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ABSTRACT Lung cancer (LC) is one of the most serious cancers threatening human health. Histopatho-
logical examination is the gold standard for qualitative and clinical staging of lung tumors. However,
the process for doctors to examine thousands of histopathological images is very cumbersome, especially
for doctors with less experience. Therefore, objective pathological diagnosis results can effectively help
doctors choose the most appropriate treatment mode, thereby improving the survival rate of patients. For
the current problem of incomplete experimental subjects in the computer-aided diagnosis of lung cancer
subtypes, this study included relatively rare lung adenosquamous carcinoma (ASC) samples for the first
time, and proposed a computer-aided diagnosis method based on histopathological images of ASC, lung
squamous cell carcinoma (LUSC) and small cell lung carcinoma (SCLC). Firstly, the multidimensional
features of 121 LC histopathological images were extracted, and then the relevant features (Relief) algorithm
was used for feature selection. The support vector machines (SVMs) classifier was used to classify LC
subtypes, and the receiver operating characteristic (ROC) curve and area under the curve (AUC) were used
to make it more intuitive evaluate the generalization ability of the classifier. Finally, through a horizontal
comparison with a variety of mainstream classification models, experiments show that the classification
effect achieved by the Relief-SVM model is the best. The LUSC-ASC classification accuracy was 73.91%,
the LUSC-SCLC classification accuracy was 83.91% and the ASC-SCLC classification accuracy was
73.67%. Our experimental results verify the potential of the auxiliary diagnosis model constructed by
machine learning (ML) in the diagnosis of LC.

INDEX TERMS Lung cancer, histopathological images, computer-aided diagnosis, lung adenosquamous
carcinoma (ASC), machine learning.

I. INTRODUCTION
Lung cancer (LC) is one of the most common malignant
tumors worldwide [1]–[3]. According to the 2018 Interna-
tional Agency for Research on Cancer statistics, there will be
2.1 million new cases of LC and 1.8 million deaths world-
wide [4]. Due to its high morbidity and mortality, it has
become one of the most serious cancers threatening human
health. Clinicians’ visual analysis of LC histopathological
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images is one of the most important methods for evaluating
LC subtypes [5]. However, it is complicated and challeng-
ing for pathologists to review thousands of histopathological
images, and it is even more difficult for doctors with less
experience [6]. Therefore, to relieve the pressure on doctors
and improve the accuracy and efficiency of diagnosis, it is
particularly important to study the computer-aided diagnosis
model of LC [7].

From the perspective of pathology and treatment, LC can
be divided into non-small cell lung carcinoma (NSCLC) and
small cell lung carcinoma (SCLC), of which 80%-85% are
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NSCLC and the rest are SCLC [8]. The main histologi-
cal types of NSCLC are lung adenocarcinoma (ADC) and
lung squamous cell carcinoma (LUSC). The other histolog-
ical types of NSCLC are lung adenosquamous carcinoma
(ASC), large-cell carcinoma [9]. In particular, ASC is a rel-
atively rare subtype of NSCLC that accounts for 0.3–5%
of all NSCLCs [10]. Due to the different histopathological
types of LC, the treatment methods adopted are also dif-
ferent. When the lung tissue classification is determined,
the appropriate treatment mode can be selected, such as
the reasonable application of surgery, chemotherapy, radio-
therapy, molecular targeted therapy and immune therapy.
In addition, LC screening errors can be avoided, clinicians’
multifarious work pressure can be slowed, patients’ survival
time can be maximized and the patient’s quality of life
improved.

The LC imaging examination methods mainly include:
(1) X-ray photography, which is one of the most basic lung
imaging examination methods, but the resolution of the pho-
tography is low and there are blind spots in the examina-
tion [11]. (2) Computed tomography (CT), specifically, chest
CT has advantages in detecting early peripheral LC and
identifying the location of the lesion. Currently, it is one of
the most commonly used imaging methods for preoperative
diagnosis and staging of LC [12]. However, one of the lim-
itations of using CT examinations is that for patients under-
going repeated examinations, it is necessary to consider the
impact of the radiation dose produced by the operation [13].
(3) Magnetic resonance imaging (MRI) has high sensitivity
and specificity for vertebral and bone metastases, but it is
not recommended for routine diagnosis of LC [13], [14].
(4) Ultrasound is a non-invasive tool, which is usually
superior to radiography in the examination of postoperative
pulmonary complications (PPCs). It has developed into a
valuable method [15]. Although the above imaging exami-
nation methods play an important role in detecting of LC,
the results of each examination are only used as a reference
for the diagnosis, staging, re-staging, efficacy monitoring and
prognosis evaluation of LC, while histopathological exami-
nation is the gold standard for tumor qualitative and clinical
staging [16], [17].

