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ABSTRACT When taking pictures of electronic screens or objects with high-frequency textures, people often
run across colorful rainbow patterns that are known as ‘‘moire’’, seriously affecting the image quality and
subsequent processing. Current methods for removing moire patterns mostly extract multiscale information
by downsampling pooling layers, which may inevitably cause information loss. To address this issue,
this paper proposes a demoireing method in the wavelet domain. By employing both discrete wavelet
transform (DWT) and inverse discrete wavelet transform (IDWT) instead of traditional downsampling and
upsampling, this method can effectively increase the network receptive field without information loss.
In addition, to further reconstruct more details of moire patterns, this paper proposes an efficient attention
fusionmodule (EAFM).With a combination of efficient channel attention, spatial attention and local residual
learning, this module can self-adaptively learn various weights of feature information at different levels and
inspire the network to focus more on effective information such as moire details to improve learning and
demoireing performance. Extensive experiments based on public datasets have shown that this suggested
method can efficiently remove moire patterns and has a good quantitative and qualitative performance.

INDEX TERMS Demoire, deep learning, wavelet transform, attention mechanism.

I. INTRODUCTION
Moire patterns have very important value for studying and
applying in many fields, such as measurement and analy-
sis [1] and image detection [2]. However, the moire pat-
tern in natural images may seriously affect image quality
and follow-up processing. While taking photos of electronic
screens or objects with high-frequency textures, a moire pat-
tern will inevitably be produced [3]. With the development
of digital imaging technology and the popularity of digital
cameras and digital screens, there is an increasing number
of moire images. In recent years, demoire technology has
gained increasing attention, there is a great demand for the
post-processing technology of moire pattern removal.

There are two methods for generating moire images in
real life. First, moire images can be produced due to aliasing
caused by insufficient sampling of fine regular patterns in nat-
ural scenes. For example, when photographing knitted fabrics
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with fine structures or long-distance buildings, a moire pat-
tern often appears, which mostly includes high-frequency
information centered in a certain area of the image, also
known as a ‘‘texture moire image’’. Second, because of the
interference between the pixel grid of camera sensors and
digital screens during photographing, a moire pattern can be
generated and regarded as a manifestation of the phenomenon
of beats, which is called a ‘‘screen moire image’’, spanning
a wide frequency range to cover the whole image and more
often occurs in our daily life.

Moire patterns are complex and changeable and spatially
characterized by various stripes, curves or ripples. It can
result in color changes and is sensitive to slight displacement
variations. Therefore, by altering the shooting direction or
distance, different moire patterns can be produced. As a
consequence, it is difficult to determine moire distribution
and thus challenging demoire.

The classical method of demoireing adds a low-pass filter
in front of the photosensitive components [4] or uses an
interpolation algorithm in the output of a color filter array
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FIGURE 1. Moire images and our demoire results.

(CFA) [5], but it makes the image smooth, the computational
complexity is high, and the actual effect is not good. Methods
based on filtering or signal decomposition [6], [7] to remove
moieties are mainly for high-frequency moieties in texture
images, which cannot process moieties across low-frequency
and high-frequency screen images at the same time. With the
outstanding performance of deep learning in computer vision,
deep learning-based methods have been widely applied in
demoireing. Sun et al. [8] proposed a multiresolution (multi-
scale) convolutional neural network (MSCNN) for demoire-
ing, creating a moire dataset founded on ImageNet [9].
Liu et al. [10] suggested a new method for demoireing
composite screened moire images via a multiscale neu-
ral network from coarse to fine. In this way, moire pat-
terns could be removed at different scales, and better visual
effects can be achieved referring to generative adversarial
networks (GANs) [11]. Academic have also noted this issue
and held related competitions to promote research on image
demoireing [12]–[18]. Existing methods for demoireing usu-
ally depend on downsampling the pooling layer to introduce
a multiscale strategy, which may bring out image information
loss even with good removal performance.

