IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 16, 2021, accepted April 1, 2021, date of publication April 5, 2021, date of current version April 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3070980

Optimized Real-Time MUSIC Algorithm With

CPU-GPU Architecture

QINGHUA HUANG™ AND NAIDA LU

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China

Corresponding author: Qinghua Huang (qinghua@shu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61571279.

ABSTRACT Direction-of-arrival (DOA) estimation algorithm for uniform planar arrays has been applied in
many fields. The multiple signal classification (MUSIC) algorithm has obvious advantage in high-resolution
signal source estimation scenarios. However, the MUSIC algorithm has high computational costs, therefore
it is hard to be used in real-time scenes. Many studies are dedicated to accelerating MUSIC algorithm by
parallel hardware, especially by Graphics Processing Units (GPU). MUSIC algorithm based on Central
Processing Unit (CPU) -GPU architecture acceleration is rarely investigated in previous literatures, and
how well MUSIC Algorithm with CPU-GPU architecture could perform remains unknown. In this paper,
we present and evaluate a model of search parallel MUSIC algorithm with CPU-GPU architecture. In the
proposed model, the steering vector of each candidate incident signal and the corresponding value of 2D
spatial pseudo-spectrum (SPS) function are sequentially calculated in a single core of the GPU, and the
subsequent calculation of each elevation or azimuth is parallel in batches. Furthermore, in order to improve
the peak search speed, we propose a new Coarse and Fine Traversal (CFT) peak search algorithm via CPU
and a new parallel peak search algorithm based on GPU acceleration. Across strategy comparison, utilizing
CPU-GPU architecture for processing, a 150-160x performance gain is achieved compared to using CPU
only. Besides, the resolution of uniform planar arrays is also analyzed.

INDEX TERMS Direction-of-arrival (DOA) estimation, uniform planar arrays (UPA), high-resolution,

real-time, CPU-GPU architecture.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation has become a pop-
ular branch of array signal processing during the past
four decades and has extensive applications in various
fields, such as radar, sonar, mobile communications, and
electrocardiograms [1]-[4]. The DOA estimation algorithms
have in-depth study on accuracy and efficiency and have
developed into many types of methods, such as beamform-
ing methods [5], subspace decomposition methods, subspace
fitting (SF) methods [6]—[8], and sparse representation (SR)
methods [9], [10]. The beamforming algorithm reduces the
effect of the co-channel on DOA estimation by using the
phase-shifted reference signal that is obtained after interfer-
ence suppression, accompanied by mediocre performance in
high-resolution scenes. Maximum likelihood (ML) algorithm
and SF algorithm are concise in theory and excellent in
performance, yet they require complex and computationally

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

VOLUME 9, 2021

intensive multi-dimensional nonlinear optimization [11]. The
division of grid determines the estimation accuracy and com-
putational complexity of SR algorithm. Subspace decompo-
sition methods have been divided into two types in terms
of processing methods. One is the noise subspace algo-
rithm represented by multiple signal classification (MUSIC).
And the other is the signal subspace algorithm represented
by estimation of signal parameter via rotational invariance
technique (ESPRIT). Algorithms represented by ESPRIT
mainly include Toeplitz approximation approach (TAM),
least-squares ESPRIT (LS-ESPRIT) and total least squares
ESPRIT (TLS-ESPRIT) [12]-[15]. ESPRIT estimates the
DOA by employing the rotation invariance among the sig-
nal subspace of each sub-array. The performance of these
ESPRIT algorithms is substantially resembling, yet the per-
formance of TLS-ESPRIT is somewhat better than other
ESPRIT algorithms in the case of low signal-to-noise ratios
(SNRs). The algorithms represented by MUSIC include
MUSIC algorithm, Root-MUSIC algorithm, and minimum-
norm methods (MNM) [16]-[18]. Root-MUSIC realizes

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 54067

https://orcid.org/0000-0001-6332-895X
https://orcid.org/0000-0002-7964-3572

IEEE Access

Q. Huang, N. Lu: Optimized Real-Time MUSIC Algorithm With CPU-GPU Architecture

DOA estimation by solving the polynomial constructed using
the orthogonality of steering vector and noise subspace.
ESPRIT algorithm has a more diminutive computational
complexity than the MUSIC algorithm and does not require
SPS computation. However, the performance of ESPRIT is
poor than MUSIC. The MUSIC algorithm has distinguished
advantages in high-resolution applications. However, the 2D
SPS computation of MUSIC algorithm makes it difficult to
exploit in real-time scenes. Reduced-dimensional MUSIC
algorithm was proposed for far-field signal source localiza-
tion with sphere microphone arrays [19]. One-dimensional
MUSIC-type algorithm (ODMUSIC) constructs a mapping
matrix between the spherical harmonic function and Fourier
series only depending on the array configuration. Two root
polynomials in ODMUSIC are established to estimate the ele-
vation and azimuth iteratively by exploiting the Vandermonde
of Fourier series.

Moreover, GPU computation has developed extremely
rapidly during the past two decades. GPU is a typical multi-
core co-processor where 32 threads of a warp are con-
trolled by a controller and process one instruction at the
same time. In the single instruction multiple thread (SIMT)
paradigm, threads are automatically grouped into 32-wide
bundles called warps. Warps are the base unit used to schedule
both computation on Arithmetic and Logic Units (ALUs)
and memory accesses. Threads within the same warp follow
the single instruction multiple data (SIMD) pattern, i.e., they
are supposed to execute the same operation at a given clock
cycle [20]. From the original image processing engine to
the more powerful high-performance computing processor,
it has been maturely applied to various fields [21], [22].
The wideband DOA estimation for uniform linear arrays
(ULA) of 16 and 4 sensors has been parallelized, partitioned,
mapped, and scheduled on Multi-Core, GPU, and IBM Cell
BE processor [23]. Broadband underwater sound source esti-
mation of MUSIC algorithm has been implemented based on
GPU [24]. Four noise subspace DOA algorithms including
Pisarenko Harmonic Decomposition, Eigen Vector, MUSIC,
and MNM have been analyzed on CPU and GPU with
uniform circle array (UCA) [25]. These aforementioned
GPU-accelerated MUSIC algorithms have executed parallel
of SPS computation.

However, existing GPU-based paralle]l MUSIC algorithms
pay insufficient attention to the parallel calculation of candi-
date steering vector calculation, optimization of CPU-GPU
memory transmission, and parallel optimization of peak
search. The research on optimized computing, parallel com-
puting and CPU-GPU acceleration has penetrated into many
fields. In order to solve the problem of high computational
cost and storage cost of large-scale 3D models, differential
evolution and whale optimization algorithm are combined to
calculate the simplified mesh model more effectively [26].
[27] proposes a GPU-based parallel tabu search algorithm
that uses a single GPU kernel of compacting neighborhood
and a kernel fusion strategy to reduce the amount of GPU
global memory accesses. [28] proposes a model of vector

54068

parallel ant colony optimization for multi-core SIMD CPU
architecture and accelerates the tour construction of each ant
by vector instructions. GPU-based parallel ant colony opti-
mization has been analyzed [29]. Blockwise Weighted Least
Square Active Noise Control ANC algorithm for CPU-GPU
Architecture has designed a real-time execution framework
using GPU asynchronous parallel computing [30], [31]. [32]
proposed a hybrid parallel algorithm for beamforming using
the parallel mode of just-in-time (JIT) on multi-CPU and
multi-GPU platform.