However, due to the complex texture features of
histopathological images, as far as the authors know, there
is no computer-aided diagnosis method for ASC, LUSC
and SCLC based on histopathological images. To fill this
gap, this paper includes ASC sample data for the first
time and introduces a computer-aided model for automatic
classification of LC subtypes based on histopathological
images of LC. First, seven texture analysis methods are
used to extract 265-dimensional features of LC histopatho-
logical images, and the relevant features (Relief) algorithm
is used for feature selection. Compared with a variety of
machine learning (ML) models, the Relief-SVM model
obtains optimal performance for LC subtype classifica-
tion [18]. The main contributions of this study are as
follows:

• This study was the first to include relatively rare ASCs
in lung histopathological images and applies them to the
automatic classification of LC subtypes.

• This paper was the first to apply the Relief-SVM
algorithm to the classification of LC histopathological
images, which demonstrates the tremendous potential
of ML algorithms to be used in the diagnosis of LC
subtypes.

FIGURE 1. Overall flowchart of the auxiliary classification and diagnosis
of LC subtypes. Explain some abbreviations in the figure: gray-level
gradient co-occurrence matrix (GLGCM), gray-level co-occurrence matrix
(GLCM), local binary pattern (LBP), gray-level difference statistics (GLDS),
the least absolute shrinkage and selection operator (LASSO).

Figure 1 shows the overall flow chart of the auxiliary
classification and diagnosis of LC subtypes. In the following
sections, we will introduce them in detail.

II. MATERIALS AND METHODS
A. DATA COLLECTION
This study included 94 patients from a Cancer Hospital in
Xinjiang from October 2011 to October 2020, of whom
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FIGURE 2. 2(a). The unprocessed histological images of LUSC, ASC and
SCLC. 2(b). The processed histological images of LUSC, ASC and SCLC.
To better display the image details, two pathological tissue images of
each category were selected for display in this study, of which A was
LUSC, B was ASC, and C was SCLC.

22 had LUSC, 27 had ASC and 45 had SCLC. All subjects
had signed informed consent in this retrospective study. For
improving the generalization performance of the model, this
study took an average of 1-2 pathological tissue sections
from each patient as the research object, and finally selected
121 histopathological images [19], [20]. According to the
classification standards provided by the World Health Orga-
nization, LC patients were collected from the hospital pathol-
ogy database, and the relevant pathological diagnosis results
were confirmed by pathology. The detailed information is
shown in Table 1. All tumor tissues included in the study
were made into histopathological sections by hematoxylin
and eosin (H&E) staining [21], which were collected through
the microscope of the hospital pathology department and
stored as JPG image files with four resolutions: 744 × 554,
2048× 1536, 1024× 768, 640× 480 [6].

TABLE 1. Patient emographics (n = 94).

B. HISTOPATHOLOGICAL IMAGE PREPROCESSING
Histopathological examination is the gold standard for qual-
itative and clinical tumor staging [22]. Histopathological
images have been widely used by doctors for diagnosis and
treatment, and are an important basis for predicting patient
survival [23]. The histopathological images of LUSC, ASC

and SCLC are shown in Figure 2. According to reports,
the following problems exist in histopathological images:
• The histopathological images are faced with a
large number of rich geometric structures and com-
plex textures caused by the diversity of structural
morphology [24].

• The histopathological images are easily affected by
color differentiation and noise due to external reasons
such as illumination conditions [25].

• Due to the difference in microscope magnification,
equipment parameters and other factors in histopatho-
logical images, the image size and resolution are not the
same [6].

