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ABSTRACT The existing radio frequency-based positioning approaches widely used for indoor localization-
based service (LBS) are fingerprinting and trilateration and their integration with the inertial sensors-based
dead reckoning system. However, these localization methods have practical limits and challenges due to
unstable signal strength, the cost of offline workload, computational complexity, terminal device heterogene-
ity, and accumulated sensor error.We propose a smartphone-based indoor localization system usingweighted
Spearman’s foot-rule (WSF)-based probabilistic fingerprinting for reliable smartphone localization service.
This localization system adopts a real-time fingerprinting position error estimation approach realizing an
adaptive extended Kalman filter (AEKF) to integrate the proposed fingerprinting localization with inertial
measurement unit (IMU)-based localization. This proposed WSF-based smartphone localization uses a
Gaussian process regression (GPR)-based signal prediction module to deal with fingerprinting localiza-
tion’s offline workload. Furthermore, the smartphone localization system’s expected high computational
complexity is controlled by employing a data-clustering module. The proposed WSF also employs a rank
vector that helps mitigate the effect of terminal device heterogeneity. The proposed localization system is
experimentally evaluated at two different representative indoor environments. Experimental results obtained
by real field deployment show that the mean error is 2.06 m in an elongated hallway corridor and 3.47 m in
the crowded and well-furnished wide area.

INDEX TERMS Adaptive EKF, Bluetooth low energy (BLE), data clustering, fingerprinting localization,
inertial sensors, spearman’s foot-rule, received signal strength (RSS).

I. INTRODUCTION
Over the years, the global navigation satellite system (GNSS)
has been widely used for location-based services (LBS).
However, the performance of GNSS in the indoor environ-
ment is poor; thus, many researchers around the world have
actively explored a ubiquitous solution to indoor localization
problems over the past decades.

Recent trends in addressing indoor localization problems
are focused on using low-cost/cost-free infrastructure, data
fusion, and machine learning and crowdsourcing approaches
[1]–[5]. Radiofrequency (RF)-based wireless technologies
are overwhelmingly used to realize indoor LBS (a.k.a indoor
positioning system (IPS)) owing to properties like signal

The associate editor coordinating the review of this manuscript and

approving it for publication was Kegen Yu .

penetration, low power consumption, and good localization
accuracy. For instance, Wi-Fi access points (AP) deployed
in modern buildings are utilized as a signal source, and
Bluetooth low energy (BLE) beacons are deployed as a
low-cost solution. Besides RF-based technologies, mag-
netic fields [6], inertial measurement unit (IMU) sensors of
smartphones [7], and visible light [8] are some alternative
technologies.

The majority of the state-of-art positioning approaches use
received signal strength (RSS) as a signal measurement met-
ric. The RSS value can be obtained without extra hardware
(using off-the-shelf smartphones), and an RSS-based posi-
tioning approach does not require any time synchronization
among the transmitter-receiver pairs. However, the RSS in
indoor spaces is attenuated and fluctuates randomly over time
and space due to transmitter/receiver antennas, the material
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of walls/floors, and people’s movement and presence of
obstacles [5]. Other metrics used for positioning in IPS are
the time of arrival (TOA), time difference of arrival (TDOA),
angle of arrival (AOA), and round-trip time. These metrics
require either extra hardware or time synchronization for data
reception.

Fingerprinting and trilateration are the widely used posi-
tioning techniques in IPS. Fingerprinting has a scene analysis
process that consists of offline and online phases. The RF
signature map (a.k.a fingerprinting map) is first built in the
offline phase. The online phase deals with the localization
estimation, where real-time RSS is compared with the RF
signature map to deduce the user’s position. Fingerprinting
localization has been a prime choice for researchers owing to
its good localization accuracy and non-requirement of line-
of-sight measurements of APs. However, data acquisition in
the offline phase is time-consuming, and labor-intensive [9].
Similarly, trilateration estimates the location of the user by
estimating his/her distance from multiple APs. Here, both
TDOA and RSS can be utilized to deduce the distance from
the AP.

However, an IPS designed to localize a smartphone using
an RF-based wireless technology faces challenges like com-
plex indoor environment, RSS fluctuation, terminal device
heterogeneity, costly data learning methodology for scene
analysis, computational complexity, and system cost. These
issues escalate practical limits and challenges to develop a
reliable and scalable IPS. Hence, an efficient and reliable
IPS should possess acceptable localization accuracy, scal-
able/robust system, minimum computational complexity, and
feasible system cost. Meanwhile, current indoor localization
solutions are employed to acquire the discussed IPS charac-
teristics. For example, the IPS presented in [10] combines
several technologies to achieve good localization accuracy;
however, it is less robust/scalable and has great computational
complexity. Similarly, a Gaussian process assisted finger-
printing approach is proposed in [4], where the RF signature
map is predicted using a regression process trained by a
few RF signature datasets. This approach reduces the cost
of offline workload; however, it still has several meters of
localization estimation error.

This paper presents a simple yet effective localization sys-
tem for integrating multisensory data by using an extended
Kalman filter (EKF) [11], [12]. In particular, the suggested
IPS yields better localization estimation while reducing both
the offline workload and online computational complexity.

An overview of the proposed localization system is
shown in Fig.1. For this localization system, we pro-
pose (a) a weighted Spearman’s foot-rule (WSF)-based
probabilistic fingerprinting localization, (b) a real-time fin-
gerprinting position error (ε̂) estimation approach to deter-
mine the dynamic measurement noise, and (c) an adaptive
EKF (AEKF) employing ε̂ to adaptively integrate data from
IMU sensors and BLE beacon. To reduce the cost of offline
data collection, we model the BLE beacons’ signal as a
Gaussian process (GP) and implement GP regression (GPR)

FIGURE 1. The framework of the proposed localization system. (FP:
fingerprinting position).

to predict the RSS over the area of interest for localization.
In addition, data clustering is shown to reduce the computa-
tional complexity of the system.

This paper is organized as follows. In Section II, a review of
pertinent literature is presented, and motivation and problem
formulation are described in Section III. Section IV intro-
duces a general model of Spearman’s foot-rule (SF), GPR,
and affinity propagation clustering (APC). Section V elabo-
rates on the system design of the proposed localization sys-
tem. The experimental results and discussion are presented in
Section VI. Finally, the conclusions are drawn in Section VII.