Inspired by MWCNN [19], to address moire patterns in
screened images, this paper proposes a multiscale demoire
network in the wavelet domain based on efficient attention
fusion. By replacing the pooling and unpooling in the tradi-
tional UNet network with discrete wavelet transform (DWT)
and inverse discrete wavelet transform (IDWT), down- and
upsampling can be carried out. Due to the reversibility of
DWT, the image information loss caused by up- and down-
sampling can thus be avoided with the ensured large receptive
field of the network. Moreover, to address the uneven distri-
bution of moire patterns, this paper introduced an efficient
attention fusion module (EAFM) made up of efficient chan-
nel attention, spatial attention and local residual learning.
By adjusting the output proportion self-adaptively according
to input information, this module can give different weights
to features at different levels to improve the representation
power of the network as well as reconstructed image qualities.
Fig. 1 shows the moire images and our demoire results.
In summary, the main contributions are as follows:
• We propose a novel demoireing network in wavelet
domain. By embedding the DWT and IDWT into Unet to
replace traditional downsampling and upsampling, pro-
posed method can effectively enlarge the receptive field
without information loss, and get extra high-frequency
information to improve the performance of the network.

• We propose an efficient attention fusion mod-
ule (EAFM) to further focus more on moire details and
adaptively learn the different weights of different feature
information.

• We implement perceptual loss to enhance the visual
consistency between the output image and the clean
image.

• Extensive experiments on benchmark dataset demon-
strate that our method outperform the existing state-of-
the-art methods.

II. RELATED WORK
In this section, we first briefly introduce the relevant meth-
ods of image demoire and then introduce the related back-
ground technologies involved in this paper, including UNet,
deep learning methods based on wavelets and attention
mechanisms.

A. METHODS FOR IMAGE DEMOIREING
Due to the complexity of moire patterns, image demoireing
is more challenging than general image restoration. Tradi-
tional methods are mostly aimed at moire images caused by
high-frequency aliasing as a result of insufficient sampling
of fine regular patterns. Yang et al. [4] proposed eliminating
moires by placing an optical low-pass filter layer in front of
a phototaking lens, but it also eliminates the high-frequency
information and damages the detail clarity of the image.
Hazavei and Shahdoosti [5] proposed that interpolation algo-
rithms can be used in the output of color filter arrays (CFAs),
but they rely heavily on the quality of the green channel and
have high computational complexity. Liu et al. [6] suggested
an approach based on signal decomposition and guided fil-
tering to dismiss moire patterns in texture images. However,
their methods mainly focus on the moire fringes of fabrics,
and the effect of dealing with low-frequency moire fringes
is not good. Yang et al. [7] proposed a demoireing method
in screened images via layer decomposition on polyphase
components (LDPC). This method has high computational
complexity and easily makes the image details too smooth.
To remove moires, we need to deal with both low-frequency
and high-frequency information, as well as the color distor-
tion caused by moires. Traditional algorithms are too compli-
cated to fully remove complex and changeablemoire patterns.

In recent years, deep learning has achieved remarkable suc-
cess in many areas, and demoireing based on convolutional
neural networks has been studied extensively. Sun et al. [8]
created a large-scale benchmark dataset TIP dataset, which
founded on ImageNet [9], plays a very important role in
develop demoire methods. They also proposed a nonlinear
multiresolution (multiscale) convolutional neural network
(MSCNN) to eliminate moiré artefacts within different fre-
quency bands. He et al. [20] proposed a network consist-
ing of a multi-scale aggregated, edge-guided, and pattern
attribute-aware network to further remove the moire pat-
tern precisely, but they need the other two pretrained net-
work to describe the appearance properties of moire patterns.
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Yang et al. [21] presented a new high-resolution demoire
network to fully utilize relations among feature mappings of
different resolutions and multi-scale information exchange to
better separate and remove moire patterns, but it achieves
limited success when a moiré pattern exhibits very severe
large-scale coloured bands. Zheng et al. [22] divided image
demoireing into two subquestions, namely, moire pattern
removal and color restoration, and restored moire patterns by
using a learnable bandpass filter and tone mapping. In the
AIM 2019 Demoireing Challenge [12], Cheng et al. [14] pro-
posed a multi-scale convolution network based on dynamic
feature coding to remove moire dynamically. In NTIRE 2020
challenge for texture moire images, a number of excellent
network architectures have been proposed [16]–[18]. Most
of the existing networks use a multiscale strategy to remove
moieties of different frequencies to obtain a better effect.
However, maximum pooling or average pooling is usually
used to obtain moire information of different scales, which
inevitably leads to information loss. In this paper, wavelet
transform instead of downsampling can effectively avoid this
shortcoming and enhance the network expression ability.

