Computing (CC) will be insufficient to store and possess the
petabytes of data from multiple embedded power generator
sensors and their communication with home sensors and
appliances. To remedy these weaknesses, traditional cloud-
based computing has been replaced by EC and Fog Com-
puting (FC), leading to edge intelligence (EI) [143]-[145].
EI is the merge of EC and Al to push both data and intelli-
gence to analytic platforms [146]. Big tech companies have
put forth leading projects to demonstrate the advantages of
Edge Computing (EC) in paving the last mile of DL [143].
EI coordinates a set of connected edge IoT devices that are
used for data collection, caching, processing, and analysis
based on Al [147]. DL has the required potential to auto-
matically investigate the data from edge devices for quick
real-time predictive decision-making [148]. The authors in
[149] introduced an edge-cloud integrated solution using RL.
The proposed solution tracks the demand response with high
exactitude. Fig 13 presents the most popular DL libraries
for EC [116]. Furthermore, Table 5 provides a comparative
study of mostly used computing types for SG engineering
research.

D. DEEP TRANSFER LEARNING

Despite the high potential of DL in representation learning,
it can be pinpointed that the performance of DL dramatically
degrades with small sample size. Furthermore, DL models
have limited use as they require extensive measurements
and recording burden to create a huge number of learn-
ing examples. Particularly, EPSs may not be in the same
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TABLE 5. Advantages and restrictions of popular deep learning libraries

for edge computing.

Library Advantages Disadvantages
CNTK -Supports data parallelism  -Architectural Edge limi-
[150] -Enhanced optimized al- tation
gorithms -Android/iOS incompati-
bility
PyTorch  -Less plug and play -Incompatible with DSP
[151] -Architectural Edge sup- -Does not support Mobile
port GPU
Tensorflow -Rich DL library -Code complexity
[152] -Supports high/low level -Difficult in debugging
APIs
DL4J -Supports java coding -Incompatible with iOS
[153] -Provide inbuilt GPU sup-  -Does not support
port DSP/FPGA
-Scalable on Hadoop
MXNet -High portability and scal-  -Incompatible with An-
[154] ability droid/iOS
-Works with multiple lan-  -Training support limita-
guages tion
CoreML  -Low-level technology  -Does not support
[155] stack FPGA/GPU
-Compatible with
i0S/Android
SNPE -High flexibility -Does not support
[156] -Efficient edge support FPGA/GPU
-Training support
limitation
NCNN -Very lightweight and easy ~ -Does not support
[157] to install FPGA/GPU
-Impressive speed -Training support
limitation
MNN -Fast computing -Does not support
[158] -Handcrafted ARM  FPGA/GPU
assembly optimization -Training support
limitation
Paddle- -Supports CUDA and -Does not support
Mobile cuDNN DSP/GPU
[159] -Provide a training support  -Training support
limitation
MACE -Android/iOS compatibil-  -Training support limita-
[160] ity tion
-Mobile GPU support
FANN -Easy to use and well doc-  -Does not support
[161] umented FPGA/GPU
-ARM architecture sup-  -Android/iOS
port incompatibility

dimensional space and may not have the same distribution,
which makes achieving the desired accuracy and turnaround
time a challenging problem [162]. In other words, DL tech-
niques are expected to provide salable and generalized solu-
tions solutions across a diverse range of mainstream EPSs
applications [163], [164]. In [15], the authors claimed that
the generalization ability is a severe dilemma for the employ-
ment of DL techniques in wind and solar energy prediction.
Reference [165] reports that one of the common issues of
the prediction techniques resumes in the poor model uni-
versality, which can be referred to the limited data sources.
For instance, authors in [166] reports that the lack of data
has been known as one of the common failure reasons in
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load forecasting. To bridge this gap, Deep Transfer Learn-
ing (DTL) is well-positioned for alleviating expensive data-
labeling efforts using cross-domain datasets [167], [168].
This learning framework operates by transferring the knowl-
edge gained by a DNN model in handling a task (source
problem) to solve another related task, as shown in Fig. 14.