• Texture features such as local microvessels in
histopathological images are the key to disease diagno-
sis, and the extraction of features is of great significance
to assist in the diagnosis and classification of LC [26].

For all these reasons, the histopathological images pre-
sented to us are often not perfect. As an efficient low-pass
filter, the Gaussian filter has shown good filtering perfor-
mance in both the spatial domain and frequency domain,
and is widely used in image processing to reduce noise [27].
Generally, the pixel value of each point is replaced by the
weighted mean of its neighbourhood, so Gaussian filtering
is the process of weighted averaging of the whole image.
The histopathological images processed by Gaussian filter-
ing tend to be smoother and contain less noise, which is
ready for our subsequent studies [28]. According to the
Ciompi et al. description, the existence of differences such
as color destandardization in histopathological images will
limit the interpretation of histopathological images by inexpe-
rienced pathologists, and the color differences will affect the
performance of the automatic diagnosis model [25]. To avoid
the problem of information loss due to excessive brightness
of histopathological images [26], we adopt the adaptive his-
togram equalization algorithm (AHE) to normalize the color
of histopathological images in this study [26]. In this mode,
the image is divided into several 8×8 pieces, and then the his-
tograms of multiple local regions of the image segmentation
are calculated. At this point, the brightness is redistributed in
the 8 × 8 area to change the image contrast. Therefore, this
algorithm is more beneficial for improving the local contrast
of the image and obtain more image details [26]. According
to the investigation, the improvement in model classification
performance by the color normalization method is limited.
The image after the above image preprocessing operation is
shown in Figure 2(b). Figure 3 shows the details before and
after the preprocessing operation of the ASC histopathologi-
cal image.

C. FEATURE EXTRACTION OF HISTOPATHOLOGICAL
IMAGES OF LUNG CANCER
Because the rich features presented in histopathological
images are an important basis for clinicians to carry out
diagnosis, the effective extraction of image features is the key
to improving the accuracy of computer-aided diagnosis [29].
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FIGURE 3. Details before and after the preprocessing operation of the
ASC histopathological image. A. Details before the preprocessing
operation of the ASC histopathological image. B. Details after the
preprocessing operation of the ASC histopathological image.

This paper explores the effect of two feature extraction meth-
ods on LC histopathological image classification.

1) HANDCRAFTED TEXTURE EXTRACTION METHODS
We extracted 265-dimensional features using seven hand-
crafted texture extraction algorithms, including the Hu invari-
ant moments, GLGCM, wavelet transform, GLCM, LBP,
GLDS and Markov random field, as shown in Table 2 [18].

TABLE 2. Extracted features of the seven methods.

a: LBP
The LBP method for texture feature extraction was proposed
in 1994 [30]. However, the greatest defect of the traditional
LBP algorithm cannot satisfy the requirement of textures of
different sizes and frequencies. It only covers a small area
within a fixed radius, which makes it impossible to extract
the features of the whole histopathological image perfectly.
To compensate make up for this deficiency, and to meet
the requirements of a constant grey level and rotation, this
paper uses a circular neighbourhood to replace the tradi-
tional square neighbourhood LBP algorithm [31]. The LBP
algorithm has the advantages of simple calculation, efficient
recognition, good texture feature display and low computa-
tional complexity [32], [33].

As the traditional LBP algorithm cannot efficiently extract
the texture features from the large-scale image structure,
the improved LBP operator in the circular domain is adopted
in this study to allow the existence of N pixels in the circular
domain with a radius of R. Using the above theory, LBP
feature processing was performed on the histopathological

FIGURE 4. LBP gray-coded restored image. (a) LUSC, (b) ASC, (c) SCLC.