B. RELATED TECHNOLOGIES
1) U-NET
Ronneberger et al. [23] presented UNet, which is a classical
codec structure that was originally designed for biomedical
images, but because of its excellent performance, UNet and
its variants have been widely used in various subfields of
computer vision. Xiaomeng et al. [24], by replacing each
submodule of UNet with a dense connection module, pro-
posed a full density UNet to remove artifacts in images.
Ibtehaz and Rahman [25] proposed a method for combining
the MutiRes module with UNet, which uses the idea of mul-
tiresolution to replace the traditional convolution layer and
proposes the residual path (RES). Oktay et al. [26] proposed
attentionUNet. Before splicing the features in each resolution
of the encoder with the corresponding features in the decoder,
an attention module is used to readjust the output features
of the encoder. This paper continues the core idea of UNet,
usingwavelet downsampling to obtain different scale features
in the encoder, reshaping the image through inverse wavelet
upsampling in the decoder, introducing a short channel to fuse
the features of different scales, and enhancing the network
performance to generate a more refined moire-free image.

2) WAVELET-BASED DEEP-LEARNING APPROACH
A wavelet is a powerful time-frequency analysis tool with
perfect reconstruction ability, and it can completely avoid
any information loss during signal decomposition. The
wavelet transform decomposes the image into a combina-
tion of low-frequency images and detail (high-frequency)
images, which represent the different structures of the image,
so it is easy to extract the structural information and
detailed information of the original image. In recent years,
wavelet transform has been introduced into deep learning

networks [19], [27]–[31] and has achieved good results.
In this paper, we mainly introduce the wavelet transform as
a sampling operation method. According to Liu et al. [19],
multilevel wavelet decomposition is combined with CNN to
reduce the resolution of the feature image and improve the
resolution receptive field. The wavelet is used to achieve
downsampling and retain all the components, which achieves
a good denoising effect. After the wavelet transform, Han
and Ye [29] input high- and low-frequency subbands into
different branches for separate processing and subsequent
reconstruction of clear CT images. By averaging multi-
ple components of the wavelet transform as downsampling
output, Duan et al. [30] effectively suppressed noise and
obtained SAR image segmentation with good labeling con-
sistency. Li et al. [31] discussed the relationship between
DWT and downsampling and achieved better image classi-
fications by abandoning the high-frequency components of
discrete wavelet transform and noise. The wavelet transform
considers both spatial and frequency information, while the
moire fringe overlaps with the original image, which covers a
wide range in both spatial and frequency domains. So wavelet
transform is very suitable for image demoire. Considering
the wide distribution of moire frequencies, it is difficult to
abandon a certain part of the frequency or deal with differ-
ent threshold components separately. Therefore, we use the
method of [19] to merge the various band components after
the wavelet transform into the next CNN without losing any
information, which is beneficial to image restoration.