II. RELATED WORKS
A. MULTISENSORY DATA INTEGRATION
Although various systems and solutions for IPS are pre-
sented in different state-of-art approaches, there is no
fixed set of rules that serve as a guide for designing
an IPS [13]. Hence, an optimal localization strategy is
still an open issue. At present, integrating the low-cost
IMU-based pedestrian dead reckoning (PDR) systemwith the
RF-based positioning systems has been a trending localiza-
tion solution. In particular, EKF is utilized for data fusion,
where the measurement model and state model are devel-
oped with fingerprinting estimation and the PDR system,
respectively [7], [11], [12].

The enhanced localization solution presented in [7] inte-
grates IMU, wireless, and magnetic sensors using EKF for
mass-market location-based IoT applications. This work pro-
poses using a fingerprinting accuracy indicator as a diago-
nal element of the measurement noise matrix, making the
measurement noise inconstant and stopping the degradation
of the sensors’ integration solution. The next example of
sensor fusion is presented in [11], where wireless and IMU
sensors are fused with two different EKFs. The first EKF
is utilized to combine the gyroscope and accelerometer data
for the heading estimation of PDR. Later, the second EKF
yields the location estimation by integrating Wi-Fi finger-
printing and the PDR system. Here, spatial filtering that
uses earlier localization estimation to narrow-down the RP
search space is proposed. A similar method was proposed
in [12], wherein threshold distance-based weightage was
assigned to Wi-Fi and PDR positioning methods during EKF
integration.
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B. RSS PREDICTION
A machine-learning algorithm extracts useful information
from a raw data set and represents it as a model or hypothesis
applied to other data to make inferences. Hence, machine
learning algorithms (for instance, GPR and support vector
machine (SVM)) can be utilized in IPS to predict the RSS
data at non-site-surveyed locations on the testbed. RSS data
prediction across the testbed with little training data signif-
icantly reduces the human workload in the offline phase of
fingerprinting localization.

The GPR has gained much attention in the machine learn-
ing community in recent decades [14]. It can be defined as
a supervised learning task that can predict the RSS at arbi-
trary coordinates based on acquired training RSS data. GPR-
based fingerprinting localization is presented in [4], wherein
reduced Wi-Fi RSS data were used to train the GP and the
firefly algorithm to estimate the hyperparameters of the GP.
This study also shows that the probabilistic fingerprinting
method yields better localization accuracy compared to the
deterministic one. Furthermore, a GPR-plus method using
Bluetooth transmitters is proposed in [15], where the Naïve
Bayes algorithm is used for localization. This study’s results
are compared with those of [4] to show that their method
is computationally cheaper. Another example of GPR-based
fingerprinting is presented in [16], where BLE beacons are
utilized for localization. Here, the hyperparameters of GP are
optimized using the limited-memory Broyden—Fletcher—
Goldfarb—Shanno (LM-BFGS) algorithm [17], [18].

Furthermore, Kumar et al. adopt a subspace trust-region
method in [19] to optimize the hyperparameters of the GP
and claim that their approach yields better localization results
compared to HORUS [20]. Note that the discussed GPR-
based methods choose ‘‘random’’ places for training data
measurement and no specific set of rules are provided.

Like GPR, the SVM has also been utilized to estimate
the RSS of APs at non-site-surveyed locations. For example,
[21] uses SVM to estimate the Wi-Fi signal strength across
the testbed. They created an RSS reference surface for each
AP utilizing the discrete train data with SVM. During the
online phase, the online RSS freshly acquired from eachAP is
searched in the corresponding surfaces. The coordinate found
in the higher number of such surfaces is used to estimate the
device location.

C. DATA CLUSTERING
Traditional flat fingerprinting localization requires searching
at every RP to find the best-fingerprinting match. Flat fin-
gerprinting is improvised into two-step fingerprinting using
data clustering, which reduces the search space of RPs. It will
induce a better localization result with a low computational
cost. Clustering on IPS can be realized in two different ways:
device and RSS clustering, as shown in Fig. 2.

In terms of device-based clustering, the earliest work
using a clustering module based on a hardware device is
the HORUS [20]. Here, a cluster is defined as a set of RPs

FIGURE 2. Illustration of clustering in IPS where each dot represents an
RP: (a) device-based (proximity) clustering and (b) RSS clustering.

sharing a common set of Wi-Fi APs. This method estimates
the tag position based on the largest posterior probability by
Bayesian inference. Similarly, [22] proposes a BLE beacon
proximity-based clustering module. Here, coarse localization
is performed with the BLE beacon’s proximity, and fine
localization is followed by using a selected set of RPs with
Wi-Fi fingerprint data sets.

An RSS clustering method chooses a set of cluster cen-
ters by measuring the sum of squared distances between
the RSS data and their corresponding centers. For instance,
a K-means clustering begins by choosing both the size of
the output clusters and their initial cluster heads, where out-
put clusters are iteratively refined by finding the sum of
the squared distances [23]. Another RSS clustering method
widely employed in IPS is APC, which starts by assigning
each point (RP in this paper) the same chance to become a
cluster center where all the RPs are joined in the large space
[24]. In addition to K-means and APC, some representative
clustering approaches in IPS include fuzzy c-means, and the
hierarchical clustering strategy [25]. Numerous studies on
IPS have employed APC for RSS clustering owing to its
initialization independence and better cluster head selection
characteristics [12], [26], [27].

III. MOTIVATION AND PROBLEM FORMULATION
As the area of interest for fingerprinting localization grows,
offline workload increases [16]. Moreover, the RF signature
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FIGURE 3. (a) RSS observed at an identical indoor location at different
times, and (b) RSS samples acquired by multiple terminal devices at an
identical indoor location.

map needs to be updated from time to time to attain good
localization estimation owing to the dynamic and unpre-
dictable nature of the radio channel, and changes in the
testbed environment [4]. For instance, we collected the RSS
data from an average of 35 BLE RSS samples at a single
epoch at a fixed measurement place for 40 d (two times a
day) as presented in Fig. 3a.