FIGURE 5. Histogram of gray statistics of histopathological images.
(a) LUSC, (b) ASC, (c) SCLC.

images, and the results are shown in Figure 4 and Figure 5.
As seen from Figure 4 and Figure 5, when R = 1 and
N = 8 schemes and R = 2 and N = 8 schemes, the grey
values of the LBP algorithm are mostly concentrated in the
0-100 threshold range. The grey values distribution of the
R = 2 andN = 16 schemes was relatively uniform. However,
the experiments showed that the extracted 59-dimensional
features were more helpful in distinguishing histopathologi-
cal images of LC when R = 2 and N = 8, while the extracted
features had more redundant information when R = 2 and
N = 16, which was not conducive to the improvement of the
subsequent classification effect.

b: GLCM
GLCM is a regular method for describing the texture fea-
tures by studying the spatial correlation characteristics of
grey images. Calculating the joint probability density of
two pixels positions to generate the co-occurrence matrix,
the co-occurrence matrix is statistical second-order statistical
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FIGURE 6. Histogram of eigenvalues of the GLCM. 1. LUSC, 2. ASC, 3. SCLC.

characteristics of image brightness changes; it not only
reflects the characteristics of the distribution of brightness,
it also reflects the same or close to the brightness of the pixel
brightness between the location of the distribution character-
istics, thus constituting a set of texture features to better show
the image features [34], [35]. However, due to the existence
of a large number of co-occurrence matrices, it is generally
not used directly in the field of image processing. Instead,
texture feature quantities are extracted again according to
the grey co-occurrence matrices. The commonly used local
steady characteristic is the energy E, entropy H, moment of
inertia of I, and correlation C. Thus, this study will con-
sider these four with the mean and standard deviation for
subsequent image recognition and the classification statistic
formula (such as (1)-(4)), and three points in the lung cancer
model experiment on the image to extract the characteristics
of the above four mean (MN) and standard deviation (SD) as
shown in Figure 6.

Energy : E (d, θ)
=

∑
i,j
{p (i, j | d, θ)}2 (1)

Entropy : H (d, θ)
= −

∑
i,j
{p (i, j | d, θ)} − log {p (i, j | d, θ)} (2)

Moment of inertia : I (d, θ)
=

∑
i,j
{i, j}2 p (i, j | d, θ) (3)

Correlation : C (d, θ)

=

∑
i,j (i− µi)

(
j− µj

)
p (i, j | d, θ)

σxσy
(4)

c: GLGCM
The grey-gradient co-occurrence matrix synthesizes the grey
level and gradient information existing in the image; that
is, the image gradient information is added to the grey-
level co-occurrence matrix so that the gradient information is
mixed in the grey-level co-occurrence matrix and the image
feature extraction effect is often better [31], [36]. Based on the
standardization of the grey-gradient co-occurrence matrix,
we can calculate a series of secondary statistical character-
istics. Fifteen is adopted in this study for the commonly
used digital features: small grads dominance, big grads domi-
nance, gray asymmetry, grads asymmetry, energy, gray mean,
grads mean, gray variance, grads variance, correlation, gray

FIGURE 7. Histogram of eigenvalues of the GLGCM. 1. LUSC, 2. ASC,
3. SCLC.

entropy, grads entropy, entropy, inertia, differ moment. After
processing the GLGCM on lung cancer histopathological
images, fifteen features were extracted from each type of
sample and are displayed in Figure 7.

d: OTHER HANDCRAFTED TEXTURE EXTRACTION METHODS
The moment feature mainly expresses the geometric features
in the image area. It has invariant characteristics such as
rotation, translation, and scale, and is often called an invari-
ant moment [37], [38]. The moment invariant function has
been widely used in image pattern recognition, classification,
target recognition and other tasks. Therefore, this paper uses
Hu invariant moments for the feature representation of lung
cancer histopathological images. The seven features of torque
change describe the shape features in the tissue images [38].
The gray difference statistical method is one of the detection
methods based on statistical texture features [39]. It describes
the gray level changes between each pixel of the texture
image and its neighboring pixels. The method is simple and
easy to implement. In addition, texture feature extraction
methods such as Markov random field and wavelet transform
are becoming more and more active in the field of pattern
recognition [40]–[42].

2) CNN AUTOMATICALLY EXTRACTS HISTOPATHOLOGICAL
IMAGE FEATURES OF LUNG CANCER
CNNs have gradually developed into one of the mainstream
algorithms in the field of computer vision after decades of
development [43], [44]. The back-propagation strategy pro-
posed by LeCun et al. in 1990 has always been regarded as
the origin of CNN [45]. With the AlexNet network structure
proposed by Krizhevsky et al., the AlexNet structure that
focuses more on details and complexity and has better per-
formance stands out [46]. It won the 2012 ImageNet compe-
tition champion and made a major breakthrough in the image
recognition task, which had a strong impact on the field of
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FIGURE 8. VGG16 model layer by layer feature extraction.