3) ATTENTION MECHANISM
In recent years, the attention mechanism has made important
breakthroughs in image processing, natural language process-
ing and other fields, which has been proven to be beneficial
to improving the performance of the model. Hu et al. [32]
proposed the classic SEnet by recalibrating the weights of
channel features using the interdependencies among fea-
ture channels, which performed well in classifying images.
Improving SEnet to an efficient channel attention network
(ECAnet), Wang et al. [33] later realized cross-channel inter-
action without dimension reduction and thus efficiently used
characteristic channel information to improve network per-
formance. Zhang et al. [34] proposed a residual channel
attention block (RCAB) that functioned well in image super-
resolution. Woo et al. [35] developed a convolutional block
attention module (CBAM) to combine channel and spatial
information by using the average pool and maximum pool
to aggregate features, dramatically increasing image classi-
fication and target detection. Qin et al. [36] combined pixel
level, channel level attention and local residual learning and
proposed a feature fusion attention network FFANet, which
expanded the expression ability of CNN. On the basis of [36],
this paper proposes an efficient attention module that can
guide the network to address moire features and suppress
unnecessary features, improve network learning efficiency
and accelerate network convergence.
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FIGURE 2. Network architecture of our proposed method.

III. METHODOLOGY
In this section, we first introduce the network structure,
then introduce the embedding method of wavelet transform
and inverse wavelet transform, then introduce the efficient
attention fusion module, and finally define the loss function
optimization model.

A. NETWORK ARCHITECTURE
The network structure is shown in Fig. 2. The input moire
image X is transformed from the pixel space to the feature
image space by a 3× 3 convolution, which changes from the
RGB3 channel image to a 64-channel feature map.

Xi = H (X ) (1)

where X indicates the input image, H (·) is the 3 × 3 con-
volution operation, and Xi represents the shallow features
obtained. Compared with the direct wavelet decomposition
of the input image, the conv block is used to extract fea-
tures from the input image, which is proven to be a useful
image restoration by experience. Then, the shallow features
obtained from spatial space are sent to a 3-level wavelet
encoder-decoder module.

The wavelet encoder-decoder module is a typical structure
of UNet, in which the coding part uses Haar DWT to down-
sample the feature map to 1/2, 1/4, and 1/8 of the original
image and obtain multi-scale edge information. Then uses a
convolution layer to halve the feature channel, achieve com-
pact representation and reduce the complexity of the model.
Two efficient attention fusion modules are uesd to extract
features at three levels of different resolutions, capture the
context information, and extract high-level semantic infor-
mation. The decoding part uses the Haar IDWT to achieve

upsampling. Accordingly, there is a convolution layer before
IDWT to double the number of channels to achieve channel
alignment. The resolution of the image is restored by the
same method, reconstructed by the efficient attention fusion
module. To fuse more low-level semantic information and
different scale features into the final recovered feature map,
a skip connection is introduced to output more detailed non-
moire image features. Please note that the low-level features
of the skip connection and the features used on the decoder
are summed elementwise.

Xo = T (Xi) (2)

where T (·) represents the wavelet encoder-decoder network
and Xo represents the reconstructed 64-channel feature map.

Finally, a 3× 3 convolution layer is used to map the image
from the feature space to the image space, and the recon-
structed residual image is superimposed with the original
image to obtain the output Y of the network.

Y = conv(Xo)+ X (3)

B. WAVELET TRANSFORM AND THE INVERSE
In this paper, the Haar discrete wavelet transform DWT is
introduced into the network whose corresponding filter is as
follows:

fLL =
[
1 1
1 1

]
fHL =

[
−1 −1
1 1

]
fLH =

[
−1 1
−1 1

]
fHH =

[
1 −1
−1 1

]
(4)

As a result, the size of the input image can be minimized,
and high-frequency information can be obtained horizontally,
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FIGURE 3. Downsampling of DWT-based decomposition and upsampling
of IDWT-based integration of images.

vertically and diagonally, which can effectively extract edge
texture details and improve network learning efficiency.

