
Received February 21, 2021, accepted March 21, 2021, date of publication April 5, 2021, date of current version April 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3070868

Energy Reduction Through Memory Aware
Real-Time Scheduling on Virtual
Machine in Multi-Cores Server
MOHAMMAD A. ALQUDAH 1, IQRA AHMED2, FAHAD AHMAD 3,
SHAHID NASEEM4, AND KOTTAKKARAN SOOPPY NISAR 5
1Department of Basic Sciences, SBSH, German Jordanian University, Amman 11180, Jordan
2Department of Computer Science, Institute of Management Sciences, Lahore 54700, Pakistan
3Department of Basic Sciences, Deanship of Common First Year, Jouf University, Sakaka 72341, Saudi Arabia
4Department of Information Sciences, University of Education, Lahore 54700, Pakistan
5Department of Mathematics, College Arts and Science, Prince Sattam Bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia

Corresponding author: Kottakkaran Sooppy Nisar (n.sooppy@psau.edu.sa)

ABSTRACT Not only weighty energy usage pose issues for the environment, but it also raises server
maintenance costs in data centers. The massive task with the various power control functions in computer
components was made to minimize energy consumption. Increasing consumption of energy in data server
environments means that data centers will have high maintenance costs. Various geo-distributed data centers
are starting to grow in an age of data proliferation and information growth. Energy management for servers
is now demanded for technological, environmental, and economic reasons. In this environment, the main
memory is a major energy consumer, not less than the processor. At the same time, an energy-efficient task
scheduling strategy is a viable way to meet these goals. Unfortunately, mapping Virtual Machine (VM)
resources to the Main Memory (MM) demands to achieve good performance by minimizing the energy
consumption within a certain limit is a huge challenge. This paper simulates energy-efficient task scheduling
algorithms in a heterogeneous virtualized environment using real-time virtual machine scheduling to
resolve the issue of energy consumption. Using a simulator Real-Time system SIMulator (RTSIM), several
hardware-based scheduling algorithms are implemented to observe VM memory scheduling efficiency to
save memory energy. The simulation results show that, compared to current energy-efficient scheduling
methods Rate Monotonic (RM), Earliest-Deadline-First (EDF), and Least-Laxity-First (LLF), helps to
reduce energy consumption and improve performance. It is also observed that memory-aware energy
management architecture reduces energy and memory consumption efficiently by using EDF scheduling
algorithms. In particular, EDF saves approximately 58.3 percent of memory energy than conventional
systems that cannot benefit from memory-aware energy management algorithms. The energy efficiency of
the algorithms continues to improve as the level of server consolidation rises. We also implemented the
EDF scheduling algorithm in Xen’s Credit scheduler to see if the simulation outcomes can be simulated
on physical systems. Results of simulation and deployment are equated, and comparable outcomes are
achieved. We also identified that shared memory between virtual machines deliberately affects memory’s
energy consumption based on the implementation.

INDEX TERMS Energy reduction, energy consumption, virtual machine, memory aware, multi-core,
real-time scheduling.

I. INTRODUCTION
Because of the growing size of data centers, the increasing
energy consumption of computer systems is essential. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Xinyue Xu .

high energy consumption is causing environmental problems
and increasing themaintenance costs of the servers. To reduce
energy consumption, significant effort has been made with
different energy management features in computer compo-
nents. In the era of data deluge and explosion of information,
a large number of geo-distributed data centers are beginning

55436 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-2623-3115
https://orcid.org/0000-0001-5269-0427
https://orcid.org/0000-0001-5769-4320
https://orcid.org/0000-0002-6878-4759

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

to emerge. Future data centers’ infrastructure must be sustain-
able and energy-efficient to meet the increasing demand for
massive data processing [1], [2]. For technical, financial, and
environmental reasons, servers’ energy management is now
necessary [3].

An unintended effect of the internet’s growth is the
increased use of energy by servers and the infrastructure that
supports them. Internet data centers are often referred to as an
important source of consumption of energy increases, partic-
ularly in theUnited States. ‘‘Lawrence Berkeley’’ USLabora-
tory scientists recently discovered that up to 7 terawatt-hours
(TWh) of electricity was used by websites and other data
servers in the US in 1999, more than Internet infrastructure
itself [4].