FIGURE 9. Feature classification weight diagram before threshold
setting (LUSC-ASC).

computer vision at that time. With the gradual improvement
of people’s matching structure, CNN has been applied to
different fields of human life [47]–[50], with remarkable
effects in image classification, target detection, face recogni-
tion, natural language processing and other related fields [51].
To date, the modern CNN architecture mainly consists of the
following five parts: the convolution layer, the pooling layer,
the activation function, the dropout rate (optional) and the full
connection layer.

CNN’s feature extraction process and the doctor’s diagno-
sis have a certain similarity, and those closer to the bottom of
the layers in the convolution-based coding tend to learn more
general features and the extracted features can be partial,
with high generality characteristic figures and edges, such as
visual features (such as color and texture), and those closer to
the top of the layer are more abstract with more specialized
characteristics. In Figure 8, this study shows the layered fea-
tures extracted from lung cancer pathological tissue images
using VGG16 pairs to verify the reusability of the underlying
features [6].

FIGURE 10. Cross-validated MSE of LASSO fit (LUSC-ASC).

D. FEATURE SELECTION, FEATURE DIMENSION
REDUCTION AND FUSION
The 265-dimensional features were fused together by serial
fusion. Problems such as the dimensionality disaster caused
by too many sample attributes will adversely affect the
performance of the model [52]. Therefore, it is extremely
important to retain key features and eliminate irrelevant
features. Feature selection often reduces the difficulty of
learning tasks and is more conducive to improving oper-
ating efficiency [53]. Relief is a well-known filtering fea-
ture selection method. This method designs a ‘‘correlation
statistic’’ to measure the importance of features. The LASSO
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TABLE 3. Comparing no feature selection, three optimization algorithms (OAs) and four kernel functions (KFs) to choose the optimal combination.

TABLE 4. Comparing LASSO feature selection, three optimization algorithms (OAs) and four kernel functions (KFs) to choose the optimal combination.

algorithm is more conducive to reducing the risk of over-
fitting and obtaining a ‘‘sparse’’ solution [54]–[60]. There-
fore, this study compared the no feature selection, LASSO
feature selection, the relief feature selection model perfor-
mance and the linear discriminant analysis (LDA) feature
dimension reduction [61], [62]. Through a contrast experi-
ment, we chose the relief feature selection. The relief feature
selection diagram was shown in Figure 9. Figure 10 shows
the LASSO feature selection algorithm using 10-fold cross
validation. The Lasso algorithm formula was shown in
equation 5.

minw
∑m

i=1

(
yi − wT xi

)2
+ λ‖ w ‖1 (5)

E. CLASSIFIER DESIGN AND IMPLEMENTATION
Support vector machines (SVMs) have gradually developed
into the mainstream technology of machine learning and have

been widely used in every field of life [63]. The basic SVM
model is often defined as finding the hyperplane with the
largest interval that is most suitable for the classification of
samples in the feature space, which makes the constructed
linear classifier have stronger generalization performance.
Based on the investigation, it was found that the kernel
function can better map low-dimensional feature data to
high-dimensional data, and the kernel function applied in
different fields is not the same. To make features more eas-
ily separated or better structured, we carried out a detailed
experimental comparison of four kernel functions and the
three optimization algorithms in the following experiments
to make the SVM learner achieve the optimal classification
effect [64], [65].

In addition, we also conducted parallel comparisons
with the Back Propagation (BP) Neural Network Classi-
fiers and K-Nearest Neighbor (KNN), Decision tree [29],
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TABLE 5. Comparing relief feature selection, three optimization algorithms (OAs) and four kernel functions (KFs) to choose the optimal combination.

Naive Bayesian (NB) classifier [13] to find the best classi-
fication model.