Taking the gray image as an example, as indicated in Fig. 3,
A, B, C, and D and a, b, c, and d are pixel values of
the corresponding images and subbands, respectively. It can
be observed that DWT not only reduces the size of the
input image and obtains the low-frequency information of
the image ILL, but also obtains high-frequency information
in the horizontal ILH, vertical IHL and diagonal directions
IHH, which is easier to extract structure and texture detail
information. Given the size of an image as n × n × 1,
it becomes (n/2) × (n/2) × 4 after DWT. At the same time
as downsampling, the feature channel becomes 4 times the
original. To reduce the number of feature mapping channels,
achieve compact representation and reduce the complexity
of the model, a convolution layer is used after DWT to
halve the feature channel, and then it is sent to an efficient
attention fusion module for feature extraction. Accordingly,
a convolution layer is used before the IDWT to double the
number of mapping feature channels so that each resolution
feature channel is consistent. In this way, we use DWT and
IDWT replace the pooling operations to reduce information
loss and reserve high frequency details, enlarge the receptive
field at the same time.

C. EFFICIENT ATTENTION FUSION MODULE
Enlightened by FFA [36], this paper proposes an efficient
attention fusion module (EAFM) that combines efficient
channel attention (ECA), spatial attention (SA) and local
residual learning (LRL), as shown in Fig. 4(a). Referring to
the joint order of the attention module in CBAM [35], EAFM
first scales channel features through the ECA module and
then recalibrates the spatial information weight of the output
features in the ECA module by the SA module according
to the spatial interdependency of the input features in the
module. LRL is introduced to improve discrimination learn-
ing of the module for residual information, which can bet-
ter the performance and stability of the network while making
the network focused more on important spatial information.
The experimental results have proven that the EAFMmodule
could effectively improve network performance.

FIGURE 4. Efficient attention fusion module (EAFM).

1) EFFICIENT CHANNEL ATTENTION (ECA)
To obtain the weights of different channels, this paper adopts
efficient channel attention (ECA), as shown in Fig. 4(b). Only
weights among the channel and surrounding k channels are
considered in this paper, while k represents the coverage ratio
of the local cross-channel interaction.

First, the global spatial information of the channel is trans-
formed into a one-dimensional global channel tensor via
global average pooling.

gc = HP(Fc) =
1

H ×W

∑H

i=1

∑W

j=1
Xc(i, j) (5)

where Xc(i.j) signifies the value of Xc at position (i, j) in the
c-th channel, andHP(·) stands for the global pooling function.
The feature image is converted from C×H×W to C× 1× 1,
and weight prediction of adjacent channels is realized by 1×1
convolution.

CAc = σ (Conv(gc)) (6)

where σ (·) acts as the sigmoid function and Conv is the
abbreviation of a 1 × 1 convolution. Finally, by multiplying
the weight of the CAc channel with the input Fc, a weight
of the local channel interaction that relates only to the corre-
sponding k channels is obtained.

F∗c = Fc ⊗ CAc (7)

For the given channel dimension C , the coverage ratio k of
local cross-channel interaction can be adaptively described
as:

k = φ(C) =

∣∣∣∣ log2 C2
+

1
2

∣∣∣∣
odd

(8)

where |·|odd denotes the proximal odd. The detail information
can be founded in [33].

2) SPATIAL ATTENTION (SA)
Spatial attention (SA) is illustrated in Fig. 4(c). After per-
forming PReLU and the sigmoid activation function, the input
F∗c (the output of ECA) is directly input into two convo-
lutional layers. As a result, the feature map changes from
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TABLE 1. Quantitative comparisons of different methods.

C×H×W to 1×H×W, and the weights of each spatial space
are output.

PA = σ (Conv(δ(Conv(F∗c )))) (9)

Finally, element-to-element multiplication is carried out
between the inputs F∗c and SA to gain spatial attention, which
is the output of the spatial attention module.