The SoCs today are ‘‘heterogeneous architectures’’ that
integrate ‘‘HWAs and CPUs.’’ Special purpose HWAs and
general-purpose CPU cores are widely used in SoCs due to
their ability to quickly and energy efficiently perform specific
operations. CPU cores and GPUs are often integrated into
smartphones. Hardwired HWAs are implemented in a wide
range of SoCs. Many of the application planning in CPU are
multi-core systems in previous research [5], [6].

Recently, by virtualizing most of the VM’s created in
a single computer for a maintenance facility and efficient
use of computer resources. It is well known that due to
over-provisioning, most data center servers are often under-
used. Through Virtualization, these underused servers will be
consolidated into physical servers. The technology changed
in the processors, increased the support for VM virtualiza-
tion and advanced the use of more underused systems and
servers [7].

The requirement of memory has increased by a large
amount to offer enough memory for each VM. This gives
the memory system a high consumption of energy. With a
large amount of memory, consumption of energy can exceed
that in processors in server systems. For example, in recent
studies, 128 gigabytes (GB) main memory and 16 processors
in commercial servers, Processors only account for 28 per-
cent of the total energy demand and 41 percent of memory.
Therefore, the main factor in creating energy-efficient servers
is to reduce memory energy consumption [7].

The basic demand for saving energy of memory is to
understand physical memory properties first. The whole
physical memory is usually made up of a small number
of blocks of memory; every unit controls the energy. This
unit is commonly referred to as a Synchronous Dynamic
Random-AccessMemory (SDRAM) technology and is called
a node in this study. Every whole memory node can be used
in one of the energy-saving modes. The power-saving mode
empowers memory nodes to disperse less energy without any
damage to data compared to the normal operating mode. The
energy mode should be switched back to actual operating
mode if data is retrieved in a memory node. This change in
energy mode causes a significant delay in most cases [8].

The essential way to deal with memory control dissem-
ination decrease is to put memory nodes that are relied

upon to have generally long inactive occasions in one of the
energy-saving modes by using the physical memory proper-
ties. A touch of the complete physical memory is assigned
to each VM in the complete physical memory is assigned to
each VM in the server consolidation environment. When a
VM is running, just memory hubs containing the dispensed
memory pages are retrieved. Not other memory nodes are
then retrieved and can be used to diminish memory control
dissipation in one of the energy-saving modes. Only one
VM runs at a specific time in traditional single-processor
systems. Therefore, the memory nodes used by a VM are the
actual origin of energy utilization for the memory. However,
numerous processor cores approach the memory simultane-
ously in multi-core systems because they simultaneously run
a number of VMs. Depending on the VM that runs together,
the energy consumption of the memory varies dynamically.
A sophisticated scheduling policy must reduce the memory
nodes’ number accessed by these VMs to save memory
energy [9], [10].

This study focuses mainly on the problem of multi-core
computer systems’ energy planning. It is quite challenging
to map VM resources to the MM demands to achieve good
performance by minimizing the energy consumption within
a certain limit. This research presents a number of essential
features for energy consumption on the memory and simu-
lates a memory energy management architecture to provide
an energy-efficient plan for VM’s in multi-core systems. This
paper goes through several algorithms for VM scheduling
based on this architecture to achieve the goal of energy reduc-
tion from the memory system.

The paper’s organization is as follows: section 2 describes
the background and relatedwork for the random-accessmem-
ories, virtual machines, and scheduling algorithms. In section
3 explains material and methods. The experiments and results
are analyzed and discussed in section 4. Finally, the conclu-
sion and future work are presented in section 5.

II. RELATED WORK
In this section, a literature study is carried out to throw
light on different researchers’ attempts to manage energy
consumption by researching precise scheduling algorithms
for memories with virtual machines in multi-core proces-
sors. Several related researches experimentally highlighted
the applications, which have proved to be a great source of
guidance to come up with the proposed idea.

The law of MOORE implies that computer systems
become more complex by providing supplementary function-
ality to the same chip. This trend is strongly correlated, and
to maintain scalability, hardware engineers put a great deal of
effort into designing these systems’ architecture [11].

Julius, et al. introduced battery-powered autonomous
robots called ‘‘Unmanned Aerial Vehicles’’ as a software
stack for energy computation in high-performance embed-
ded systems. They proposed these systems to overcome the
issue of energy consumption and timing constraints in most
heterogeneous systems. According to them, their proposed

VOLUME 9, 2021 55437

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

system is a multi-version system with equivalent functional
behavior in the case of input and output response and some
non-functional behavior, including time and energy con-
sumption. To Increase the complexity of reducing the overall
energy consumption, they used different compiler flags and
different functionally equivalent algorithms. As the frequency
cannot be continuous and dynamic consumption, therefore,
In their proposed system, they measure the impact of fre-
quency on static energy consumption required to perform an
activity [12].