F. PERFORMANCE EVALUATION
For the purpose of evaluating the reliability of the model,
the receiver operating characteristic (ROC) curve was drawn
to evaluate the effect of the classification model, and the
area under the curve (AUC) value was quantitatively dis-
played [66]. According to their true category and learners’
predicted category, the samples were divided into the follow-
ing four conditions: true positive (TP), true negative (TN),
false negative (FN) and false positive (FP). The vertical axis
of the ROC curve represents the true positive rate (TPR)
and the horizontal axis of the ROC curve represents the
false positive rate (FPR), defined as Equations (6) and (7),
respectively.

TPR =
TP

TP+ FN
(6)

FPR =
FP

TN + FP
(7)

III. EXPERIMENTS AND RESULTS
The experiment in this study was based on the PyCharm
platform and MATLAB R2016a platform [67], [68]. The
LIBSVM toolbox was used for statistical analysis of the
SVM algorithm [69]. All deep learning experiments were
implemented in the KERAS deep learning framework based
on the TensorFlow 2.0.0 model by using the Python3.6 pro-
gramming language [70], [71]. Handcrafted texture extrac-
tion methods and SVM support vector machine classification
were deployed in MATLAB R2016a platform. The experi-
ments in Tables 3, 4, 5 and 6 were repeated ten times, and the
average value was used as the experimental result.

A. SELECTION OF THE FEATURE SELECTION METHOD,
KERNEL FUNCTION AND OPTIMIZATION ALGORITHM
In this study, no feature selection, LASSO feature selec-
tion, Relief feature selection and LDA feature dimension
reduction were compared, and four kernel functions and three
optimization algorithms were used to attempt to construct
the best auxiliary diagnostic model. The three optimization
algorithms include grid search-SVM (GS-SVM), particle
swarm optimization-SVM (PSO-SVM), and genetic algo-
rithms based on SVM (GA-SVM). The experimental results
are shown in Tables 3, 4, 5 and 6. The experimental parame-
ters are shown in Table 7 [18]. According to the comparison
of experimental results, the optimal combination of the Relief
feature selection, particle swarm optimization algorithm and
polynomial kernel was finally selected in this study for the
subsequent classification and diagnosis of LUSC, ASC and
SCLC.

B. COMPARISON OF THE CLASSIFICATION EFFECT OF LC
HISTOPATHOLOGICAL IMAGES WITH OTHER MODELS
1) COMPARISON WITH OTHER CLASSIFIERS
In this study, several mainstream classification algorithms,
such as the NB classifier and KNN classifier, were compared
with the Relief-SVM model. As seen in Table 8, the Relief-
SVM model used in this paper can achieve an overall accu-
racy of more than 70%, and the classification accuracy of
LUSC-SCLC achieved 83.91%. This is a satisfactory result,
which can help the application of cytology in the diagno-
sis of lung cancer. In addition, the classification accuracy
achieved by the Relief-SVM model is 27.39% higher than
the NB model in LUSC-SCLC and 24.34% higher than
the SVM model. We drew the ROC curves of the Deci-
sion Tree, BP, KNN, SVM, LASSO-SVM, RELIEF-SVM,
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TABLE 6. Comparing LDA feature selection, three optimization algorithms (OAs) and four kernel functions (KFs) to choose the optimal combination.

TABLE 7. The experimental parameters of GS-SVM, PSO-SVM and GA-SVM.

LDA-SVM and NB as shown in Table 9 and the AUC
values are shown in Table 10. As seen in Table 10, the
AUC value of Relief-SVM for LUSC-SCLC classification
increased by 0.3625 compared with BP and 0.3250 compared
with LASSO-SVM, and the AUC value of Relief-SVM for
LUSC-ASC classification increased by 0.2208 compared
with KNN. The results show that Relief-SVM has good
feasibility.

2) COMPARISON WITH CNN
To make our model robust to feature transformation, firstly,
the individual data set is randomly divided into 70% for train-
ing and 30% for verification. Then, the method of flipping,
translation, and multiangle rotation was used to expand the
original data for 100 times respectively [72]–[75]. Table 11
shows the number of images in the augmented training set
and validation set. Inspired by the researchers [76]–[81],
we trained the CNNs model, fine-tuning the pre-trained
CNNs model, and custom the CNNs model to conduct exper-
iments on the data set after data augmentation [6], [82].