Inspired by optimized computing, parallel computing,
CPU-GPU acceleration, real-time block diagram, and fine-
grained parallelism [26]-[32], this paper presents an idea
to accelerate a fully developed parallel MUSIC model with
CPU-GPU architecture. In our algorithm, steering vector cal-
culation, 2D SPS calculation and peak search are all paral-
lelized and optimized. To the best of our knowledge, this
is the first parallel MUSIC algorithm exploiting maximum
parallelization with CPU-GPU architecture. In the 2D SPS
calculation stage, we design an algorithm to calculate the
steering vector and spatial pseudo-spectrum in parallel, and
each GPU core is responsible for a task corresponding to
the elevation and azimuth. Furthermore, in the peak search
stage, we propose a new CFT peak search approach based on
CPU and a new parallel peak search approach based on GPU
acceleration. More importantly, we compare our algorithm
with previous MUSIC algorithm based on CPU, The results
indicate the strong potential of parallel MUSIC model with
CPU-GPU architecture. Finally, it is theoretically analyzed
why the resolution of 2D SPS is insufficient in specific angle
ranges.

The remainder of this paper is organized as follows.
In Section II, a data model of MUSIC algorithm for uniform
planar arrays is given. A real-time CPU-GPU architecture
for the MUSIC algorithm is described in Section III. Finally,
simulation results are employed to illustrate real-time DOA
estimation capability in Section IV. Conclusions are drawn
in Section V.

Il. DATA MODEL

As shown in Fig. 1, there is a uniform planar arrays with MN
mutually independent and omnidirectional sensors, assuming
that the sensors are not mutually coupled. We set the reference
sensor is at the origin of coordinate system. Supposed that D
signals impinge on the uniform planar arrays from the far-
field. Let ®; = (04, ¢q), where 6; and ¢4 denote the eleva-
tion and azimuth of the d th incident plane wave, respectively.
The discrete signal output of the uniform planar arrays can be
described in a matrix form as follows [33]

X(r) = A(®)s(1) + n(1), ey

where A(®) = [a(P)), a(Dy),...,a(dp)] € CMNxD,
it means that A(®) is a MN x D steering matrix related to
the shape of the array and the direction of the signal source.
A(®) represents the transfer function from the source to the
array and holds the DOA information. In general practical

VOLUME 9, 2021

Q. Huang, N. Lu: Optimized Real-Time MUSIC Algorithm With CPU-GPU Architecture

IEEE Access

FIGURE 1. Uniform planar arrays coordinate system for localization.

applications, the shape of the sensor array will not change
once it is fixed. X(?) = [x11(0), Xpu(@), - . ., xpn (O] s
the output vector of the uniform planar arrays, where (-)T
represents the transpose operation, t = 1,2,...,T is the
snapshot index, m = 1,2,...,M,andn = 1,2,...,N.
s(t) = [s1(2), s2(0), ..., sD(t)]T is the source signal vector
and n(z) = [n11(0), nyn (), - - ., nagn ()17 is the additive white
Gaussian noise (AWGN) vector, whose elements are usually
assumed to be Gaussian random variables with zero means
and variance anz as follows [33]

Em@nn' (1)) =0, Em@on' @) =0, 2)

where E{-} represents mathematical expectation, ()7 repre-
sents Hermitian transpose operation, 0 is used throughout the
paper to mean that all elements of matrices or vectors are
zeros and I represents the identity matrix. The wave path
difference between the mnth sensor and the reference sensor
can be described as

2 . . .
B= T(xmn COS Py SIN Oy + Yp SIN Py 1N O+ Zyy €08 Oy),
3

where A represents source signal wavelength and (X, Ymn)
represents the coordinate of the mnth sensor. The uniform pla-
nar arrays is generally in the x-y plane, so z,,;, is generally 0.
The steering vector of M sensors on the x-axis a,(®,4) can be
defined as follows

ax(q)d) — [1’ ej2n%cos¢d sin(-)d’ o, ejZH%(Mfl)cosdw sined]T’
4)

where ¢ is the distance between adjacent sensors. Since the
array is uniform, the distance between adjacent sensors of
x-axis is the same as y-axis. Then the steering vector of N
sensors on the y-axis a,(®Py)can be defined as follows

a,(®g) = [1, e/2n§sin¢d sin@d’ ”_’ej2n§(N—l)sin¢d sinﬁd]T‘
©)

Assuming that the steering vector of sub-array 1 is
a,(®,), and the steering vector of sub-array 2 must consider
the offset along the y-axis. The wave path difference of
each sensor relative to the reference sensor must be added

VOLUME 9, 2021

27 ¢ sin¢ sin 0 /A to the wave path difference of sub-array 1,
so the steering vector a(®,) can be described as

a(®y) = ay(Py) ® ax(Dy), (6)

where ® is Kronecker product. The W x W uniform planar
arrays covariance matrix can be written as

R = E{X()X" (1)} = A(@)RA(®) +R,, (7

where W = MN, R, = E{s(t)s(t)} and R, = E{n(r)n(¢)}.
Ry is the source signal covariance matrix, and R, is the
additive white Gaussian noise covariance matrix. According
to (2), (7) can be reconstructed as

R = A(®)RAH (@) + 01, (8)

where R is positive definite Hermitain matrix. If the unitary
transformation is used to achieve diagonalization, the similar
diagonal matrix is composed of W different positive real
numbers, and the corresponding W feature vectors are lin-
early independent. The eigenvalue decomposition (EVD) of
the estimation covariance matrix R can be described as

w
R=UzU" =) "pUU}, ©)
i=1

where X = diag(ni, n2, ..., nw), and it can be proved that
its eigenvalue obeys the order n; > ... > np > np+1 =
... = nw = 2. First D eigenvalues are related to the source
signal, and their values are greater than U,%. The eigenvectors
corresponding to these D larger eigenvalues 11, 2, ..., np
are denoted as Ujp, Uy, ..., Up, and they form the signal
subspace Us. Let X ; be diagonal matrix composed of D larger
eigenvalues. The W — D eigenvalues completely depend on
the noise, their values are all equal to 0,%. The eigenvectors
corresponding to np41, Np+2, .., Nw constitute the noise
subspace Uy, and X, is a diagonal matrix composed of W —D
smaller eigenvalues. Therefore, the EVD of the exact covari-
ance matrix R is given by

R=UzUl+U, 2, U (10)

However, the covariance matrix R is not available in
practice, so the theoretical uniform planar arrays covariance
matrix R given in (7) is usually replaced by R

~ 1 H
R=_XX!, (11)

where X = [X(1), X(?), ..., X(T)] is the uniform planar
arrays output discrete signal matrix. The EVD of the exact
covariance matrix R in (10) can be described as