A given a source domain D; and a learning task T}, a target
domain D; and a learning task 7;, DTL aims to achieve a
better learning performance of the target predictive nonlinear
function r¢() in D, using the knowledge in Dy and T, where
Dy # Dy, or Ty # T;. DTL methods can be classified
into four classes based on source and target domains and
tasks: (i)mapping transfer, (ii)instance transfer, (iii)network-
transfer, and (iv)adversarial-transfer. In [169], the authors
address the PVPF using DTL and LSTM network. From the
simulation results, DTL can be unnecessary or inefficient
when the data in the target domain are satisfactory [169].
In [170], a model transfer DL has been proposed for PV
systems. The limitation of this approach is that the tasks
require some reasonable similarity to successfully perform
DTL [169]. Paper [50] employed a SLN as a particular form
for DTL for FDWG. To work effectively, DTL requires some
datasets with minimum reasonable similarity [50]. Paper
[166] employed DTL and meta-learning using deep neural
networks [166]. The proposed solution successfully realizes
the model extension in the new target domain [166]. From
the authors work, the selection of the optimal configuration
for the prediction model is a complex problem that reduces
the practical adoption of this solution in real-world problem
with the high complexity of electricity-consumption data
patterns [166].

E. BIG DATA DEEP LEARNING

Enormous volumes of information are quickly expanding in
the PV systems with the persistent use of sensors, Distributed
Computing (DC), and advanced information and communica-
tion systems. With the sheer size of data, DL methods have
become dramatically more prominent for their unparalleled
potential to efficiently learn discriminant features using BD
technologies. BD computing is classified into two folds:
(1) batch processing of massive information of on-disk data
with no time constraints. (2) streaming processing of in-
memory data in a real-time or short period of time [171].
Several computing frameworks have been proposed to com-
pute BD, such as Hadoop, ComMapReduce, Dryad, Piccolo,
and Spark; such systems have the capabilities to scale up DL.
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Data mining can truly be beneficial for enhancing the PVPF
[171]. Based on this reference, the weather information
for the actual day is irrelevant for the prediction system.
Paper [172] presents an accurate PVPF method using Apache
Flume, Spark, Hadoop Distributed File System (HDFS),
and Hive. In [173], the authors introduced Sun4Cast™,
a BD-based renewable power forecasting solution. Paper
[174] proposed a PVPF based Spark-based fuzzy partitioning
LSTM model. The objective of this study consists of esti-
mating the temporal variability of the production problem of
Switzerland [174].

F. INCREMENTAL LEARNING

With the ever-changing environment, Incremental Learn-
ing (IL) helps in learning from data streams. IL aims to
accommodate new patterns without compromising the loss
of historical knowledge [175]. Typically, IL operates with
new data without forgetting the knowledge which rising
stability-plasticity trade-off. Plasticity operates when the
model acquires new information constantly, whereas the
updated model’s stability stands for maintaining the acquired
knowledge [176]. Paper [176] introduced an Incremental
Deep Convolutional Computation Model for BD. For pro-
cessing a large quantity of online data, The incremental
knowledge can be saved into the idle neurons with a large
probability [176]. In [175], an Adaptive Incremental DL
Scheme has been proposed to tackle the hyperparameter
online tuning by maintaining high cost-efficient processing.
However, the proposed algorithm lacks parameter conver-
gence guarantees [175].

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
The development of DL for SG is currently having some
opportunities as well as some breakthroughs. To our best
knowledge, some concrete points can be mentioned as
follows:

A. BETTER PERFORMANCE WITH SMALL DATA

Typically, DL models require large amounts of data for learn-
ing to be effective. For particular SG applications, such large
training datasets are not publicly available, difficult to collect,
costly, and possibly problematic due to privacy regulation
[177]. Although data augmentation and big synthetic train-
ing datasets techniques can partially cover the lack of large
labeled datasets, it remains cumbersome to fully satisfy the
requirements for training by hundreds or thousands, if not
fewer, high-quality data points. Supervised training of DL
models with small datasets is prone to overfitting [178]. DTL
and IL can provide additional information to enhance the data
representation and learning process. Paper [179] proposed
a VAE-based DGM model for overcoming the limited data
set with bearing fault diagnosis. In a similar application,
the authors in [180] proposed a Stacked SAE for gearbox fault
diagnosis, which achieves a SOTA performance with small
labeled data. Few-Shot Learning (FSL) has been proposed to
tackle the data scarcity for intelligent fault diagnosis [181].