The custom model architecture were shown in Fig 11.
The main experimental parameters of fine-tuning the
pre-trained CNNs are shown in Table 12 [6], [78].
Figures 12, 13, 14, and 15 respectively show the accuracy
and loss rate curves under different experimental back-
grounds. It can be seen from Figures 12 and 13 that the
accuracy and loss curves of the four classic CNNs have large
fluctuations. Under the guidance of Liu et al. [6], although
there are large differences between the natural images con-
tained in the ImageNet and medical images, according to the
survey, fine-tuning pre-trained CNNs models can reduce the
problem of the limited number of samples to a certain extent,
and obtain good classification performance. We adjust the
model by adding dropout, l2 regularization in the experiment,
using different optimization algorithms, and adjusting the
learning rate, we show in Figure 16, 17 and 18 the change
in the accuracy of the verification set under different com-
binations of dropout rates and learning rates. But the effect
of fine-tuning the pre-trained CNN model is still very poor.
In addition, we also customize the CNN model to classify
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TABLE 8. Comparison of the results of the RELIEF-SVM model and classifier.

FIGURE 11. Custom model architecture.

lung cancer subtypes, and the experimental results are still not
ideal. Therefore, when the availability of the original medical
data set is limited, the input information still comes from

a small number of original images, so the input information
is still highly relevant. We cannot generate new information,
but can only mix existing information, and cannot completely
eliminate the impact of overfitting. The trained CNNs model,
fine-tuning pre-trained CNNs structure, and custom model
show poor classification performance when facing a small
number of medical images [83], [84]. On the contrary, the
classification effect of Relief-SVM model is better, which is
more meets our expected effect.

IV. DISCUSSIONS
Histopathological examination is the gold standard for qual-
itative and clinical staging of lung tumors. Based on the
local microvascular morphology, nucleus and cytoplasm on
the histopathological images, doctors can diagnose tumor
lesions. But for inexperienced or less experienced doc-
tors, this is still a very difficult task. This study uses
traditional feature extraction methods, trained CNNs, fine-
tuning pre-trained CNNs models, and custom models to
divide lung histopathological images into LUSC, ASC
and SCLC.

Firstly, we extracted 265-dimensional features using seven
handcrafted texture extraction algorithms, selected LDA fea-
ture dimensionality reduction algorithm, Relief and LASSO
feature selection algorithms, and used a variety of main-
stream classification algorithms for horizontal comparison,
which proved that the Releif-SVM model has the best clas-
sification performance. The above algorithms all have their
own advantages, but the LDA algorithm is more suitable for
data with Gaussian distribution, so the performance of LDA-
SVM in this research is poor [85]–[87]. We also selected
four typical CNN models, and trained VGG16, ResNet50,
DenseNet201, and InceptionV3 under the optimization of
SGD algorithm and Nadam algorithm. In the experiment of
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TABLE 9. ROC curve.
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TABLE 10. The AUC of eight classifiers.

TABLE 11. Display the number of images used for CNN model.

TABLE 12. The primary experimental parameter of the architecture model.

trained the CNNs model, the performance of ResNet50 and
DensNet201 under the Nadam optimization algorithm is bet-
ter than that of VGG16 and InceptionV3. On this basis,
we apply the Nadam optimization algorithm to fine-tune the
pre-trained CNNs model and custom models to try to find
the best classification model. However, compared with the

classification performance of Relief-SVM on the histopatho-
logical images of lung cancer subtypes, the DenseNet201
model still has a lower accuracy. In addition, we explored
the collocation and combination of different dropout rates
and learning rates under different experimental backgrounds.
The results of Fig. 16, 17, 18 shown that there is still an
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FIGURE 12. Visual picture of the trained CNN model.

FIGURE 13. Visual picture of the trained CNN model.

overfitting phenomenon. However, the good news is that
trained DenseNet201 shows good performance in these three
combinations.

The results show that the Relief-SVM model built by
machine learning is more suitable for the classification of
lung histopathology images with a small data set. It means
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FIGURE 14. Visual picture of the fine-tuning pre-trained CNNs model.