R=0,2,0" +0,2,00 (12)

Among the eigenvalue-decomposition-like DOA estima-
tion algorithms for the sensor array covariance matrix,
the MUSIC algorithm has universal applicability. As long
as the layout of the sensor array is known, whether it is a

linear array or a circular array, and whether the array senors
are equally spaced, high-resolution estimation results can be

54069

IEEE Access

Q. Huang, N. Lu: Optimized Real-Time MUSIC Algorithm With CPU-GPU Architecture

obtained. The uniform planar arrays covariance matrix R can
be divided into two parts, we can get

RU, = A@RAN @)U, + 020, =62U,, (13)
according to (13), we get
A(®)RAR (@)U, = 0. (14)

The matrix Ry is a full-rank and not singular matrix,
so there is an inverse. Therefore the above (14) can be
changed to AH(CD)U,, = 0, and it shows that each column
vector in matrix A is orthogonal to the noise subspace. We can
get

UHad,) =0, d=1,2,....D. (15)

According to the orthogonal relationship between the noise
eigenvector and the source signal steering vector, the follow-
ing 2D SPS function is obtained

1
SPSmusic(6, ¢) = — . (16)
a9, 9)IU,Ulla@, ¢)
It is easy to find that (16) can be regarded as an optimization
problem, so (16) can be reconstructed as

min |a@. 970, 0}fa0.)| . (17)

where ||-||r denotes the Frobenius norm. We can obtain ele-
vation and azimuth of 1, 2, ..., D source signal as follows

(Ba.)3, = argrmin Ha(e »"0, 00, 9)| . (8)

The estimation of the elevatlon and azimuth can be accom-
plished by exercising the 2D peak search.

lll. REAL-TIME CPU-GPU ARCHITECTURE FOR MUSIC
ALGORITHM
In this section, we will introduce a CPU-GPU architecture
that can reduce the computation time cost of MUSIC algo-
rithm to a very low level to fit real-time requirements. This
architecture can be used for real-time sound source location,
real-time signal source search, and medical imaging systems.
The working flow of the proposed architecture is described.
As mentioned above, the MUSIC algorithm is a powerful
and high-performance algorithm for determining the DOA of
common wideband or narrowband signal sources, especially
when the number of arrays is appropriate and the scan res-
olution is moderate. However, in the current high-precision
positioning applications, more attention is paid to whether it
can satisfy real-time requirements while ensuring accuracy.
In the case of only one-dimensional scan, the MUSIC algo-
rithm can almost be an excellent one of the same type of
DOA algorithms, once the elevation and azimuth are searched
simultaneously, the entire computation time will become
unbearable. We proposed a CPU-GPU architecture for the
MUSIC algorithm. This architecture fully utilizes the high
computational power coming from the parallel processing of
GPU and overcomes the mentioned limited computational
efficiency.

54070

cPU

Eigenvalue \ A A
Decomposition 10,8, aa
Array Noise DOA
Distribution Subspace Informatlon

PCIe bus

L
u GPU
(2D Spatial) S ()
Eseudo Spectrum el

FIGURE 2. Model of CPU-GPU architecture for MUSIC algorithm.

[®

Covariance

A. WORKING FLOW OF THE PROPOSED CPU-GPU
ARCHITECTURE

Fig.2 shows a simplified block diagram within interval of the
computation based on CPU-GPU architecture where X and
{éd, qu}gzl represent the input and output of this CPU-GPU
framework, respectively. The CPU executes some modules
with complex functions and complex logic operations, which
mainly include the EVD and separation of noise subspace,
while the GPU mainly executes the remaining 2D spectrum
generation and peak search with high repeatability and low
interdependence. First, the proposed architecture takes the
sampled signal X as the input. Secondly, CPU is the calcu-
lation platform of the previous stage, including covariance
calculation (11), eigenvalue decomposition (9), and noise
subspace extraction (12). Then the inner product of the noise
subspace (16) is transmitted to the GPU, and the candidate
steering vector (4), (5), (6) and the 2D SPS (16) are calcu-
lated in parallel. Finally, the 2D spectral peak search (18) is
optimized in parallel and the DOA information { 64, da }321 is
transmitted back to the CPU. More details of the calculation
scheme and memory transfer between CPU and GPU are as
follows.

1) CPU COMPUTATION PART

Generally, the complex calculations in the solving process are
executed on the CPU. The multi-core CPU is mainly respon-
sible for complex logic operations on the basis of providing
vector processing. To minimize the memory transmission
between the CPU and GPU, steering vectors of candidate
angles are calculated via the GPU. Since covariance calcu-
lation, eigenvalue decomposition, and noise subspace sepa-
ration are complicated and not repetitive, they are calculated
via the CPU.

2) GPU COMPUTATION PART

The design goal of GPU is its ultra-high floating-point com-
puting power. The GPU avoids or weakens complex functions
that are not related to floating-point calculations, such as

VOLUME 9, 2021

Q. Huang, N. Lu: Optimized Real-Time MUSIC Algorithm With CPU-GPU Architecture

IEEE Access

(Device)Grid

Block(0,0,0) Block(1,0,0)

Tocal Tocal
Memory Memory
(logic) (logic)

Toca
Memory
(logic)

Thread(0,0,0) l | Thread(1,0,0) Thread(0,0,0) l | Thread(1,0,0)
ft P 1 ft
| Constant Cache | | Cornjstant Caghe |
R I 1 I 1 A I I I P |
§ T | | | | I i
| {oamenoyonaen Wl Il N | A :
: u U :
! Constant Memory H
i .
i .
! Global Memory i
| ! 1
d Texture Memory {
. i
___ 1
Host U
Noise Subspace Inner Product Peaks

and Array Distribution

FIGURE 3. Each memory transfer inside GPU and CPU-GPU memory
transfer model.

branch processing and logic control, and focuses on floating-
point calculations [34], [35]. For the estimation of source
signal elevation and azimuth based on the MUSIC algorithm
in the same time block, a vast quantity of parallel computing
branches are worth using GPU to optimize the computation
task of the 2D spectrum. Since the noise subspace required
for the elevation and azimuth search of the MUSIC algorithm
in the same time block is constant, the noise subspace is
placed in the on-chip shared memory of the GPU to facilitate
accessing the memory unit. Moreover, the peak search task is
handed over to the GPU for execution.

As shown in Fig. 3, the inner product of noise subspace and
array distribution are transferred to the GPU global memory
through the CPU memory and then to the shared memory.
Some of the memory types are on-chip memory whose access
speed is faster than off-chip memory. Therefore, utilization of
shared memory to store the inner product of noise subspace
and array distribution enhances data access rate. It is worth
noting that although local memory is unique to each thread,
this part of memory still belongs to off-chip memory, which
belongs to the same physical memory as global memory.