Kai and Dong, presented the Forward Listing Schedul-
ing heuristic system for scheduling the tasks without back-
tracking. In the proposed system, four schedules have been
selected based on the sorting strategy for the lowest-energy
consumption as a heuristic solution. The concept of
depth-first search and breadth-first search as a tie-breaking
rule is used for scheduling because one is not outperforming
the other. They use one of them for time reduction and
the second for energy reduction [12].

Saad et al. proposed real-time embedded system for
energy-aware scheduling of independent tasks and extensive
surveys. Their proposed system introduced Dynamic Voltage
and Frequency Scaling (DVFS) for energy saving because
they slow the processing speed due to the energy consumption
function. When the CPU sets the voltage on multi-core pro-
cessors for real-time task scheduling, the DVFS mechanism
suggests numerous strategies to save extra energy, as, in these
processors, each core has a different processing energy and
energy consumption [13].

Mohanamuraly and Stafferlbach, proposed Blocking-
Aware-Based Partitioning (BABP) algorithm that guarantees
the parallel tasks to access the same shared resources for
assigned tasks in the same core with multi-core systems. This
algorithm also assures to share parallel tasks with no shared
resources to different cores for parallel execution [14].

Mascitti et al. proposed a novel-energy-aware scheduling
strategy for running runtime activities in the embedded sys-
tems. They used their proposed technique for on-line segre-
gating heuristics using EDF scheduling that is used only for
task creation and suspension and for performing a single task
placement to ensure scalability of runtime activities uploaded
in the system. They also used the proposed strategy to achieve
the minimum anticipated energy consumption for the execu-
tion of these activities to avoid the unexpected transformation
that vitiates the recital of the task [15].

III. BASIC STRUCTURE
A. MAGNETO-RESISTIVE RANDOM-ACCESS MEMORY
‘‘Magneto-Resistive Random-Access Memory (MRAM)’’
has been developed with several difficulties since the 1980s.
The ultimate goal is to achieve non-volatile working memo-
ries to save energy consumption from conventional volatile
working memories such as SRAM and DRAM. However, all
non-volatile memories, including MRAM, were confronted
with a dilemma of non-volatility and high energy consump-
tion in their active mode because non-volatility led to high

consumption of writing energy. Therefore, they have been
used as data storage, and none of them overcame the historical
dilemma for busy applications. This is one of the crucial
reasons whyMRAMhas not had big markets so far [16], [17].

B. DYNAMIC RANDOM-ACCESS MEMORY
‘‘Dynamic random-access memory (DRAM)’’ is a type of
random-access semiconductor memory that stores every bit
of data within an integrated circuit in a separate, small capac-
itor. The capacitor can go ON or OFF. These two states
represent the two values of a bit, commonly referred to as
0 and 1. The electrical load leaks slowly on the condenser
so that the data on the chip is lost without intervention.
An external refresh circuit is required by DRAM to prevent
this, which writes back the data in the capacitor to load
its actual state. Thus, it is directly opposite to the SRAM,
in which refreshing of data is not required. DRAM is volatile
memory (vs) as opposed to flash memory. Non- volatile
memory because it loses its data quickly when energy is
removed. However, DRAM shows limited data reminisce.
In DDR3 SDRAM, numerous functioning and energy modes,
such as energy down and self-fresh modes, are deactivated
for certain subcomponents. If one of these low-energy modes
has a memory node, less energy is dissipated during data
storage in any case; the memory nodes ought to be changed
to standby mode, where all subcomponents are empowered,
read/write to work. This energy change involves an extensive
progress deferral and builds memory dormancy, prompting a
noteworthy disintegration in framework execution [18], [19].

C. VIRTUAL MACHINE
The virtual machine-based reduced architecture is using
Xen VM monitor (VMM) for energy memory management.
Xen’s fundamental function is to produce multiple safe and
detached runtime settings on a single computer. It produces
virtual devices such as processors, disks, and networks when
creating a new VM. It is possible to run more than two virtual
processors and an SMP operating system on a single VM.
VMware uses co-planning techniques to plan this kind of
virtual processor. Now, Xen does not limit the schedule of
more than two VM-owned virtual processors. It is assumed
that all VM except the isolated driver domain (IDD) use
a single virtual processor [20]. In Fig. 1, the VM leading
architecture has been shown [21], [22].