F∗ = F∗c ⊗ PA (10)

D. LOSS FUNCTION
For a better reconstruction of images, the loss function in this
paper is defined as follows:

L = LCharb + λ1Lpercep (11)

where λ1 denotes hyperparameters, LCharb signifies
L1_Charbonnier_loss, and Lpercep denotes the perceptual
loss. Assume I and Î are the output image predicted by the
network and the ground truth; then, the following equation
can be obtained:

LCharb(I , Î ) =
1
hwc

∑
i,j,k

2
√
(Ii,j,k − Îi,j,k )2 + ε2 (12)

where ε = 0.001, and the L1_Charbonnier_loss is more
stable in performance and quicker in convergence than L1 and
L2 losses.

To keep the output image consistent with the ground truth
in subjective visual perception, a perceptual loss is introduced
in this paper.

Lpercep(I , Î ;ϕ, l) =
1

hlwlcl

√∑
i,j,k

(ϕ(l)i,j,k (I )− ϕ
(l)
i,j,k (Î ))

2

(13)

where ϕ(l)i,j,k denotes the feature map in the l-th layer of
VGG-19 trained by ImageNet [9] and hl ×wl × cl represents
the size of the feature map. The features extracted at the 14th
layer of VGG-19 are adopted in this paper as the input of
perceptual loss.

IV. EXPERIMENT AND DISCUSSION
A. DATASETS AND EXPERIMENTAL DETAILS
The TIP dataset created by Sun et al. [8] is used for training
and testing in this paper. This dataset includes 13,500 pairs
of screen images with moire and corresponding ground truth,
90% of which are for training and 10% for testing. With
constantly changing angle and distance, those images were
captured by different mobile phones shooting against the

ImageNet [9] dataset in different display screens to obtain as
many kinds of moire patterns as possible.

The PyTorch framework is employed in this paper on a
NVIDIA Tesla V100 GPU. And the input image is 256×256,
the batch size is 16. The hyperparameters λ1 is set 2,000. The
learning rate starts from 0.0002 and gradually reduces when
the loss function stops decreasing. After reaching 0.0001,
it fails to 0.00005. With the Adam optimizer, 100 epochs are
trained, and the model has 38 M parameters in total.

B. EXPERIMENTAL RESULTS
We compare our method with three state-of-the-art demoire-
ing methods [8], [20], [21] and moire patterns regarded as a
special noise, two classical denoising methods [23], [37] are
used for comparison.

Three metrics, Peak Signal-to-Noise Ratio (PSNR) [38],
Structure Similarity Index (SSIM) [39] and feature similarity
(FSIM) [40] are employed, larger values represent better
results. To further evaluate the capability of improving image
quality visually, we also implement the visual comparison
with state-of arts. The results can be found in Fig. 5. The
experiments suggest that this method is both simple in struc-
ture and efficient in performance.

Table 1 is the quantitative results among DncNN [37],
UNet [23], DMCNN [8], MopNet [20], and HRDN [21].
Functioning as a general image denoising method,
DnCNN has limited effect for demoireing. Connected by
encoder-decoders with different resolutions, UNet delivers
higher PSNR, SSIM and FSIM values. Although it is a
particular network for demoireing MSCNN is not very effi-
cient in improving the values. Moreover, referring to Fig. 5,
it is obvious that some artifacts still remain in images after
using the above three methods for demoireing. By adding
moire information such as frequency, color and shape in
the training, MopNet shows rather excellent results. HRDN
further improves PSNR by integrating a fine high-resolution
network, information exchange and feature fusion together,
but the visual effects are not as good as MopNet. As seen,
the sky section in the second row of Fig. 5 still has some
artifacts. On the basis of HRDN, themethod used in this paper
increases PSNR by 1.23 dB with a better visual effect, get
the highest SSIM values 0.912, it proves that our method is
better than other state-of-arts in both objective and subjective
measurements.