3) MEMORY TRANSMISSION BETWEEN CPU AND GPU

Memory transmission in the CPU-GPU architecture is always
an unavoidable issue that demands to be considered. Due to
the distinct physical memory addresses of CPU and GPU,
as well as the bandwidth and transmission speed limitations
of PCle bus, it is necessary to transfer less data between CPU
and GPU. If the calculation of the candidate steering vector
is established into the CPU and a unique steering vector is
required for each DOA information update, then the one-by-
one transmission of this portion of data will consume a lot
of time. Therefore, the proposed CPU-GPU architecture for
the MUSIC algorithm arranges the calculation of the steering

VOLUME 9, 2021

TABLE 1. Computation complexity of MUSIC algorithm.

. Equation Computation
Computation Items l\?umber Corrﬁ)lexi ty
Covariance (11) O(W?23T)
EVD 9) O(W3)
Candidate Steering Vector @), (5), (6) O(LgLygW)
Inner Product of Noise Subspace (16) O(W?2(W — D))
2D Spectrum (16) O(LgLyW?)
Peak Search (18) O(LgLgy)

vector on the GPU and only requires to transmit the array
distribution vector once during the DOA estimation of the
first time block. Similarly, if the GPU transmits the calculated
2D spectrum back to the CPU each time, the time of each
transmission delays the entire calculation, so the task of peak
search is likewise scheduled for the GPU calculation. More
optimization details will be discussed next.

4) CONDITION FOR REAL-TIME EXECUTION

Since the DOA information of a time block must be updated
before the next time block. The condition of the proposed
CPU-GPU architecture for MUSIC algorithm to be executed
in real-time is as follows

Tcpu + Tgpu + Trranster < TBlocks (19)

where Tcpy is the preprocessing time of CPU calculation
includes covariance calculation, eigendecomposition, and
inner product of noise subspace. Tgpy is the computation
time of all kernels on the GPU that includes 2D spectrum
computation and peak search. Trranster 1 the time of data
transmitted between CPU and GPU. Tpansfer does not include
the transmission time of array distribution and Tgjock repre-
sents the sampling period of the signal block.

B. PARALLEL OPTIMIZATION STRATEGIES

The computation complexity of MUSIC algorithm is listed
in Table 1. Inner Product of Noise Subspace represents U,,UnH,
2D Spectrum is the remainder of the (16). Ly, Ly represents
scan range of elevation and azimuth, respectively. The num-
ber of snapshots T only affects the computation complexity of
the covariance matrix linearly. The 2D spectrum is related to
the number of sensors W and the scan range of the elevation
and azimuth. Through comparative analysis, we can perceive
that candidate steering vector, 2D spectrum, and peak search
have fine parallelism.

1) PARALLEL OPTIMIZATION OF CANDIDATE STEERING
VECTOR AND 2D SPS COMPUTATION

Due to the computation of the spectrum of each candidate
elevation and azimuth are not related to each other, the high-
level parallel structure is determined to estimate the 2D spec-
trum. The DOA estimation of each sampling block does not
depend on the previous sampling block. Such excellent inde-
pendent computing features are very suitable for parallelism.

In Algorithm 1, after the shared memory allocation is com-
pleted, only one thread synchronization is performed within

54071

IEEE Access

Q. Huang, N. Lu: Optimized Real-Time MUSIC Algorithm With CPU-GPU Architecture

5 4 19 16 14 13 12 " 10 5 4 19 16 14 13 12 " 10 5 4 19 16 14 13 12 " 10 5 4 19 16 14 13 12 " 10
7 10 | 22 18 16 10 9 7 1 7 10 | 22 18 16 10 9 7 1 7 10 22 18 16 10 9 7 1 7 10 | 22 18 16 10 9 7 1
8 12121 19 14 3 2 1 1 8 12 21 19 14 3 2 1 1 8 12 21 19 14 3 2 1 1 8 12 21 19 14 3 2 1 1
12 18 | 20 18 10 8 5 3 1 12 18 20 18 10 8 5 3 1 12 18 20 18 10 8 5 3 1 12 18 | 20 18 10 8 5 3 1
10 17 15 10 9 9 7 8 9 10 17 15 10 9 9 7 8 9 10 17 15 10 9 9 7 8 9 10 17 15 10 9 9 7 8 9
" 16 14 13 9 10 " 12 13 1" 16 14 13 9 10 " 12 13 " 16 14 13 9 10 " 12 13 1 16 14 13 9 10 " 12 13
9 10 " 14 13 15 16 13 14 9 10 1" 14 13 15 16 13 14 9 10 " 14 13 15 16 13 14 9 10 1" 14 13 15 16 13 14
8 9 10 12 15 30 20 19 15 8 9 10 12 15 | 30 | 20 19 15 8 9 10 12 15 30 20 19 15 8 ol 10 12 15 30 | 20 19 15
6 7 8 10 19 20 18 16 15 6 7 8 10 19 | 20 18 16 15 6 7 8 10 19 20 18 16 15 6 7 8 10 19 | 20 18 16 15
(1) (2) (3) (4)
5 4 19 | 16 | 14 | 13| 12| 11| 10 5 4 19 | 16 | 14 | 13 L 12) 11 | 10 5 4 | 1916 | 14 | 13| 12 | 11 | 10 5 4 | 19|16 | 14 | 13 | 12 | 11 | 10
7 1022|1816 10]| 9 7 1 7 10|22 |18 |16 | 10 | 9 7 1 7 | 10 18 | 16 | 10 | 9 7 1 7 | 10 18 |16 | 10 | 9 7 1
8 12121 19| 14| 3 2 1 1 8 122121 |19 14| 3 2 1 1 8 |12 | 21|19 14| 3 2 1 1 8 | 12|21 | 19|14] 3 2 1 1
12 18 | 20 18 10 8 5 3 1 12 18 20 18 10 8 5 3 1 12 18 | 20 18 10 8 5 3 1 12 18 | 20 18 10 8 5 3 1
10 17 15 10 9 9 7 8 9 10 17 15 10 9 9 7 8 9 10 17 15 10 9 9 7 8 9 |eee| 10 17 15 10 9 9 7 8 9
" 16 14 13 9 10 " 12 13 " 16 14 13 9 10 1" 12 13 1 16 14 13 9 10 " 12 13 1" 16 14 13 9 10 " 12 13
9 10 " 14 13 15 16 13 14 9 10 1" 14 13 15 16 13 14 9 10 " 14 13 15 16 13 14) 10 1" 14 13 15 16 13 14
8 9 10 12 15 30 20 19 15 8 9 10 12 15 | 30 | 20 19 15 8 &) 10 12 15 30 | 20 19 15 8 k) 10 12 15 20 19 15
6 7 8 10 19 20 18 16 15 6 7 8 10 19 | 20 18 16 15 6 7 8 10 19 | 20 18 16 15 6 7 8 10 19 | 20 18 16 15
(5) (6) (7) (8)

FIGURE 4. The upper four figures represent the first coarse traversal process, the lower four figures represent the second fine traversal process.

the block, and the rest proceed downward smoothly. The
outermost loop is a manifestation of SIMT, where multiple
threads are bound into a warp to execute the same instruction
stream. Only one main branch is set up in the kernel, which is
not disturbed by other branches. While a certain instruction
is scheduled, the cores in SIMT is executed according to
SIMD model, that is, each core in the warp or arithmetic and
logic unit (ALU) executes the same operation on multiple
data operands concurrently. It is worth mentioning that all
intermediate variables in Algorithm 1 are stored in registers
to ensure the access speed. Therefore, it is critical to ensure
data size of variables in the block does not exceed the total
capacity of registers available in each block. Furthermore, it is
necessary to clear the status of accumulators promptly.