In Fig. 3a, the RSS data are not shown as stable, which sug-
gests a frequent radio database update. Because constructing
a single set of RF signature map is work-intensive, perform-
ing frequent map updates is considerably tedious.

Furthermore, the calibrated data (RF signature, path loss
exponent, etc.) in various tag devices can be different
owing to the dissimilar gains of receivers and antennas [2].
To observe the effect of terminal device heterogeneity,
we acquired RSS data from a BLE beacon by using different
Android devices (Samsung Galaxy S8, LG G7, and Xiaomi
MI Redmi 4). The observed result is shown in Fig. 3b.

The existing issues of typical RF-based IPS and the
observed data motivated us to design a positioning method
with lightweight workload features, low computation,

flexibility, and stable localization results for use in hetero-
geneous terminal devices.

We consider a 2-D area 3 , R2 covered by U BLE
beacons, which is divided into non-overlapping hypothetical
RPs given as

ϕi ,
(
xi, yi

)
∈ 3. (1)

The RSS from beacon u, (1 ≤ u ≤ U ) at location ϕi is
denoted as fu(ϕi), which fluctuates over time owing to a com-
plex indoor environment. The offline phase of conventional
fingerprinting consists of RSS data measurement at each RP
given as follows:

ωu(ϕi) = fu(ϕi)+ ϑ. (2)

Here, ϑ is an independent and identically distributed Gaus-
sian noise with zero mean and variance (σ 2

ϑ ) summarized as
ϑ ∼ N

(
0, σ 2

ϑ

)
. Hence, the RF signature map consists of the

RSS received from each beacon at each RP. The constructed
RF signature map can be utilized for online localization.
As the RF signature map construction in conventional fin-
gerprinting localization is burdensome, one of our goals is
to minimize the offline workload by only taking the RF
signature data at a subset of the locations training the GP to
predict the RF signature map.

Let the predicted RF signature map be represented as

9 =


ψ1,1 ψ1,2 . . . ψ1,N
ψ2,1 ψ2,2 . . . ψ2,N
...

...
. . .

...

ψU ,1 ψU ,2 . . . ψU ,N

 , (3)

where N is the total number of RPs in the localization area.
As we aim to reduce computational complexity, we prepro-
cess the predicted data for data clustering. Moreover, the RF
fingerprint at jth RP, 9j = {(ψ1,j, ψ2,j, . . . ., ψU ,j)T |j =
1, . . . ,N } is rearranged in descending order to form a rank
vector Rj. The rank vector will be a solution dealing with the
terminal device heterogeneity problem.

In the online phase, the tag device measures the RSS
of the surrounding beacons at an unknown location (r ′),
9 ′r ′ = (ψ1,r ′ , ψ2,r ′ , . . . ., ψU ,r ′ ). As the received online RSS
is attenuated by noise; a noise filter is applied to acquire a
smooth estimation, 9̂ ′r ′ = F(9 ′r ′ ).
The objective of a fingerprinting localization scheme is to

estimate the tag location, L̂ = (x̂, ŷ), based on a guideline
(G) that finds the closest match by comparing the online RSS
against the RF signature map as

L̂ = G(9, 9̂ ′r ′ ). (4)

Also, to further deal with the interference and instability
phenomena of RSS (that can result in inconsistent localiza-
tion estimation even at a fixed place), we employ a real-
time fusion scheme using AEKF combining fingerprinting
and PDR localization:

Ê = AEKF(L̂,PDR), (5)
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FIGURE 4. Illustration of the SF distance computation where
(B1,B2, . . . ..,B7) represent BLE beacons.

where Ê is the localization estimation of the proposed
method. Here, the dynamic noise of the filtering system is
adaptively determined.

IV. ADOPTED TECHNOLOGIES FOR THE PROPOSED
INDOOR LOCALIZATION SYSTEM
A. SPEARMAN’s FOOT-RULE
Spearman’s measure of disarray is the sum of the absolute
values of the differences between the ranks [28]. In other
words, Spearman’s foot-rule (SF) distance measures total ele-
mentwise displacement between two permutations or ranked
lists [29]. The SF distance can be used in several statis-
tical problems in different fields that require the assess-
ment of agreement or disagreement between two sets of
measurements.

To derive the SF distance, let us consider
[n] = {1, 2, . . . , n} as a collection of elements. Furthermore,
let Pn be the set of permutations on [n] where 2 ∈ Pn
and 2(i) denotes the rank of element i. Here, the SF dis-
tance between two permutations, 2,α ∈ Pn is denoted as
SF(2,α). Meanwhile, [29] states that the SF distance does
not depend on the actual identity of elements and considers
SF(2) = SF(2, 1), where 1 is the identity permutation.
Hence, the formal definition of SF distance is given as

SF(2) =
∑
i

|i−2(i)|. (6)

In our implementation, considering Rj|j = 1, 2, . . . ,N ,
as a rank vector, we generalized the SF distance to incorporate
element distance as follows:

SF(j) =
U∑
i=1

|Rj(i)− Ronline(i)|, (7)

where Rj(i) represents the rank order of the ith beacon at the
jth RP from the RF fingerprint map and Ronline(i) is the rank
order of the ith beacon at the online phase. For instance, let
us consider the three columns of Fig. 4, where column1 is

compared to column2 and column3 for similarity comparison.
As the SF distance of column1 is less with column2 compared
to column3, column1 and column2 have good agreement.
Furthermore, we propose assigning a certain weight to the SF
distance of each RP to form a WSF owing to the instability
of the RSS in an indoor environment.