VOLUME 9, 2021

B. TAILORING QUANTUM DEEP LEARNING IN

SMART GRID

Quantum Deep Learning (QDL) can provide a huge break-
throughs to power systems [182]. Despite the inherent poten-
tial of QDL, there are few pieces of evidence of its practical
application in power systems. Paper [183] reveal that the
electric power grid can significantly make use of Quantum
computing to tackle the EPSs challenges. QDL employs Big
data to speed up the training and make the computation
process more efficient [184]. Despite substantial efforts in
industry and academia, no error-corrected qubits have been
built so far. Therefore, QDL can still far from actual EPSs
applications.

C. DEMOCRATIZING DL THROUGH GOVERNMENTAL
POLICIES

In the last few years, many countries such as USA and China
prepared a strategic roadmap to speed up Al diffusion on
a larger scale, especially for the energy market [185]. As a
result of the extensive investments of this high technologi-
cal expertise, it has been strongly remarked the significant
increase in the share of scientific papers in the Al-based SG
landscape. Despite the recent waves of Al democratization on
an international level, the adaptation of such high technology
is now at a low level of spread in the developed countries.
This is due to the high financial cost of the redefinition of
the traditional grid infrastructure and adding the necessary
flexibility to be perfectly tailored for the SG paradigm.

D. PRIVACY AND SECURITY ISSUES IN DL

Cyber-physical SG systems have a massive data flow which
makes the wonder how the security of the grid in the long term
is ensured. In any SC operation, the network stores the new
data via cloud storage. The size of the generated data from the
grid operations is huge and increases each day in the order of
thousands of zettabytes (1021 [186]. From the dynamic grid
operations, DL methods are prone to cyber attacks resulting
in wrong predictions and control failures. The attacks that
threaten the DL privacy fall into Model Extraction Attack
(MEA) (duplicating model parameters) and Model Inversion
Attack (MIA) (stealing sensitive information) [187]. DL’s
privacy and security issues against adversarial and poisoning
attacks are vital bottlenecks scarcely studied and require a
deep investigation.

E. LACK OF SKILLED MANPOWER

DL in its current form is relatively still new and complex
technology. Thus, there is a severe shortage of competent
Data Scientists (DS) with the required skill-sets in DL to turn
data into actionable insights. In 2018, it was reported that
there was a 50 percent shortage in DS supply jobs versus
demand [188]. According to reference [189], it is assumed
that 11.5 Million data science jobs will be created by 2026.
From the World Economic Forum (WEF), 20% of the mar-
ket jobs could have the fingerprint of data science creating
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TABLE 6. Computing types with their advantages and shortages.

Type Brief description Advantages Limitations
FC FC offers access to computational resources  -Enhanced security and privacy -Mobility support issue
as a service for real-time large-scale data  -Supporting the densely distributed data  -High latency in service delivery
analysis sources
CC CC refers to client-server computing where  -Highly accessible service -Costly bandwidth additions and low respon-
resources are managed in a centralized fash-  -Networked backups prevent data loss from  siveness
ion Hardware failures -Low security and privacy
EC EC enables data to be processed and trans-  -Improved performance and high analytics  -Saving bandwidth can lead to
ferred at the edge of a network where the  capabilities overlooking important information
data is collected -Less expensive route to scalability and ver-  -Very costly with security problems
satility
PC PC is a type of computation where the calcu-  -High performance and time saving -PC is hard to program and implement
lations or processes are executed simultane-  -Improved speed of processing -Communication and synchronization in PC
ously to increase the speed and efficiency is challenging
DC DC is a computation type in which net- -Shared resources and increased scalability -High computational resources cost

worked computers communicate and coordi-

-Reliability and high fault tolerance

-Difficult troubleshooting

nate a common program

-Security issues

133 million jobs by 2022 [190]. Consequently, skilled work-
force shortages are looming on the horizon and becoming a
serious constraint, especially with the increased applicability
of data science in many sectors such as the energy industry
[191], [192]. A shortfall of skilled DS manpower has reflected
the attractive annual salaries that can reach $135,776 for entry
DS per annum in the United States [188]. According to McK-
insey research, data science skills are something that the job
market worldwide desperately needs [188]. Data scientists
often need a combination of domain experience as well as
in-depth knowledge of science, technology, and mathematics.
There is no denying the fact that mastering each of these
domains is somewhat elusive. Beyond promoting data science
learning with university scholarships, free online courses, and
incentives, job recruiters and top tech companies suggest jobs
conversion from other fields towards data science to meet
the increased demand [193]. Further, DL systems are intri-
cate black boxes making decisions that are not easily inter-
pretable from a human perspective. To cover this gap, several
researchers proposed an explainable DL, i.e., an understand-
able internal DL architecture for human ease [194]. For exam-
ple, in [195], an explainable DNN (xDNN) program has been
introduced to facilitate the DL interpretability and make it
easy to learn for practitioners and engineers [196]. Automatic
DL is also considered as a promising solution to implement
DL models without complexities [197]-[199].