2) PARALLEL OPTIMIZATION OF PEAK SEARCH

In Algorithm 2, we set the number of surrounding points
as Cp, and the entire comparison times are approximately
LoxLyxCy,. Each point must be compared with all surrounding
points. The Priority_queue(D) is used to maintain the D max
peaks. The number of surrounding points of four vertices,
four edges, and the rest of the spectrum are 3, 5, and 8§ respec-
tively. About half of the comparisons are repeated. Therefore,
Algorithm 2 is modified to use a peak label spectrum to
record the result of the current comparison. As shown in
Algorithm 3, if the adjacent point is judged not to be the peak
point, then this point is ignored. In this way, the redundant
comparison is well removed, and comparison times is lower
than 1/2. Moreover, comparison times can be reduced to a
lower level by changing the step size.

54072

As shown in Fig. 4, the first four subgraphs show that
the first rough traversal, which can filter out more than half
of the non-peak points. The last four subgraphs show that
the second fine traversal can skip non-peak points and fil-
ter some unpassed points. Ultimately, two peak points are
obtained. Nevertheless, the disadvantage of this algorithm is
that it needs to transfer the 2D spectrum from the GPU back
to the CPU, so the calculation efficiency is only increased
by about twice. If the DOA information can be calculated in
the GPU, the transfer time from GPU to CPU can be saved.
Firstly, Algorithm 4 utilizes the high-efficiency access char-
acteristic of shared memory in GPU to search for peaks within
blocks and assigns them to global memory. Secondly, after all
peaks within blocks are searched, the peaks of each block are
scanned one by one and placed in Priority_queue(D). Finally,
DOA information is transmitted back to the CPU to indicate
that the DOA estimation within a time block is completed.

IV. SIMULATIONS AND DISCUSSION

In this section, we carried out comparative experiments in
time domain to verify the real-time feasibility of the proposed
calculation models and strategies.

A. SIMULATIONS SETTINGS

The MUSIC algorithm simulations based on CPU are imple-
mented in MATLAB 2018a. The code implementation of
real-time MUSIC algorithm with CPU-GPU architecture uses
a combination of VS2019, C4++, and CUDA. The compu-
tational performance of strategies is analyzed on the Intel
15-8400 and NVIDIA GeForce GTX 1080 Ti. Specifications

VOLUME 9, 2021

Q. Huang, N. Lu: Optimized Real-Time MUSIC Algorithm With CPU-GPU Architecture

IEEE Access

Algorithm 1 Parallel Optimization of Candidate Steering
Vector and 2D Spectrum

Input: Inner Product of Noise Subspace IAJnIAJE
Sensor array distribution dis, and dis,

Output: 2D sps(0, ¢) , where 6 ¥ Ly and ¢ V¥ Ly

1: Cuda Thread < Copy2GPU(U, U, dis,, disy)
: Define Shared Memory : ad,, ad, and u
. tid < threadldx
: bid < blockldx
: t < bid x blockDim + tid

where blockDim> W +M +N
6: tn < blockDim x gridDim
7: if tid < W then
8
9

w AW N

. u(tid) = U, U8(tid)
. else if tid < W+M then
10: ad(tid—W) = dis,(tid — W)
11: else if tid < W+M +N then
122 ady(tid—W —M) = dis,(tid —W —M)
13: end if
14: Synchronize Threads
15: fortto Ly x Ly do
16: fori:=0toM—1do

. Jj2mady (i) sin (=) cos (t mod Ly)
17: aiy=¢ Ly i

18: end for

19: fori:=0toN—ldo

- av(i) _ ej27‘[ady(l) sm(g)sm (t mod Ly)
21: end for

22: fori:=0toM—1do

23: forj:=0toN—1do
24: a(ixN+j) = ax(j) x ay(i)
25: end for

26: end for
27: fori:=0to W—1do

28: forj:=0to W—1do
29: temp1(i)+ = a(j) x u(ix W+j)
30: end for

31: end for

32: forj:=0to W—1do

33: temp2+ = temp1(i) x Conj(a(i))

34: end for

350 5ps(0. 9) = ll gz I

36: Clear the accumulators temp1[W] and temp2
37: t+=1t,

38: end for

of CPU, GPU, and system parameters used in the algorithm
are listed in Table 2. The parameters of uniform planar arrays
areM =4and N = 4.

B. INFLUENCE OF SNAPSHOTS AND MULTIPLE SOURCES
ON COMPUTATION TIME AND ACCURACY

We simulate in the narrowband far-field environment. The
sensor interval is set to 0.01 m to satisfy ¢ < % The center

frequency of the narrowband signal is 2 kHz. As shown

VOLUME 9, 2021

Algorithm 2 Original Implementation of Peak Search
Input: 2D sps(9, ¢)
Output: DOA information {6, ¢a}2_,

1: fori:=0to Ly do

2: forj:=0to Ly do

3 if sps(i, j) > all surrounding points then
4: Priority_queue(D) < sps(i, j) & (i,)
5 end if

6: end for

7: end for

8: {0, éd}fl):l <« (i,) € Priority_queue(D)

Algorithm 3 Optimization of Peak Search via CPU Through
CTF
Input: 2D sps(6, ¢)
Output: DOA information {6, ¢4}7_,
1: fori:=0to Ly do

2: forj:=0toLy do

3 if p(i, j) == non-peak label then

4 Continue

5 end if

6: if sps(i,j) > sps(i £ 1,j = 1) then

7 pi£ 1,7+ 1) < non-peak label

8 if sps(i, j) > all surrounding points then
9 Priority_queue(D) < sps(i, j) & (i,))
10 else

11: p(i, j) < non-peak label

12: end if

13: end if

14: end for

15: end for

16: {0, éd}gzl <« (i,) € Priority_queue(D)

TABLE 2. Specifications of CPU and GPU used for simulation.

Specifications CPU GPU
Manufacture Intel NVIDIA
Product Intel i5-8400 GeForce GTX 1080 Ti
CUDA runtime version - 11.1

CUDA capability - 6.1

Clock rate 2.80 GHz 1.63 GHz
RAM/Global memory 16.0 GB 11.0 GB
Number of cores 6 3584

Shared memory per block 48 KB
Registers per block - 65536
CPU-GPU bandwidth 9.8 GB/s (H2D) 8.2 GB/s (D2H)
Memory bus width 64 bit 352 bit

in Table 3, We use different number of snapshots and signal
sources to compare the impact on CPU calculation time and
accuracy. 100, 200, 500, and 1000 snapshots correspond to
the sampling time of 0.05 s, 0.1 s, 0.25 s, and 0.5 s respec-
tively. The number of signal sources has a slight influence
on accuracy of DOA estimation. Since multiple sources in
random experiments may be more concentrated, the RMSE
is slightly higher than that of a single source. The simulation
results are all averaged on 500 independent experiments.