D. MEMORY SCHEDULER
The high latency of access to high-capacity off-chip memory
and the limited memory bandwidth in modern systems have
made main memory a key performance limit. Main memory
is typically shared by applications running in a multi-core
system in the different core (or hardware contexts). Requests
for these applications contain the off-chip memory band-
width that leads to interference. Commonly used memory
controllers use the First Ready First Come Served memory
planning policy. This makes use of the row buffer by giving

55438 VOLUME 9, 2021

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

FIGURE 1. Virtual machine architecture.

priority to row hits over row misses/conflict. Older applica-
tions are then prioritized over newer applications [23].

E. MEMORY-AWARE VIRTUAL MACHINE SCHEDULING
FORMULATION
This section formally defines the problem of VM mem-
ory scheduling in this section. The system depends on MN
Memory-nodes and J is a processor, and J should be ≥ 2.
Let’s say VMT is for all VM and VMTi for all the VM runs
on the ith Processor. For the VM that executes on the ith
processor at time t a new equation can be established for VM
is VMT ti . So J (t) can be explained as in equation (1)

J(t) =
⋃J

i=1
A
(
VMTt

i
)

(1)

where a (VMT) is the access set of the VM.
P(t) the energy demand at time t in memory depends on

the mode of operating of the system and nodes of memory as
well. More clearly, P(t) defines as in equation (2)

P(t) = α. |J (t)| + β.|MN − J (t)| (2)

For saving mode of energy, define β and for standby
mode define α for the Energy Consumption (EC) of nodes
of memory. Therefore, the total energy consumption by the
node of memory, EC from 0 to a final fixed time T can be
found by equation (3).

EC =
∫ T

0
P(t)dt (3)

Also, to minimize consumption, equation (4) can be used.

Min EC =
∫ T

0
|J (t) |dt (4)

The current version tominimize the consumption of energy
is lies between the NP COMPLETE. That is why some of the
well-known scheduling algorithms have been defined from
which it can is possible to reduce the consumption of energy
used by memory.

F. MEMORY-AWARE VIRTUAL MACHINES SCHEDULING
EXPLANATION
The execution sequence of VM in multi-core systems affects
the consumption of energy of memory. For instance, if there
are two processor cores and four memory-nodes in a com-
puter system shown in Fig. 2(a) and 2(b). It shows the sys-
tem has two different VM execution sequences and energy
memory consumption. A shaded box shows a VM running
in Fig. 1, which illustrates the VM ID and the blue box’s
access set. J (t) shows the value at each unit time. It assumes
that the energy demand of a memory-node for a unit time
in standby mode is one. Energy-saving mode ignores mem-
ory’s energy consumption that shows the memory’s energy
consumption per unit of time. The total memory energy con-
sumption without memory energy management is 32 because
all integrated nodes should be 8 times standby. This approach
enables the total energy memory consumption to be reduced.
The actual energy saving depends on the order in which
the VM is executed. If VM is run in the order in Fig. 2(a),
memory’s total energy consumption shall be reduced to 24.
The reason for our work is that it is possible to reduce the
total energy consumption in memory by changing the timing
of the given VM in multi-core systems. For example, if the
sequence of execution of the same VM as shown in Fig. 2(b)
is changed, the total energy demand was reduced to 16. The
reduction in energy is the outcome in the reduction of the
number of memory nodes in standby mode by resetting the
VM execution sequence [24]. The global minimum value for
energy consumption can be measured through equation (4)
by considering all VMTs. Therefore, a new scheduling policy
must be developed to rearrange theVMexecution sequence to
save further memory energy, and the aim of this VMmemory
plan is to lessen the standby memory nodes’ number [25].

Min{t}∈T

∫ T

0
|J (t) |dt when a < t < b

Min{t}∈T

∫ T

0
|J (t) |dt when1 < t < 8

VOLUME 9, 2021 55439

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

FIGURE 2. (a). Energy consumption for different VM execution sequences
Scenario 1. (b). Energy consumption for different VM execution
sequences scenario 2.

Min→ 17 when t→ 2

A key consideration in the VM scheduler’s design can
be ensured by fairness between VMs shown in Fig. 1.
A memory-aware scheduling functions are added to the
Xen ’s Credit scheduler in our memory energy manage-
ment architecture instead of creating a new scheduler. There-
fore, the scheduler selects a VM from the VM with cred-
its and resides in the current queue. This rearranges the
VM running queue temporarily and certifies that the memory
scheduler has a similar impartiality level as the Xen credit
scheduler [26].