B. GPR FOR FINGERPRINTING LOCALIZATION
A GP is a collection of random variables f (ϕ|ϕ ∈ χ ) (χ
is the index set of possible input values) where any finite
subset of realizations of the process f = {f (ϕ)}mi=1 is jointly
Gaussian distributed [30]. It is also a generalization of a
normal multivariate distribution in a finite dimension where
it defines a distribution over functions from the view of
function space [4], [30]. The GP is fully specified by its
mean function m(ϕ) = E [ f (ϕ)] and covariance function
k(ϕq,ϕr ) = E [(f (ϕq)− m(ϕq))(f (ϕr )− m(ϕr ))], where
E [.] is the expectation operator [5].
Rewriting (2), we get

A = f (b)+ ϑ, (8)

where A denotes the RF signature observation, and b is the
2-D location coordinate (input features) of RPs. From (8),
it can be inferred that the regression problem consists of
constraining the non-linear function f (.) from the noisy obser-
vations that arise from σ 2

ϑ . The inference of f (b) corresponds
to estimating the posterior distribution as

p(f (b)|A,B) =
p(A|f (b),B)p(f (b))

p(A|B)
, (9)

where p(A|f (b),B) represents the probability (likelihood
function) of acquiring A given f (b), where B is the 2 × N
matrix of input features.

In the context of RF signatures, the GPR employs the
covariance of neighboring RSS to predict the RSS at arbitrary
locations where the covariance is based on kernel functions.
Note that the kernel function decreases with the increased
distance of the input points and peaks when the input space
distance is minimal. Typical kernel functions employed in RF
signature prediction are Gaussian, Laplacian, and exponen-
tial. It was reported in [19] that the localization accuracy is
relatively insensitive to the kernel function’s choice. In this
study, we have employed the widely adopted squared expo-
nential kernel function:

k(bq, br ) = σ 2
f exp

−
(‖bq − br‖)

2l2
, (10)

where σ 2
f is the signal variance, l is the length scale parameter

that characterizes the smoothness of a function, and ‖.‖ is
the L2 norm representing the Euclidean distance between
two vectors. Assuming the covariance matrix of all pairs of
training targets as K (B,B), the covariance function of the
prior distribution becomes

cov(A) = K (B,B)+ σ 2
ϑ I , (11)

where I is an identity matrix.
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Now, f (b) in terms of the Gaussian process can be stated
as

f (b) ∼ GP
(
m(b), k(bq, br )

)
. (12)

As GP modeling assumes that the data (training A and
predicted A∗ beacon data) can be represented as a sample
from a multivariate Gaussian distribution, the joint Gaussian
distribution of target values assuming the zero-mean prior
distribution is given as[

A
A∗

]
∼ N

(
0,
[
K (B,B)+ σ 2

ϑ I K (B,B∗)
K (B∗,B) K (B∗,B∗)

] )
, (13)

where K (B,B∗) is a N×N ∗ matrix containing the covariance
between all pairs of A and A∗. The conditional probability of
A∗|A is computed as

P(A∗|A) ∼ N
(
K (B∗,B)[K (B,B)+ σ 2

ϑ I ]
−1A),K (B∗,B∗)

−K (B∗,B)[K (B,B)+ σ 2
ϑ I ]
−1K (B,B∗)

)
. (14)

Here, P(A∗|A) indicates how likely a prediction A∗ is,
given the training data A. From (14), the mean function and
covariance function can be inferred as

µ∗ = K (B∗,B)[K (B,B)+ σ 2
ϑ I ]
−1A). (15)

σ 2
∗ = K (B∗,B∗)

−K (B∗,B)[K (B,B)+ σ 2
ϑ I ]
−1K (B,B∗). (16)

Hence, the GPR can be utilized to build an RF signature
map with a predicted mean (15) and variance (16) for loca-
tions without prior measurements. The resultingmap can then
be employed for online localization estimation.

The principal structure of the GP model is determined
by the mean and covariance functions; however, to fit the
observations properly, the function’s optimal hyperparam-
eters, θ = [σf , l] in (10) need to be established. There
are various ways of inferring the GP hyperparameters, such
as marginal likelihood, Bayesian optimization, and cross-
validation [30]–[32]. The marginal likelihood is optimal and
computationally efficient when the data truly follow the GP
model. The marginal likelihood is also implemented with
tools such as the maximum a posteriori estimator and min-
imum mean square error estimator. The logarithmic form
of the marginal likelihood function for Gaussian distributed
noise is

log{p(A|B, θ)}=−
1
2
AT [K (B,B)+ σ 2

ϑ I ]
−1
A

−
1
2
log |K (B,B)+σ 2

ϑ I |−
ϑ

2
log 2π, (17)

where T denotes the matrix transpose.

C. APC FOR RSS DATA CLUSTERING
The APC joins all of the points in the large space and makes
each point node (RP in our case) a potential exemplar. The
points launch a responsibility message and receive an avail-
ability message constantly that continues to extend the gap

between the exemplar and supplementary points until the
exemplar is decided [24], [26]. Letψi andψj denote the mean
RSS vectors of any two RPs, the similarity between the RPs
indicated by s(i, j) is written as:

sim(i, j) = −‖ψi − ψj‖2,∀i, j ∈ {1, 2, . . . ,N }. (18)

The similarity values form a N × N similarity matrix Z ,
where N is the total number of RPs to be clustered. The
value (sim(j, j)) on the diagonal of the matrix Z is called
self-similarity, is used to judge whether RPi can become the
exemplar. The self-similarity is also known as a preference
(Pref ) as:

Pref = median{sim(ψi − ψj), i 6= j,∀i, j ∈ {1, 2, ..,N }}.

(19)

The responsibility and availabilitymessages transmitted by
RPs are denoted as r(i, j) and a(i, j), respectively. Note that
both of them are set to zero initially. The responsibility mes-
sage represents the confidence level of RPj as an exemplar of
RPi, which is updated as:

r(i, j) = sim(i, j)− max
j′ 6=j

{
a(i, j′)+ sim(i, j′)

}
. (20)

The availability message represents that RPi selects RPj as
the confidence center of its exemplar, which is updated as:

a(i, j) = min
{
0, r(j, j)+

∑
i′ 6=i,j

max
{
0, r(i′, j′)

}}
. (21)

Moreover, a(j, j) is a self-availability message that rep-
resents the cumulative evidence for RPi as the exemplar
calculated as:

a(j, j) =
∑
i′ 6=j

max{0, r(i′, j)}. (22)

In order to avoid the possible ringing oscillation while
updating (20) and (21), a damping factor (γ ) [0.5, 1) is
exploited resulting in the following equations

rt = γ × rt−1 + (1− γ )× rt
at = γ ×+(1− γ )× at . (23)

Here, rt and at corresponds to the value of responsi-
bility and availability of the current iteration, respectively.
Similarly, rt−1 and at−1 are the value of responsibility and
availability of the last iterations. The exemplar is updated
according to the value of r(i, j) + a(i, j). If r(i, j) + a(i, j) is
largest, it denotes that RPj is the exemplar of RPi. Else, RPi
will be selected.