F. COMMUNICATION INFRASTRUCTURES, PROTOCOLS,
AND INVESTMENTS

With decision-makers increasingly seeing DL as a key
enabler for thriving the futuristic SG, a fear of missing out this
huge DL potential is globally spreading due to poor commu-
nication infrastructure [200]. In the last few years, numerous
nations such as the USA and China prepared a strategic
roadmap to speed up the DL diffusion on a larger scale
through investment, protocols, advanced communication
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infrastructure, and risk management. The use of DL in
government must take into account privacy and security,
compatibility with legacy systems, and evolving workloads.
The global data science market is expected to grow at a
compound annual growth rate of 42.2% from 2020 to 2027
to reach USD 733.7 billion [201]. As DL’s applicability to
the next generation of technology grows, many decision-
makers are worried that they will be left behind and not
share in the gains. However, DL workloads have specific
requirements from the underlying infrastructure, which can
be resumed in three dimensions: scalability, portability, and
timing [202]. Scalability reflects the ability to support a
massive amount of data [202], [203]. Portability refers to the
flexibility of the workload to be transportable across core,
edge, and endpoint deployments [204]. Timing describes
analyzing streaming databases in a real-time or near-real-
time manner by involving advanced computing technologies
such as DL accelerators [205], [206]. Despite the recent
waves of DL democratization on an international level,
the adaptation of the required technology is now at a low
level of spread in several developed countries. This is due
to the high financial cost of the redefinition of the tradi-
tional power grid and adding the necessary flexibility to the
communication infrastructure to be perfectly tailored for DL
techniques.

VI. CONCLUSION AND FUTURE DIRECTIONS

In the last decade, Deep Learning (DL) has become promising
dawn for Smart Grids (SG). Inspired by the recent com-
putational neuroscience discoveries, this review has com-
prehensively discussed the mainstream DL approaches in
power system applications. Furthermore, several state-of-the-
art paradigms are highlighted, including distributed DL, edge
intelligence, and federated learning. DL’s major applications
in SG include energy forecasting, fault detection, cyberse-
curity awareness, prediction, and optimization to meet the
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technical requirements for safe and secured power system
operations.This paper makes the following contributions:

« The outlines of this paper have investigated the research
landscape about DL approaches applied in the SG
paradigm and analyze the extent of accuracy, feasible
scenarios, and limitations.

o This review has pointed out DL’s computational limits
for power systems and how to lessen the computational
power requirements by introducing DL enabling tech-
nologies such as distributed DL and federated learning.

« Finally, the emerging challenges and requirements and
future directions of SG and DL models have been
addressed.

Many of the reported research works are being conducted on
SG applications, which still in the early stage of development.
Some DL architectures, such as long short-term memory
and deep convolutional neural network, have been heavily
deployed to resolve dissimilar issues for a wide range of
power engineering applications, including state of charge
prediction, energy optimization, and power grid resiliency
within the SG paradigm. Despite being recently introduced,
generative adversarial network and deep reinforcement learn-
ing have been extensively included in multiple research works
as efficient tools for modeling multifaceted problems that
are considered vital to SG efficiency. Critical challenges and
future research trends were depicted to draw fruitful dis-
cussions of the limitations of DL methodologies in the SG
domain. In summary, DL enabling techniques highly require
advanced communication and computation to speed up their
practical adoption for SG systems rather than standing on
the conceptual level. The future search directions have been
investigated, which require interdisciplinary work to over-
come the emerging bottlenecks for a flourishing SG market.
This study’s future work will give a particular focus on
Explainable DL (XDL) algorithms for SG systems to shed
light on the ample opportunities of XDL for transparent and
understandable learning paradigms.
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