54073

IEEE Access

Q. Huang, N. Lu: Optimized Real-Time MUSIC Algorithm With CPU-GPU Architecture

Algorithm 4 Parallel Optimization of Peak Search via GPU

Input: 2D sps(9, ¢)

Output: DOA information {64, ¢a}2_,

Define Shared Memory : shared_sps

t < blockldx x blockDim + threadldx

t, < blockDim x gridDim

Global2Shared :shared_sps < sps € blockDim

Synchronize Threads

fortto Ly x Ly do
if shared _sps(t) all surrounding points then

peak (L, blockldx) < shared_sps(t), t

endif
t+=t,

: end for

: Synchronize All Threads

. gridSize = L"T—L"’

. for i := 0 to gridSize x gridDim do

if peak(i) # NULL then
Priority_queue(D) < peak(i)

17: endif

18: end for

19: {éd, (;A&d}gzl <« (i,) € Priority_queue(D)

R e AN A R i

e
R N

TABLE 3. Comparison of the influence of snapshots and multiple sources
on estimation accuracy and computation time where SNR = 10 dB.

Snapshots | Sources Compptation time(mi RMSE(°)
Covariance | U, U, 0 o)
1 0.487 2.74 0.078 | 0.077
100 2 0.486 3.13 0.080 | 0.079
3 0.479 3.14 0.095 | 0.093
1 0.565 3.21 0.076 | 0.078
200 2 0.555 3.20 0.078 | 0.077
3 0.574 3.19 0.081 | 0.082
1 0.609 3.41 0.050 | 0.051
500 2 0.600 3.44 0.054 | 0.054
3 0.610 3.42 0.064 | 0.062
1 0.764 3.50 0.050 | 0.050
1000 2 0.754 3.51 0.053 | 0.051
3 0.763 3.46 0.059 | 0.058

The CPU overhead is about a quarter for the proposed
algorithm to execute in the worst environmental conditions.
Besides, the RMSE gradually decreases with the increase
of the number of snapshots, yet the increase of accuracy is
not linear but logarithmic. We cannot rely on increasing the
number of snapshots to improve the estimation accuracy, after
all the calculation time also increases linearly. Across the
comprehensive comparison, 500 snapshots are used as the
calibration parameter in subsequent simulations.

C. MAXIMUM NUMBER OF SIGNALS

The estimated range of UPA elevation is 0°-90°, and azimuth
is 0°-360°. The maximum number of signal sources can be
estimated in this simulation test. Since we use the W x W
Noise Subspace U,, theoretically W-1 signal source esti-
mation can be achieved. We set SNR = 15 dB and
test 15 uncorrelated random signals. As shown in Fig. 5,
to facilitate the observation of the 2D SPS, 8 signals

54074

magnitude

e o

60 " 100

elevation azimuth

FIGURE 5. Simulation 2D SPS of the maximum estimated number of
signal sources where SNR = 15 dB.

of them are selected to analyze accuracy. The elevation
and azimuth of the 8 uncorrelated signals are (15°,40°),
(30°, 80°), (43°, 101°), (56°, 132°), (71°, 142°), (45°, 160°),
(63°,204°) and (76°,239°), respectively. We observe that
7 prominent crests are corresponding to 7 signal sources,
and a small bump is on the waist of the widest wave, which
corresponds to the signal source of (56°, 132°).

D. RESOLUTION ANALYSIS

As shown in Fig. 5, as the incident elevation of the signal
exceeds 60°, the waveform of the 2D SPS becomes less
sharp. The resolution of signal source in a certain direction
is directly related to the rate of change of steering vector
near that direction. Near the direction where the steering
vector changes rapidly, the difference of array wave path
changes greatly with the change of the source angle, and
the corresponding resolution is also high [36]. Define the
resolution I'(0) as follows

da(d) dt
re))= X || —
do do

(20)

where 7 represents delay among sensors in the array.
The spectrum in the 6 direction becomes sharper as I'(0)
increases. For the uniform linear array, 7 is as follows

T = 1()cl sinf) = £(l — 1)siné, 21
c c

where 1; is the delay of the /th sensor relative to the reference
sensor, ¢ is signal propagation speed, and x; is the x-axis
coordinate of the /th sensor. Then

I'(6) o cos(®). (22)

It shows that the resolution of signal in the location of 0° is
the highest, and the resolution in the position of 60° direction
is reduced by half.

VOLUME 9, 2021

Q. Huang, N. Lu: Optimized Real-Time MUSIC Algorithm With CPU-GPU Architecture

IEEE Access

TABLE 4. Comparison of the run-time and speed-up ratio of different strategies in different scan ranges. And the sampling period of the signal block is
0.25s, snapshots is 500, bold of each column is related to maximum speed-up ratio, and the run-time is in ms.

Strategies Scan Range Preprocessing via CPUH bII-IZD . 2D DoH Peak DoH Tot.al Speed-up
Cov | EVD | U,U;, | U,U,, | diszy | Spectrum Search Runtime
90° x 90° 0.601 | 3.45 0.257 - - 27817 - 554 - 27877 -
CPU-Configl | 90° x 180° | 0.600 | 3.45 0.257 - - 55932 - 92.8 - 56029 -
90° x 360° | 0.603 | 3.45 0.256 - - 112270 - 167.2 - 112442 -
90° x 90° 0.601 | 3.44 0.255 - - 27825 - 274 - 27857 -
CPU-Config2 | 90° x 180° | 0.602 | 3.45 0.253 - - 55944 - 46.0 - 55994 -
90° x 360° | 0.602 | 3.45 0.258 - - 112274 - 83.3 - 112362 -
90° x 90° 0.603 | 3.46 0.257 0.065 0.031 180 1.162 547.5 - 733 38.03x
GPU-Config3 | 90° x 180° | 0.601 | 3.46 0.256 0.064 0.030 354 2304 | 1091.1 - 1452 38.59x
90° x 360° | 0.599 | 3.45 0.255 0.065 0.031 703 4.633 | 2192.0 - 2904 38.72x
90° x 90° 0.599 | 3.44 0.255 0.066 0.032 179 1.159 272.2 - 457 61.00x
GPU-Configd | 90° x 180° | 0.600 | 3.44 0.255 0.060 0.031 356 2.301 543.0 - 907 61.77x
90° x 360° | 0.601 | 3.46 0.255 0.063 0.030 692 4.605 1084.3 - 1785 62.99x
90° x 90° 0.601 | 3.45 0.254 0.064 0.030 180 - 1.12 0.039 186 149.88x
GPU-Config5 | 90° x 180° | 0.599 | 3.45 0.253 0.065 0.031 354 - 2.03 0.038 362 154.78x
90° x 360° | 0.603 | 3.45 0.257 0.066 0.032 694 - 2.99 0.039 702 160.17x
Max Speed-up | - - - - - - 162.25x - 733.11x - 160.17x -

%107

()

FIGURE 6. Resolution I'(¢), where ¢ is a parameter.