G. SCHEDULING ALGORITHMS
Some well-known algorithms are available to schedule a
VM’s memory described in Fig. 3, such as RR, RM, EDF,
LLF, and some state-of-the-art conventional schedulers are
available, but every scheduler has its own terms and use.Most
of the tasks in ‘‘Real-Time Operating Systems (RTOS)’’ are
periodic. Periodic data are primarily in real-time from sen-
sors, servo control, and monitoring systems. These periodic

tasks use most of the processor’s computer energy in RTOS.
There are many simultaneous periodic tasks with different
time constraints in a real-time control system. [27]. These
time constraints include time of release (ri), worst-case exe-
cution time (Ci), period (ti), and deadline (Di) for each task
Ti. Real-time embedded systems have time limits related to
the system output. The scheduling calculations are utilized
to determine which assignment will be performed if more
than one undertaking is accessible in the prepared line. The
working framework must guarantee that each task is initiated
at its right rate and complies with the time constraint [28].

1) STATIC OR OFFLINE SCHEDULING
‘‘Offline scheduling algorithm’’ chooses a task to be per-
formed with reference to a foreordained timetable, which is
rehashed after a specific time interim. For instance, on the
off chance that we have three assignments, Ta, Tb, and Tc, Ta
will dependably perform first, and then at point Tb, and after
that Tc.

2) DYNAMIC OR ON-LINE SCHEDULING
In ‘‘On-line scheduling’’, an assignment is performed con-
cerning its need, which is resolved continuously as indicated
by explicit principles and undertaking needs amid execution.

a: STATIC PRIORITY ALGORITHM
In ‘‘static priority,’’ if the kth deployment of a T1 task is higher
than the kth deployment of T2 as indicated by a predefined
scheduling task. All the more formally, in the event that Task
T1 with J(1, K) is higher than T2 with J(2, K), and Tn J(n,
K+1)will dependably have a higher need than J(2,K+1). The
rate monotonic scheduling algorithm is a standout amongst
the best instances of a static algorithm.
Rate Monotonic (RM) Scheduling:
The algorithm ‘‘Rate Monotonic Scheduling (RM) ’’ is a

simple regulation that allocates priorities to various errands
depending on their time period. This is an assignment with
the shortest span, and an assignment with the longest span
has the lowermost precedence for accomplishment. Since an
assignment’s time does not transform so that its precedence
does not transform over time, the Monotonic rate is a fixed
precedence algorithm. Primacies are managed before the
accomplishment takes place, and overtime is not changed.

The algorithm works on preemptive regulation. Preemp-
tion takes place on a given processor when higher precedence
assignments block lesser precedence assignments from the
accomplishment. This blockage occurs in a given task set
due to the precedence level of different assignments. Rate
monotonic is a preemptive algorithm in which an assignment
with a shorter time comes during accomplishment; it becomes
higher precedence and can preempt a currently executed
assignment. Priorities are allocated in RM according to the
period. The precedence of an assignment is, contrariwise,
commensurate with its timer. The assignment with the lesser
period has the maximum precedence, and the assignment
with the maximum period will be the bottommost. A certain

55440 VOLUME 9, 2021

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

FIGURE 3. Scheduling Algorithms.

assignment is planned under a monotonous algorithm [29].∑n

k=1

Ck
Tk
≤ U (RM) = n(2

1
n − 1) (5)

where n is a number represented tasks, the RM scheduling
comprises some assumptions that each job ought to have.
• Active jobs ought not to impart the resources to different
jobs.

• Time-frames should be like the deadline. Deadline is
deterministic.

• The executing jobs (required to execute) having top
priority will perform the preemption of various other
jobs.

• There is a need to assign priority to each job, as indicated
by the RM approach.

Dynamic Priority Algorithms:
In ‘‘Dynamic Priority Algorithm (DPA)’’, distinctive tasks

may have diverse needs next time, higher or lower than
alternate assignments. Dynamic priority management is a
sort of scheduling algorithm for the estimation of prior-
ities during system execution. Dynamic priority schedul-
ing aims to respond to development and to establish an
optimum self-sustaining configuration. Depending on the
complexity of a specific problem, it can be very dif-
ficult to build well-defined policies to accomplish such
assignments.