V. DESIGN OF THE PROPOSED INDOOR LOCALIZATION
SYSTEM
Figure 5 shows the system diagram for the proposed local-
ization method. The components of the system architecture
presented in Fig. 5 are explained in the upcoming sections.
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FIGURE 5. Proposed indoor localization model: (a) RF signature map creation and (b) location estimation.

A. WSF-BASED PROBABILISTIC FINGERPRINTING
LOCALIZATION
Typical fingerprinting localization compares the newly
acquired RSS and the stored RF signature map to estimate a
current location. Themetrics employed for signal comparison
classify the existing fingerprinting localization into deter-
ministic and probabilistic localization. The former method
searches for the closest signal strength match depending on
signal distance, whereas the latter approach obtains location
information by estimating a probability distribution over the
RPs. In the proposed WSF-based method, we incorporated
rank vectors and probability distributions to acquire the WSF
over the RPs.

1) OFFLINE PHASE
In the offline phase of the proposed method, the acquisition
of RSS training data in the area of interest is performed.
In other words, the RF signature data are collected at a few
measurements points S(S ⊂ 3) to train the GP model,
which predicts the RF signature at all locations without actual
measurement. Note that the training data consist of the time
averages of multiple RSS samples to reduce the effect of
small-scale fading and avoid the potential overfitting problem
of GPR [4]. The predicted RF signature map is fed to the
APC-based RSS clustering module to extract RSS clustering
information [16]. Moreover, the predicted signal strengths at
each RP are arranged in descending order to create a rank
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vector. Hence, the RF signature map of the proposed method
is constructed as

RPj = {Idj, (xj, yj), 9j,Rj}, j ∈ 1, 2, . . . ,N , (24)

where Idj and (xj, yj) are the identification number and ground
truth of jth RP, respectively.

2) ONLINE PHASE
The fingerprinting positioning estimation result is performed
in the online stage of the proposed WSF-based fingerprint-
ing localization. It consists of two steps: a cluster matching
and fine localization. First, observed online RSS data at an
unknown location inside the testbed are smoothed. Here,
we considered only U ′(U ′ < U ) beacons for localization
estimation to reduce the system’s computational cost, which
excludes the distantly deployed beacons in the localization
estimation process. In this study, the size of U ′ was deter-
mined as the least number of beacons used at the training data
measurement locations. U ′ beacons with larger RSS were
preferably selected in the online phase. We propose the use
of the exponential moving average (EMA) to minimize the
RSS fluctuation:

R̂SS t = β × RSSt + (1− β)× R̂SS t−1

β =

{
0.7, tag at motion
0.5, tag at rest,

(25)

where β(0 < β < 1) represents the smoothing factor. β close
to one reduces the smoothing level, and β close to zero has a
greater smoothing effect and is less responsive to recent RSS
observation. R̂SS t and RSSt are the estimated and observed
RSS at an instant t . This study assumed β to be 0.7 when
the tag was in motion (step is detected) due to frequent RSS
changes and 0.5 during immobility giving equal preference
to the previously smoothed result the latest RSS observation.

For a representative RP, given the estimated online RSS
observation vector, 9̂r ′ , the following relation gives the pos-
terior probability:

p(RPj|9̂r ′ ) =
p(9̂r ′ |RPj)p(RPj)∑N
i=1 p(9̂r ′ |RPi)p(RPi)

, (26)

where p(9̂r ′ |RPj) is the likelihood described by the following
relation:

p(9̂r ′ |RPj) =
U∏
u=1

1√
2πσ 2

u

exp
(
−
|9̂u,r ′ − µu|

2

2σ 2
u

)
. (27)

Note that most of the existing studies on probability-based
fingerprinting localization locate the user’s position at the RP,
which has the maximum likelihood [4], [26], [33]:

ÊML =
argmax
RPj p(9̂r ′ |RPj). (28)

Next, we estimated the SF distance of (7) at the RPj by
employing the stored and online rank vectors. Here, our
proposed WSF was applied as a metric to find the k-nearest

neighbor (k-NN) exploiting posterior probability, pj (we used
pj to denote posterior probability for brevity):

WSFj =
{ U ′∑
i=1

|Rj(i)− Rr ′ (i)|
}
× (1− pj). (29)

• Coarse localization: Cluster matching is performed
in coarse localization, as it helps to reduce both the
positioning range and computational complexity and
enhances the positioning accuracy. We define a set of
cluster heads (namely, exemplars) and the members,
RPs, grouped under a cluster head as C and N ′, respec-
tively. The size of N ′ may vary with each cluster, where
N ′ < N . To determine the exemplar RP, WSFe, e ∈ C
for all cluster head RPs are calculated. The RP with the
least WSFe is selected as the exemplar RP.

• Fine localization: After the cluster head is determined,
WSFfine,∀fine ∈ {1, 2, . . . ,N ′} for all the member RPs
are calculated. The member RPs are sorted according
to the ascending order of WSFfine. The first k RPs are
selected for fine localization. The fingerprinting local-
ization estimation is performed by employing the pos-
terior probabilities of the k RPs, and their known real
location coordinate (Ji[xi, yi]) is determined as

L̂ =

∑k
i=1 pi × Ji∑k

j=1 pj
. (30)

B. REAL-TIME FINGERPRINTING POSITION ERROR
ESTIMATION
In the nearest neighbor (NN) approach for fingerprinting
localization, the IPS returns only the RP position that offers
the best match to the RF signature collected in the online
phase. The k-NN can be exploited for better localization
results where the IPS returns information about second, third,
etc. best matches. As the RF signature map of adjacent RPs
often exhibits highly overlapping signal strength properties,
the positioning algorithm can estimate a tag to be at any
nearby position (determined by k-NN or their weighted com-
bination) to its actual position.