For the uniform planar arrays placed horizontally, 7,,, can
be written as follows

Tmn

1
— (X cos¢g sinf + y, sin ¢ sinb)
c

(23)

%((m —1)cos¢ + (n— 1)sin¢) sin 6.

According to (20), we can get I'(9) of the uniform planar
arrays as follows

£ cosd M—-1N-1
= Z Z(mcos¢+nsin¢)2. (24)
m=0 n=0

Similarly, we can get I'(¢) as follows

L(6) = da(@) H ‘drmn
;‘sm@ S
= ZZ(ncosq& msing)>. (25)
m=0 n=0

VOLUME 9, 2021

%107
25

FIGURE 7. Resolution I'(¢), where ¢ is a parameter.

The above analysis verifies that the resolution is insuffi-
cient if elevation exceeds 60° in Fig. 5. In the light of (24),
I'(0) keeps getting smaller as 0 increases where ¢ is a param-
eter. As shown in Fig. 6, the spectrum has the highest resolu-
tion where the elevation is 0°, and the resolution is reduced
to half at 60°, until reduced to 0. As shown in Fig. 7, I'(¢)
fluctuates sinusoidally in an interval as ¢ increases where 6
is parameter. However, as 6 gets closer to 0, the fluctuation
range of I'(¢) gets smaller until it finally reaches 0.

E. STRATEGY COMPARISON

To verify the rationality in real-time application, the proposed
algorithm is compared on the CPU and GPU. For nota-
tional convenience, we abbreviate five calculation strategies
Algorithm?2, Algorithm3, Algorithm1-Algorithm?2,
Algorithm1-Algorithm3 and AlgorithmI-Algorithm4 to
CPU-Configl, CPU-Config2, GPU-Config3, GPU-Config4,
and GPU-Config5, respectively. The specifications of the
hardware required for the experiment are shown in Table 2.
The sampling block period of the signal is 0.25 s, and the scan
step is 0.1°. The angle scan range are 90° x 90°, 90° x 180°,

54075

IEEE Access

Q. Huang, N. Lu: Optimized Real-Time MUSIC Algorithm With CPU-GPU Architecture

magnitude

magnitude

FIGURE 8. 2D SPS of two closely spaced simultaneous signals.
(a) SNR = 0 dB; (20°,40°), (28°,40°). (b) SNR = 0 dB; (40°,40°), (40°,48°).
() SNR = 2 dB; (20°,40°), (28°,40°). (d) SNR = 2 dB; (40°,40°), (40°,48°).

and 90° x 360°, respectively. All the simulation results are
obtained by averaging 500 independent experiments.

The simulation results are shown in Table 4, the prepro-
cessing via CPU calculation includes covariance calculation,
eigendecomposition, and inner product of noise subspace.
H2D is memory transfer from CPU to GPU, and D2H is
memory transfer from GPU to CPU. From GPU back to
CPU, the transmission time of 2D SPS is much longer than
that of DOA information. The highest speed-up ratio for
computing the 2D spectrum is 162.25x, the highest speed-
up ratio for peak search is 733.11x, and the speed-up ratio
for the whole calculation is 160.17x. By using 90° x 90°
scan range, the GPU outputs DOA information every 0.25 s.
The scan range of 90° x 180° and 90° x 360° also be sim-
ulated. According to Table 3, increasing the sampling block
of the signal hardly affect the Tcpy. Therefore, the real-time
condition is still contented and the output frequency of DOA
information is less than 4 Hz.

In practical conditions, the signal sources may propa-
gate from adjacent directions. Here, we simulate two sets
of adjacent signal sources with SNR = 0 dB and 2 dB
whose elevation and azimuth are (20°,40°), (28°,40°) and
(40°,40°), (40°,48°), respectively, i.e., the elevation and
azimuth only differ 8° between the adjacent source. Fig. 8
plots 2D SPS of the proposed method in minimum SNR
scenario. Under this challenging scenario, two peaks can
still be detected. In the same SNR scenario, if the angle
difference between adjacent signals continues to decrease,
the two peaks cannot be clearly distinguished. In this set
of simulations, we use GPU-Config5 as the calculation
strategy. Through statistics, the time spent in each part is

54076

Tcpu = 4.3 ms, Tgpy = 180.1 ms, Tansfer = 0.137 ms, and
TBlock = 250 ms. According to the above statistics and (19),
we observe that this set of simulations still meet the real-time
execution condition.

V. CONCLUSION

This paper presents an optimized real-time MUSIC algo-
rithm using CPU-GPU architecture for uniform planar arrays.
Joint parallel of candidate steering vector and 2D spectrum
make full use of shared memory, SIMT, and SIMD, reducing
transmission time and delay waiting for calculation. Besides,
the parallel optimization of peak search via the GPU saves the
transmission time of SPS and accelerates the entire process.
Importantly, the GPU-Config5 strategy was shown to have
performance benefits of 150x to 160x in comparison to the
CPU-Configl strategy. Moreover, theoretical analysis shows
why the resolution of the 2D SPS continues to decrease
with the increasing elevation. In the future, we plan to fur-
ther improve the estimation effectiveness on the basis of
ODMUSIC by remodeling the CPU-GPU architecture.

REFERENCES

[1] H. Krim and M. Viberg, “Two decades of array signal processing research:
The parametric approach,” IEEE Signal Process. Mag., vol. 13, no. 4,
pp. 67-94, Jul. 1996.

[2] A.Hero, H. Messer, J. Goldberg, and D. Thomson, ““Highlights of statisti-
cal signal and array processing,” IEEE Signal Process. Mag., vol. 15,no. 5,
pp. 21-64, Sep. 1998.

[3] W. C. Knight, R. G. Pridham, and S. M. Kay, “Digital signal processing
for sonar,” Proc. IEEE, vol. 69, no. 11, pp. 1451-1506, Nov. 1981.

[4] J. C. Mosher, R. M. Leahy, and P. S. Lewis, ‘“Biomagnetic localization

from transient quasi-static events,” in Proc. IEEE Int. Conf. Acoust. Speech

Signal Process., vol. 1, Apr. 1993, pp. 91-94.

N. Wang, P. Agathoklis, and A. Antoniou, “A new DOA estimation

technique based on subarray beamforming,” IEEE Trans. Signal Process.,

vol. 54, no. 9, pp. 3279-3290, Sep. 2006.

P. Stoica and A. B. Gershman, ‘“Maximum-likelihood DOA estimation by

data-supported grid search,” IEEE Signal Process. Lett., vol. 6, no. 10,

pp. 273-275, Oct. 1999.

[7]1 R.P.Lemos, H. V.L.E. Silva, E. L. Flores, J. A. Kunzler, and D. F. Burgos,
“Spatial filtering based on differential spectrum for improving ML DOA
estimation performance,” IEEE Signal Process. Lett., vol. 23, no. 12,
pp. 1811-1815, Dec. 2016.