Earliest Deadline First (EDF) Scheduling:
‘‘Earliest First Deadline (EDF) ’’ is the dynamic priority

scheduler algorithm for embedded systems in real-time. This
scheme accepts that the task execution is finished without
burning through more time; it started executing the next job.
At whatever point the processor becomes inactive, this pro-
tocol executes and chooses the work having the early finish
time. The earliest deadline first selects an assignment by its
deadline so that the priority of an assignment with the earliest
deadline is higher than others. It means that an assignment’s
priority is inversely proportional to its absolute time limit.
Since the absolute time limit for an assignment depends on
the current time, every moment is a scheduling event in EDF,
as the time limit for the assignment changes over time. Due
to the earliest deadline at one moment, an assignment with
a higher priority may have low priority at the next moment
because of the early deadline of another assignment. EDF
typically performs in preemptive mode, i.e., currently, the
assignment’s execution is preempted when another assign-
ment becomes active with the earliest deadline. EDF is an
optimal algorithm, representing that if an assignment set is
feasible, it is planned by EDF.

Another thing is that EDF does not explicitly assume the
periodicity of assignments so that it is independent of the
time of the assignment and can therefore be used to plan
aperiodic assignments. Choose one of them randomly if two

VOLUME 9, 2021 55441

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

assignments have the same absolute time limit. This scheme
does not avoid Deadline-misses. Accordingly, despite the fact
that no sufficient time is available for its completion, a task
execution can be begun at the same iteration (that prompts
deadline-misses).
Least Laxity First (LLF) Scheduling:
‘‘Least Laxity First (LLF)’’ is the dynamic priority-

scheduling algorithm for deployment level. It means that
every moment is a planning event because the laxity of each
assignment changes at every moment. An assignment that has
less laxity at once may have higher priority than others at
another moment. It implies maximum priority is given to the
task having laxity of low-level. It is dictated by tie-breaking
guidelines, tasks with a similar laxity run in a fixed manner.

LLF fulfills the situation if the real running-time is not
declared until the task complete. Whereas, it is not start-time
but finish-time predictable; if the genuine running-time is
declared, that might be outlandish.

More formally, an assignment’s priority is inversely pro-
portionate to its laxity in terms of time. Since an assignment’s
laxity is defined as the urgency of it. It is describedmathemat-
ically as

Li = Di − Ci (6)

Here Di is the time limit for the assignment, Ci is just
the worst-case execution time (WCET), and Li is the assign-
ment’s laxity. It implies that passivity is the time that remains
before the time limit occurs after achieving the WCET. From
the above equation, the laxity of an assignment in runtime has
been included in the present time instant.

Li = Di − (t i − C
R
i) (7)

Here is the current instant of time and is the unsettled
WCET of the assignment. By using the above equation,
the laxity of each assignment is considered at every instant
of time; then, the precedence is dispensed. One vital thing is
that the laxity of a running assignment does not modify; it
remains the same while the laxity of all other assignments is
lessened by one after every one-time unit.

H. PROCESSOR UTILIZATION FACTOR (U)
For a given undertaking set of n occasional assignments,
the utilization factor U of a processor is the measure of
time-spent Ti to execute Si. In such manner, the undertaking
set for n occasional assignments playing out the errand set,
when Si is an undertaking from the assignment set.

U =
∑n

i=1

Ci
Ti

(8)

Ci/Ti is the time on the off chance means the processor’s
use is more important than others. This assignment set cannot
be premeditated by any estimation. The utilization factor
of the processor recounts the processor stack on a solitary
processor. U = 1 implies 100 percent utilization of the pro-
cessor [30], [31].

I. SCHEDULING OVERHEAD
The time-complexity is the quantity of tasks a protocol carries
out to finish its operations (taking into account that every task
takes a similar time-period). The calculation that carries out
the operation in a minimum quantity of tasks is viewed as
the effective one (from the perspective of time-complexity).
In addition to time-complexity, The space intricacy of a calcu-
lation is the measure of memory/space taken by the protocol
(while execution) and input length is denoted by n. It incor-
porates both the input space and the Auxiliary Space (ASP).
ASP is an additional and tentative memory utilized by the
protocol while its execution. Utilizing Big-O notation, space
complexity of a protocol is usually communicated.