We exploited this observation and proposed a real-time
position error estimation approach that first estimated the
Euclidean error distance between (Ji[xi, yi]) and L̂ as Di =
‖Ji−L̂‖. Subsequently, the estimated error distances of the k-
NNRPswere further combinedwith their respective posterior
probabilities to compute ε̂ as

ε̂ =

∑k
i=1(Di × pi)∑k

j=1 pj
. (31)

C. PEDESTRIAN DEAD RECKONING
The PDR algorithm assumes a stepwise motion model (the
user moves by making consecutive steps) to track the pedes-
trian described as [34]

xt = lt + xt−1 cos θt
yt = lt + yt−1 sin θt , (32)
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where (xt , yt ) is the estimated position at t th step, which can
be derived with known values of the step length (lt ) and head-
ing direction θt . The PDR algorithm essentially requires three
primary pieces of information to perform the user tracking
operation:
• Step detection: Step detection helps in activity recogni-
tion (e.g., moving and standing still) by employing the
accelerometer information. We adopted a peak detection
approach for step detection as suggested in [11], which
utilizes the vertical acceleration generated by the vertical
strike when the user’s foot hits the floor. Moreover, this
approach utilizes two thresholds to filter out the false
peaks caused by acceleration jitters that have very small
magnitudes or short time intervals:{

1T ≥ Tth
|amag − g| ≥ ath,

(33)

where 1T , amag, and g represent the time interval
between the adjacent peaks, the magnitude of acceler-
ation (because vertical acceleration is affected by the
tilting of the tag device), and the value of the local
earth gravity, respectively. Similarly, Tth and ath denote
the time and acceleration magnitude thresholds, respec-
tively. A true step is detected when (33) is valid.

• Step length estimation: Developing a generic model to
estimate the step length for all users is a difficult task.
Research has shown that step length for the same user
mainly depends on his/her walking speed [11]. The
empirical model [35] for step length estimation can be
represented as follows:

lt = Ht × h
√
atmax − a

t
min, (34)

where atmax and atmin are the maximum and minimum
vertical accelerations for step t.Ht and h represent the
personalized coefficients for different users.

• Orientation estimation: The typical approach for orien-
tation or heading direction estimation employs a mag-
netometer, which is sensitive towards electromagnetic
devices and other metals in the localization environ-
ment. Moreover, orientation estimation employing a
gyroscope is also prone to error due to the sensor noise
accumulated during integration. We exploited a Kalman
filter [3], [36] to estimate the user’s heading direction
while utilizing magnetometer and gyroscope readings.
In [37], it is shown that the localization estimation
error grows with an increase in the ground-truth refer-
ence path owing to a cumulative error in step detection
and orientation estimation. In other words, the PDR
approach yields good localization estimation for a short
distance (PDR approach presented in [37] yields a 1 m
localization error for the 20 m ground truth reference
path). Therefore, in this study, the PDR localization of
the proposed method was initialized with L̂ at every T
detected step.

D. AEKF FOR FUSING MULTISENSORY DATA
The widely accepted multisensory data fusion tool is the par-
ticle filter [38], [39]. However, the particle filter is ill-suited
for real-time localization using a resource-limited smart-
phone owing to the substantial computation cost associated
with its use. We employed a typical EKF for data integration
as suggested in various studies [1], [11], [40], [41].

The general form of the discrete-time EKF system and the
measurement models are

xm = ζm,m−1(xm−1)+ sm−1
zm = hm(xm)+ om. (35)

Here,
x: State vector z: Measurement vector
ζ (): System model h(): Measurement model
m,m− 1: Data epochs s: System noise
o: Measurement noise
The system and measurement noises are further described

as sm−1 ∼ N (0,Qm−1) and om ∼ N (0,Rm). Here, Q and R
are the system and measurement noise covariance matrices,
respectively.

As the EKF estimates the process state and then obtains
feedback from the noisy measurements, it can be framed
into two phases: the prediction and measurement correction
phases (update). In our implementation, the PDR algorithm
predicts the user’s position at the next step during the pre-
diction phase, which is corrected according to the position
estimated from the proposedWSF-based fingerprinting local-
ization during the measurement correction phase. The EKF
estimates the current states and uncertainties in the prediction
phase as

x−m = Wm,m−1x∗m−1
P−m = Wm,m−1P∗m,m−1W

T
m,m−1 + Qm−1, (36)

whereW and P represent the state transition matrix and state
error covariance matrix, respectively. In addition, the sub-
scripts − and ∗ denote the predicted and updated terms. The
state transition matrix is defined as

Wm,m−1 ≈
δζm,m−1

δxm,m−1
. (37)

Moreover, the observed measurement estimation is
updated through the Kalman filter gain (Km) as

Km = P−mH
T
m (HmP

−
mH

T
m + Rm)

−1

x∗m = x−m + Km(zm − Hmx
−
m )

P∗m = (I − KmHm)P−m, (38)

where I is an identity matrix andH is a design matrix defined
as H ≈ δhm

δxm
.

The elements in R can be set as empirical constants as
discussed in [3]; the constants were determined using a fuzzy-
logic system. However, such approaches have limited con-
ditions that cannot fully represent real-time measurements.
We suggest utilizing the real-time predicted errors given
by (31) as the elements of R to realize the proposed AEKF.
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The measurement noise covariance matrix of the proposed
method is presented as follows:

Rm = diag(
[
ε̂2m ε̂

2
m
]
). (39)

Moreover, assuming the system noise is linearly associated
with the estimated step length and change in heading direc-
tion (1θt ) [42], elements of Q can be defined as follows:

Qm = diag(
[
n1lt n21θt

]
). (40)

where n1 and n2 are the linear coefficients.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
The proposed indoor localization solution was analyzed
on two different testbeds with different signal attenuation
environment. Testbed1 is the end-to-end hallway connect-
ing different rooms, including an elevator, stairs, and lava-
tories, whereas Testbed2 consists of the main entrance
of the building, a lobby, a study area, and some open
space. Figure 6 presents pictures of both testbeds. Here,
we employed Android smartphones for the evaluation. In par-
ticular, we used Samsung Galaxy S8 as a base device to
acquire training data and used three more other Android
phones, including Samsung Galaxy S10, LG G7, and Xiaomi
MI Redmi 4 for the experiments. All the Android devices
were equipped with a gyroscope, accelerometer, magnetome-
ter, and a BLE receiver. Note that the tag devices were kept in
the ‘texting/messaging’ position during the experiments. The
default data delay (20K µs) was set for the gyroscope, mag-
netometer, and accelerometer. Similarly, the BLE beacons
were deployed on the testbed (fifteen beacons on Testbed1
(115 m × 14 m) and seven beacons on Testbed2 (20 m ×
35 m)), where advertisement interval and transmission power
were set to 300 ms and +4 dBm, respectively.
In GPR-based fingerprinting localization, the training

dataset’s size is directly proportional to the localization accu-
racy [4]. However, as we intended to reduce the offline
workload, the training dataset was expected to be smaller;
therefore, the data collector visited a minimum number of
measurement sites inside the localization interest area for
optimum localization accuracy. Note that the regions near
the training locations have smaller variances (that provides
a confident interval for prediction) compared to other loca-
tions [16]. As there are no fixed rules to determine the training
locations, we empirically chose each BLE beacon’s vicinity
as the training measurement place. Moreover, we solved the
optimization problem of the GPR hyperparameter by employ-
ing the LM-BFGS algorithm [17], [18]. Note that LM-BFGS
is an optimization algorithm in the family of quasi-newton
methods, which approximates the BFGS [43] algorithm using
a limited amount of system memory. Also, LM-BFGS is the
widely used algorithm for parameter estimation in machine
learning.

For RSS clustering, we adopted APC owing to its
initialization-independent property and a better selection of
exemplars. As the damping factor in the APC algorithm can

FIGURE 6. Experiment environment: (a) Testbed1 and (b) Testbed2.

be varied from 0.5 to 1 [5], [26], we chose the damping
factor that corresponds to a minimum number of iterations
for a lower computational cost. In particular, the damping
factor and number of clusters for Testbed1 and Testbed2 were
[0.65, 16] and [0.7, 10], respectively. Moreover, n1 and n2
in (40) were empirically set to 0.045 and 0.005, respectively.

B. LOCALIZATION PERFORMANCE EVALUATION OF THE
PROPOSED METHOD
To observe the consistency of localization performance in our
test environment, we employed the cumulative distribution
function (CDF) of the localization estimation error shown
in Fig. 7. Here, ML refers to localization estimation by maxi-
mum likelihood, as given in (28), andWk-NN is the weighted
k-nearest neighbor fingerprinting. In Wk-NN, the RPs were
sorted in ascending order of their SF distance to estimate the
k-NN RPs where the value of k was selected as three for best
localization results. Both the methods were integrated with
PDR employing the EKF (i.e., ML+PDR and Wk-NN+PDR,
respectively).

Furthermore, we used the average estimation error between
the estimated location and the tag device’s actual location
to determine positioning methods’ accuracy. In particular,
we depicted the mean error as an indicator of localization
accuracy with multiple tag devices at various locations inside
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FIGURE 7. Cumulative probability of the localization estimation error:
(a) Testbed1 and (b) Testbed2.

both the testbeds. The obtained result for both the testbeds is
presented in Fig.8.

The CDF results in Fig. 7 and average localization
results in Fig.8 show the superiority of the proposed
approach against the methods under comparison. In partic-
ular, the mean error for the proposed method is [2.06m:
Testbed1, 3.47m: Testbed2], while 95% of the error is
under [3.8m: Testbed1, 8.8m: Testbed2]. On the other hand,
the mean error and 95 percentile error for the existing meth-
ods are larger than the proposed method.

As shown in Fig. 8, the proposed approach yields accept-
able localization results even with the least amount of training
data points. Moreover, they reveal that the average position-
ing result can be controlled within 3 m in the open hallway
(Testbed1) and below 5.5 m in the crowded wide region
(Testbed2) by the proposed approach with heterogeneous
terminal devices.

C. EFFECT OF DATA CLUSTERING ON COMPUTATIONAL
COMPLEXITY
In conventional fingerprinting localization, the computational
complexity increases with the size of the area of interest [44].
Considering a typical probabilistic fingerprinting method,

FIGURE 8. Average localization error observed in the different terminal
devices: (a) Testbed1 and (b) Testbed2.

its computational complexity in terms of Big − O notation
is O(NU ), where N is the total number of RPs (finger-
prints to be compared), and U is the total number of access
points deployed in the indoor environment. As stated earlier,
the complexity grows with the size of N . Any clustering
modules in IPS help to minimize the area of interest from N
RPs to N ′ RPs during the coarse localization step, (N ′ � N ).
Therefore, the total number of fingerprints to be compared for
fine localization is N ′, where the computational complexity
becomes O(N ′U ). Hence, clustering reduces the computa-
tional complexity by reducing the search space of RPs on the
testbed.

For a detailed analysis, we calculated the consumed
processing time for one epoch of positioning results for
different localization methods. The observed relative posi-
tioning time for different positioning methods, where the
proposedmethod’s positioning time is t seconds, is illustrated
in Fig. 9.

It is clear that clustering helps to reduce the computational
cost of the positioning system.
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TABLE 1. Comparison with various existing methods.

FIGURE 9. Performance comparison of positioning methods in terms of
relative positioning time. (Proposed (Flat): proposed method without the
coarse localization step).

D. TRAJECTORY ANALYSIS
The 2-D Cartesian coordinate estimated by our Android
application during a user-walk in a predefined trajectory
was recorded. The acquired localization estimation coordi-
nate was mapped in the testbeds’ graphical map, as shown
in Fig. 10.

The red stars in Fig. 10 represent the deployed BLE bea-
cons where the blue and black stars are the starting and ending
points. The tracking result reveals that the proposed method
can perform well in different radio environments.