FIGURE 15. Visual picture of the custom model.

that for a limited number of data sets, especially small
medical data sets, machine learning methods are often
more effective for classification problems [84], [88]–[90].
In addition, the CNN features extracted from the
DenseNet201 structure also prove from the side that it also
plays a role in the task of classification of lung cancer
subtypes.

According to the survey, the patch-based image classifica-
tion method has been widely used in various histopatholog-
ical images, which to a certain extent alleviates the problem
of difficult and small number of medical image collection.
However, due to the complexity of the texture of the tis-
sue image and the time-consuming process of image anno-
tation, there are currently few medical image annotation

53700 VOLUME 9, 2021



M. Li et al.: Research on Auxiliary Classification and Diagnosis of LC Subtypes

FIGURE 16. The dropout rate is 0.5 with Nadam optimizer (lr = 0.1).

FIGURE 17. The dropout rate is 0.7 with Nadam optimizer (lr = 0.001).

data with a large number and comprehensive labeling data.
In addition, since only image-level tags exist in the data set,
how to distinguish between patch-level tags and image-level
tags is a huge challenge for patch-based classification
methods.

It is worth noting that in previous work, there have been
studies on classification of lung cancer subtypes based on
computer-aided diagnosis. However, according to research,
there has not been any study that includes histopathological

images of ASC for automatic classification. Therefore, this
study included ASC samples for the first time. The Relief-
SVM model used in this paper can achieve an overall accu-
racy of more than 70%. This is a satisfactory result, which
can help the application of cytology in the diagnosis of lung
cancer. In addition, we also summarized the research related
to this article as shown in Table 13 [21], [91]–[96].

In summary, the classification capabilities of the Relief-
SVM model is superior to the trained CNNs, fine-tuned
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TABLE 13. Comparison with previous work.

pre-trained CNNs model, and custom models. However, our
work also has some limitations. On the one hand, this study
collected a limited number of training set images from the ini-
tial stage to establish a more accurate classification accuracy,
and did not try other numbers of training set images. If med-
ical image data from multiple centers with different classifi-
cations can be used for research, the diversity of the data will
be further enhanced and the classification performance of the
model will be improved. In addition, due to the general influ-
ence of external factors, the data set is susceptible to color

and noise. The use of the above image preprocessing methods
has certain limitations and may potentially affect the test
results. Therefore, when we face more abundant data sources
in the follow-up research, we should pay more attention to
the preparation and collection of histopathological images.
On the other hand, if a larger amount of lung histopathology
image data can be included for research, we will obtain more
complete disease information, which will further improve
the generalization of the classification model. Therefore,
the histological subtype classification of lung cancer based
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FIGURE 18. The dropout rate is 0.9 with Nadam optimizer (lr = 0.00001).

on histopathological images is worthy of our further study
to provide clinicians with more objective auxiliary diagnosis
results.

V. CONCLUSION
This paper was the first to apply the Relief-SVM algo-
rithm to the classification of LC histopathological images.
We included 121 histopathological images of LUSC, ASC
and SCLC. The experimental results show that Relief-SVM
has the best classification performance in distinguishing lung
cancer subtypes, which provides a favorable guidance for
the classification of lung histopathological images. And it
also provides a correct direction for the classification of
medical images with complex texture tissue. In addition, this
paper analyzes and explores the classification effects under
the traditional manual method of extracting features, trained
the CNNs model, fine-tuning pre-trained CNNs models, and
custom models to find which classification model is more
suitable for the classification of different subtypes of lung
cancer.

The experimental results show that the Relief-SVM clas-
sification model achieves best classification performance
regardless of whether it is compared with CNNmodels which
are trained directly by using the histopathology image data set
or compared with the fine-tuning pre-trained CNNs models
and custom models. In other words, when faced with a small
number of medical images, traditional manual methods have
shown great potential in the classification of lung histopatho-
logical images. However, the CNN models which are trained
directly by using the histopathology image data set and the
fine-tuning pre-trained CNNs models and custom models
CNN model show weak classification performance.

Notably, our study has a considerable guiding function for
doctors with less experience, which can provide objective ref-
erence results and relieve the heavy work pressure of doctors.
It is feasible and practical to a certain extent.Wewill continue
to collect more samples from different central institutions
and build a lung histopathological image database for lung
diseases in the future.
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