Scheduling is the most common VM service, and the
scheduling algorithm’s complexity is critically important.
The overhead should therefore be kept low to prevent per-
formance degradation. RM requires the least computation
because all VM’s are checked in the run queue. RM is less
complex than EDF in some specific scenarios because the
popularity of memory-nodes has to be taken into account in
EDF [32]–[34].

IV. MATERIAL AND METHODS
A. SIMULATION PARAMETERS
One of the most important reenactment parameters is the
number of processor cores and RAM in the system under con-
sideration. The most extreme memory vitality usage, denoted
as Emax, specifies the memory’s energy consumption if no
memory’s energy management technique is used, and each
memory node is therefore in the standby role. This study
does not consider memory energy consumption during Emax
read or write operations because the workload is heavily
dependent. Table 1 indicates the different experimental con-
figurations used for simulation in RTSim.

B. CPU AND I/O BURST TIME TRACE
The CPU and I/O assignment accomplishment time statistics
are used to better imitate VM’s performance features in the
simulator. The CPU assignment accomplishment time is the
time period a VM continues to run before it is transferred
to off-state because of I/O occasions or the termination of
a certain time cut. The I/O burst time is when a VM hangs
tightly to finish the I/O occasions. The CPU accomplishment
time, time of a VM and its I/O accomplishment time depend
on the outstanding assignment at each VM’s highlights.

C. FAIRNESS CRITERIA
The memory-aware VM scheduling has the same fairness
level that can be found in Xen ’s Credit scheduler. We will
run twelve VM’s on each core to see the results of the
memory-aware VM scheduling on impartiality and try to
compile the simple Kernel of Linux. Then we will measure
the time that will be elapsed and show the fallouts in Table 2.
As anticipated, the memory-aware scheduling of VM dis-
penses CPU time on all VM’s evenly.

55442 VOLUME 9, 2021

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

TABLE 1. Experimental configurations.

TABLE 2. Time taken by scheduling algorithms.

D. SIMULATION ARCHITECTURE
RTSim ‘‘Real-Time system Simulator’’ retains trail of J (t)
at every time t for a given replication interval and simu-
lates the VM executions over the processor cores. The con-
sumption of energy will be calculated by the series of J (t)
used. RTSim simulates the VM for four states, as shown
in Fig. 4.

• Execute
• Runnable
• Expired
• Wait

RTSim maintains its separate queue for each state, and
the VM will be kept in the same state. The state Runnable
is also called the running state. RTSim repeats the fol-
lowing steps for each of the processors throughout the
duration:

E. VIRTUAL MACHINE SCHEDULING
RTSim uses a scheduling algorithm to select one of the VM in
the queue. J (t) is updated using the selected VM access set if
necessary.

FIGURE 4. RTSim activities.

F. EXECUTION TIME
The CPU time track determines the time of execution of
the selected VM, a parameter of the simulation is discussed
earlier. The VM’s state will then be reformed to EXECUTE
(transition S).

G. EXECUTION
If the accomplishment time of the VM in the credit scheduler
is by default equal to or greater than the time slice of 30ms,
the VM is preempted. Otherwise, after consuming its CPU
burst time, the VM will voluntarily leave the CPU. RTSim
charges 100 VM credits per 10ms in both cases, just like Xen
’s current credit scheduler.

H. POST-PROCESSING
When the VM voluntarily surrenders the CPU, the status of
the VM is transformed to WAIT (transition F3). The subse-
quent state is altered on the basis of the unsettled VM credits
that consume the entire slice of time. If the VM still has some
credits, it switches to RUNNABLE (transition F1) again;
otherwise, it switches to EXPIRED (F2). RTSimmoves to the
first procedure after the post-processing procedure to select
the next VM to run.

AWAIT for VM expects some time that reenacts the sitting
constricted time for I/O occasions. The holding uptime of
the VM in RTSim is dictated by the I/O time track. After
the expiry of the I/O burst time, the VM status will be
changed to RUNNABLE on the off chance that it has remain-
ing credits (progress R1); generally, EXPIRED (change R2)
will be changed. Like the Xen credit scheduler, RTSim
reloads all VM credits every 30ms. Once the credits are
recharged, EXPIRED VM moves to the RUNNABLE state
(transition R3).