E. COMPARISON WITH RELATED STATE-OF-ART
APPROACHES
Other important performance metrics of an IPS are complex-
ity, scalability, robustness, and cost in addition to the local-
ization accuracy. Fingerprinting localization has relatively
low scalability than lateral approaches (e.g., trilateration),
where signal prediction and crowdsourcing help increase the
method’s scalability. Moreover, robust fingerprinting local-
ization employsmultiple RSS samples for positioning results.
Hence, we compare our approach with some existing studies
that are closely related to the proposed method. Note that

the proposed method employs the signal prediction module
and RSS filtration approach that enhance the scalability and
robustness of the IPS system, respectively. A comparison of
the different performance metrics is illustrated in Table 1.

F. COMPARISON OF RSS CLUSTERING AND
DEVICE-BASED CLUSTERING
A separate RF signature map was created to compare the
performance of RSS clustering and device-based clustering.
Here, depending on the predicted RF signature data, all the
testbed RPs were grouped under the beacons of their prox-
imity. In other words, the RPs that shared a common BLE
beacon were grouped in a cluster. The coarse localization
phase in the device-based approach first identified the beacon
with the strongest signal strength, and fine localization was
performed in the searching space of RPs associated with
the beacon. The cumulative probability of the localization
estimation error induced by the proposed method at different
data-clustering approaches is presented in Fig. 11.

As seen in Fig.11, the performance of the device-based
clustering or the spatial filtering was comparable to the RSS
clustering. We observed average localization errors of 1.92 m
and 3.85 m in Testbed1 and Testbed2, respectively. Device-
based clustering that does not require any fixed algorithm like
APC and k-means clustering is easy to implement. However,
if any hardware device (e.g., BLE beacon) malfunctions,
the localization estimation error may significantly increase.
Moreover, device-based clustering demands a dense deploy-
ment of beacons for better localization results.

G. DISCUSSIONS
In this paper, we focus on the practical limits and challenges
of IPS that obstruct maintaining good performance metrics.
In other words, in addition to the good localization accu-
racy, the suggested indoor localization approach is helpful
towards maintaining low computational complexity, increase
robustness and scalability, and mitigating the effect of het-
erogeneous terminal devices in a fingerprinting-based IPS.
Moreover, the proposed method was implemented and eval-
uated in two different testbeds against different tag devices.
For a better positioning result, the proposed method suggests
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FIGURE 10. Smartphone user location estimated by the proposed method for (a) Testbed1 and (b) Testbed2.

using the signal source’s rank and the RSS in the RF signature
map during the offline phase and proposes WSF-based prob-
abilistic fingerprinting for location estimation in the online
phase. Furthermore, an FP error estimation approach is pro-
posed to realize AEKF during multisensory data fusion.

The accuracy and precision of the proposed approach were
measured using average localization error and CDF [13].
Fig. 7 illustrates the CDF of the localization estimation error
at both the testbeds. Here, the superiority of the proposed
method in Testbed2 is not as significant as in Testbed1 due
to the testbeds’ dimensions and BLE beacon deployment
scenario. Testbed1 is an elongated hallway where beacons
are deployed in a linear fashion, which helps generate a stable
rank vector (asmost beacons are far away at anymeasurement
place in the testbed) to correct cluster selection in the online
phase. However, the wrong cluster can be selected at some
instances in Testbed2 owing to signal fluctuation. Moreover,
the average localization error presented in Fig. 8 shows that
the proposed method can yield a similarly significant result
with heterogeneous tag devices. The accuracy and precision
results and the tracking result (as shown in Fig. 10) imply that
the proposed IPS can produce a reliable indoor localization
solution.

Moreover, the localization system’s scalability is its capa-
bility to perform well even during any change in the area
of interest for localization and\or on the signal source.
As with conventional fingerprinting, the requirement of
offline workload makes it less scalable as compared to trilat-
eration. The proposed method employs a supervised machine
learning-based data prediction approach to infer the RSS at
non-site-surveyed locations in the testbed. In other words,
GPR was used for interpolating the RSS data that utilized
significantly less training data (training data measurement

FIGURE 11. Cumulative probability of the localization estimation error:
(a) Testbed1 and (b) Testbed2.

points were the vicinity of deployed beacons that consists of
less than 5% of total test data (total RFs)). Hence, the offline
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workload was reduced, resulting in increased scalability of
the system.

Furthermore, the proposed IPS is computationally effi-
cient both in terms of hardware and software. For example,
the BLE beacon was used as a signal source supported by
most present-day smartphones. Besides, RSS was used as
a signal measurement principle, which is typically scanned
by standard mobile phones for their routine functioning. The
complexity depends on the computation load represented
by the calculations required to perform positioning results
regarding the software. The proposed IPS employs a clus-
tering module to reduce the computation load. The proposed
IPS’ online phase employs EMA with a dynamic smoothing
factor, enhancing the IPS’ robustness.

VII. CONCLUSION
This paper proposes a smartphone-based indoor localiza-
tion system that can suppress the existing challenges of
conventional fingerprinting localization, improving the IPS.
We introduce WSF-based probabilistic fingerprinting local-
ization, which can overcome conventional fingerprinting in
terms of localization accuracy and computational complexity.
Considering the erroneous/incomplete RF signaturemap con-
structed by GPR prediction or crowdsourcing, the proposed
fingerprinting localization can be an asset for maintaining
the desired localization accuracy. Moreover, we propose a
real-time fingerprinting position error estimation approach
based on the proposed WSF to update the dynamic error
of the AEKF. We implemented the suggested localiza-
tion method using the RF signature map constructed by
the machine-learning-based prediction approach. The data-
clusteringmodule balances the increased computational com-
plexity of the proposed localization system. We realized
GPR as a data prediction module and APC as an RSS
data-clustering module. The proximity information of the
deployed BLE beacons was used in device-based clustering,
which worked as a spatial filter.

We employed BLE beacons as a low-cost solution because
it has useful features in terms of power consumption and
cost. The proposed localization solution was evaluated in two
different testbeds, and the experimental results revealed an
average error of 2.06 m in a hallway corridor and 3.47 m in
a crowded and well-furnished indoor environment. Although
meter-level localization accuracy is demanded, we note that
the proposed localization solution’s RF signature map con-
sists of partial measurements, and the ground truth RSS for
the remaining locations remain unknown. We show analyt-
ically and experimentally that data-clustering reduces the
computational cost of a positioning system.
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