[8] P. Wang, Y. Kong, X. He, M. Zhang, and X. Tan, “An improved
squirrel search algorithm for maximum likelihood DOA estimation and
application for MEMS vector hydrophone array,” IEEE Access, vol. 7,
pp. 118343-118358, 2019.

[9] J. Dai, X. Bao, W. Xu, and C. Chang, “Root sparse Bayesian learning
for off-grid DOA estimation,” IEEE Signal Process. Lett., vol. 24, no. 1,
pp. 46-50, Jan. 2017.

[10] E. C. Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of
sparse recovery algorithms,” IEEE Access, vol. 7, pp. 1300-1322, 2019.

[11] M. Viberg and B. Ottersten, ““Sensor array processing based on subspace
fitting,” IEEE Trans. Signal Process., vol. 39, no. 5, pp. 1110-1121,
May 1991.

[12] R. Roy, A. Paulraj, and T. Kailath, “Estimation of signal parameters via
rotational invariance techniques-ESPRIT,” in Proc. IEEE Mil. Commun.
Conf., vol. 3, Oct. 1986, pp. 6-41.

[13] S. Kung, C. Lo, and R. Foka, “A Toeplitz approximation approach to
coherent source direction finding,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), vol. 11, Apr. 1986, pp. 193-196.

[14] R. Roy, A. Paulraj, and T. Kailath, “ESPRIT—A subspace rotation
approach to estimation of parameters of cisoids in noise,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 34, no. 5, pp. 1340-1342, Oct. 1986.

[15] B. Ottersten, M. Viberg, and T. Kailath, “Performance analysis of the total
least squares ESPRIT algorithm,” IEEE Trans. Signal Process., vol. 39,
no. 5, pp. 1122-1135, May 1991.

[5

—

[6

—

VOLUME 9, 2021

Q. Huang, N. Lu: Optimized Real-Time MUSIC Algorithm With CPU-GPU Architecture

IEEE Access

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276-280, Mar. 1986.
D. Zhang, Y. Zhang, G. Zheng, C. Feng, and J. Tang, ‘“Improved DOA esti-
mation algorithm for co-prime linear arrays using root-MUSIC algorithm,”
Electron. Lett., vol. 53, no. 18, pp. 1277-1279, Aug. 2017.

C.K.E. Lau, R. S. Adve, and T. K. Sarkar, “Minimum norm mutual cou-
pling compensation with applications in direction of arrival estimation,”
IEEE Trans. Antennas Propag., vol. 52, no. 8, pp. 2034-2041, Aug. 2004.
Q. Huang and T. Chen, “One-dimensional MUSIC-type algorithm for
spherical microphone arrays,” IEEE Access, vol. 8, pp.28178-28187,
2020.

H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
“Demystifying GPU microarchitecture through microbenchmarking,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2010,
pp. 235-246.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU computing,” Proc. IEEE, vol. 96, no. 5, pp. 879-899,
Apr. 2008.

J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro,
vol. 30, no. 2, pp. 56-69, Mar. 2010.

M. W. Majid, T. E. Schmuland, and M. M. Jamali, ‘‘Parallel implementa-
tion of the wideband DOA algorithm on single core, multicore, GPU and
IBM cell BE processor,” Sci. J. Circuits, Syst. Signal Process., vol. 2, no. 2,
p. 29, 2013.

Z.Lu, L. Zhang, J. Zhang, and J. Zhang, ‘“‘Parallel optimization of broad-
band underwater acoustic signal MUSIC algorithm on GPU platform,” in
Proc. 4th Int. Conf. Syst. Informat. (ICSAI), Nov. 2017, pp. 704-708.

H. Eray and A. Temizel, “Performance analysis of noise subspace-
based narrowband direction-of-arrival (DOA) estimation algorithms
on CPU and GPU,” 2020, arXiv:2007.14135. [Online]. Available:
http://arxiv.org/abs/2007.14135

Y. Liang, F. He, and X. Zeng, ““3D mesh simplification with feature preser-
vation based on whale optimization algorithm and differential evolution,”
Integr. Comput.-Aided Eng., pp. 1-19, Jan. 2020.

N. Hou, F. He, Y. Zhou, and Y. Chen, ‘“‘An efficient GPU-based parallel tabu
search algorithm for hardware/software co-design,” Frontiers Comput.
Sci., vol. 14, no. 5, pp. 1-18, Oct. 2020.

Y. Zhou, F. He, N. Hou, and Y. Qiu, “Parallel ant colony optimiza-
tion on multi-core SIMD CPUs,” Future Gener. Comput. Syst., vol. 79,
pp. 473-487, Feb. 2018.

Y. Zhou, F. He, and Y. Qiu, “Dynamic strategy based parallel ant colony
optimization on GPUs for TSPs,” Sci. China Inf. Sci., vol. 60, no. 6,
Jun. 2017, Art. no. 068102.

Y. Kim and Y. Park, “CPU-GPU architecture for active noise control,”
Appl. Acoust., vol. 153, pp. 1-13, Oct. 2019.

Y. Kim and Y. Park, “Blockwise weighted least square active noise con-
trol for CPU-GPU architecture,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 28, pp. 951-963, 2020.

VOLUME 9, 2021

(32]

(33]

(34]
[35]

(36]

C. Sarofeen and P. Gillett, ““A high performance parallel and heterogeneous
approach to narrowband beamforming,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 8, pp. 2196-2207, Aug. 2016.

F. Yan, M. Jin, and X. Qiao, ‘“Low-complexity DOA estimation based on
compressed MUSIC and its performance analysis,” IEEE Trans. Signal
Process., vol. 61, no. 8, pp. 1915-1930, Apr. 2013.

Cuda C Programming Guide, NVIDIA, Santa Clara, CA, USA, Jul. 2020.
J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C Pro-
gramming. 2014.

Y. Wang et al., Theory and Algorithm of Spatial Spectrum Estimation.
Beijing, China: House Tsinghua Univ., 2004, pp. 38-39.

QINGHUA HUANG received the B.S. degree
from the School of Control Science and Con-
trol Engineering, Shangdong University, in 2001,
the M.S. degree from the Institute of Pattern
Recognition, Shangdong University, in 2004, and
the Ph.D. degree from the Institute of Image Pro-
cessing and Pattern Recognition, Shanghai Jiao
Tong University. In 2014, she was a Visiting
Scholar with the University of Maryland, College
Park, MD, USA, for one year. She is currently an

Associate Professor with the School of Communication and Information
Engineering, Shanghai University. Her research interests include array signal
processing, statistical signal processing, and Bayesian statistical learning.

NAIDA LU was born in Lanzhou, China, in 1996.
He received the B.S. degree in communication
engineering from the School of Communication
and Information Engineering, Shanghai Univer-
sity, China, in 2018, where he is currently pursuing
e the M.S. degree in signal and information pro-
cessing. His research interests include array signal
processing and GPU parallel optimization.

54077