To show that the method in this paper has strong gener-
alization, we also choose real moire images for testing, and
the results are shown in Fig. 6. The first line shows moire
images searched online, and the second line shows moire
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FIGURE 5. Qualitative comparisons of DnCNN, UNet, MSCNN, HRDN, MopNet and Ours.

FIGURE 6. Real moire images and the corresponding output of our
network.

images photographed by a Huawei Nova 5 Pro against a
Samsung screen. As shown in Fig. 6, although the four tested
images are not in our dataset, the proposed method can still
effectively remove this kind of moire patterns. It shows that
the dataset we use contains a variety of moire patterns, and
the proposed method can grasp the details of moire patterns
at various scales, so as to effectively restore the imagewithout
moire pattern.

TABLE 2. Ablation experiment results.

C. ABLATION EXPERIMENT
A miniTIP dataset released by MopNet is used for ablation
experiments in this paper, a simplified version of the TIP
dataset. This dataset is a small dataset with approximately
1/10 of the TIP dataset volume. In this paper, 50 epochs of
this dataset are trained to verify the impacts of DWT, EAFM
and perceptual loss on the network structure.

The ablation experiment results are illustrated in Table 2.
(1) No DWT indicates replacing DWT and IDWT with
traditional pooling and unpooling in the proposed network
structure, (2) no EAFM/Conv replaces the EAFM module
with the ordinary convolution layer in the proposed network
structure, (3) no EAFM/RCAB denotes replacing the EAFM
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FIGURE 7. Segmentation results of the mean shift.

module with the RCAB [40] module in the proposed network
structure, (4): no EAFM/FFA denotes using the FFA [35]
module instead of the EAFM module in the proposed net-
work structure, (5) no perception loss indicates that only
L1 Charbonnier loss is used in this paper, and (6) full ours
represents the proposed complete network structure. Based
on points (1) and (6), as DWT and IDWT can avoid informa-
tion loss during up- and downsampling, the introduction of
DWT can enhance the network performance and thus increase
PSNR by 0.51 dB. According to points (2), (3), (4), and (6),
the network performance is improved significantly after the
addition of the attention mechanism. In contrast to the RCAB
and FFA modules, the RAFM module enhances PSNR by
0.33 dB and 0.18 dB respectively, with faster convergence,
which can effectively improve the demoireing performance
of the network. Referring to points (5) and (6), perceptual loss
can not only benefit visual reconstruction but also contribute
greatly to the network, which enhances PSNR by 0.39 dB.

D. APPLICATION
It has attracted increasing attention to perform high-level
computer vision tasks through data pre-processing. To inves-
tigate the impact of moire patterns on image segmentation,
we use the mean shift proposed by [41] to segment moire
images and our demoire images, as shown in Fig. 7.

From Fig. 7, we can see that after removing moire patterns
with our method, the segmentation results get significant
improvement. Especially for image Fig. 7(c), the moire pat-
tern covers the entire image, the widespread color stripes
seriously affect the visual quality of the image, so it is failed
to segment the characters from the background which can
be observed in Fig. 7(d). Our proposed method can remove
moire patterns effectively and obtain a clear and accurate
segmentation results as show in Fig. 7(h).

V. CONCLUSION
With the advance in digital imaging technologies and the pop-
ularity of digital cameras and digital screens, moire images
continue to increase in daily life. Depending on the orthog-
onality and reversibility of DWT, this paper proposed a new
method for replacing traditional up- and downsampling with

IDWT and DWT. In this respect, it can obtain all spatial
resolutions with no information loss and guarantee a large
receptive field of the network. In the encoder-decoder net-
work, an efficient attention fusionmodule (EAFM) is adopted
to extract multiscale deep features of images for multidimen-
sional information integration, which can make the network
focus more on moire details and thereby improve its per-
formance. Additionally, L1_Charbonnier_loss and perceptual
loss are also employed in network training, which improves
both objective indicators and visual effects. Extensive exper-
iments on benchmark dataset demonstrate that our method
outperform the existing state-of-the-art methods.
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