VOLUME 9, 2021 55443

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

I. ALGORITHM
Compared to global scheduling, one benefit of partitioned
scheduling is that it is possible that single processor-based
response time analyses can be replicated after assigning
agents to portioned processors. Since the assignments on M
identical processors are partitioned, it is NP-hard by nature.
//
PQPA: Partitioned Quick convergence Processor demand
Analysis
B&B: Branch and Bound
DF: Deadline First
//
If x is the set of all agents and R⊆X, then function f =DF-

B&B PQPA∗(R, N0) performs the previous parametric sin-
gle processor EDF schedulability analysis on just agents of
subset S starting from point N0. The function objective is to
maximize U as it is defined for set P. Let (Nj)j=1,M be the set
of, initially empty, M partitions. Our algorithm consists of the
following steps:

Partitioned Multiprocessor Scheduling for Memory Aware
Energy Management

Ncur = Nl

while P 6= ∅ do
select agent p ∈ P with the smallest deadline at point Ncur ;
for j = 1, . . ., M do Nj = f ∗ (Tj∪ {x},Ncur);
Assign agent p to partition Tk with maximum U (Nk), put
Ncur = Nk , and remove p from P;

f explores the N -dimensional at each repetition starting
from the result found in the preceding iteration. This guar-
antees that transfer one agent to a partition does not risk the
schedulability of other partitions.

V. EXPERIMENTAL RESULTS
In this segment, we present the aftereffects of reproduction.
All estimations are taken from a normal of 50 reenactments,
each with a reproduction time of 10,000ms.

A. BASE MEMORY’S ENERGY CONSUMPTION
This part examines the effect of Ebase system size on Emax.
The number of installed memory nodes directly affects the
Emax of a given system; refers to that number as |MN|.
Ebase, however, depends on j(t). Since j(t) is the set of
memory nodes that run VM’s simultaneously, it is directed to
both., The average number of VM memory nodes referred to
as VMn, and the number of system cores referred to asNcore.
So,

Ebase
Emax

∝
Ncore X VMn
|MN|

(9)

This study accepts the SM4 to set design and 16 VMs per
core solidification ratio. Fig. 5 demonstrates that our memory
controls executive engineering, sparing memory vitality even
without a programming calculation. In every system, the rela-
tive energy saving is not the equivalent. In this trial, a similar

FIGURE 5. Ebase Equalized to Emax for Different Computer Systems.

FIGURE 6. Time consumption (seconds).

design of the entrance set is utilized, and VMn is hence the
equivalent in all cases. Then,

Ebase
Emax

∝
Ncore
|MN|

(10)

In any setup of the entrance set, we see that memory energy
savings will enhance as the consolidation ratio upsurges. The
expansion in the consolidation ratio builds the quantity of
VMs in the running line. This empowers every calculation
to locate a VM that is increasingly reasonable for scheduling,
in this way sparing vitality.

Fig. 6 demonstrates the information available in
TABLE 2 that time consumption by specific scheduling
algorithms with and without memory awareness. Also,
Fig. 7 describes the energy consumption with the specific

55444 VOLUME 9, 2021

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

FIGURE 7. Energy savings for SM4 with RM, EDF, and LLF algorithms.

configuration of hardware resources like CPU, RAM, and
cores, etc. This study figures out that the identified scheduling
algorithms will save more energy for all access set configu-
rations in relation to Ebase. The significant energy savings
were achieved with the configuration of the access set SM4.
Consequently, the amount of energy savings falls. To save
more energy, the access size of each VM can be reduced with
the help of memory-aware scheduling algorithms. The simu-
lation results, with the help of RTSim, indicate that the EDF
scheduling algorithm is more energy-efficient and shown the
same results when deployed on Xen Credit scheduler.

VI. DISCUSSION
Thanks to the rapid development and technological
breakthroughs of hardware, server energy efficiency has
significantly improved. However, in many scenarios, energy
reduction through memory aware real-time scheduling on the
virtual machine in the multi-cores server is still an area of
interest. Those approaches dynamically adjust the running
state for a single resource (i.e., CPU or memory) or focus on
single workloads. They also consider the interdependence of
different resources and their impact on power consumption.

In view of the experiments, it is discovered that memory-
sharing among VMs greatly impacts memory-energy uti-
lization. It is observed that the utilization of memory in
the Isolated Driver Domain in making shared-memory can
mitigate significant issues. With the increase in the level
of server-consolidation, the protocol’s performance (against
efficient energy utilization) further enhances. It is addi-
tionally observed that to accomplish more energy sav-
ing, energy-aware memory-management is fundamental by
diminishing the overall memory-nodes (utilized by the VMs).

The multi-core-based non-virtualized processing has iden-
tical scheduling issues in decreasing the utilization of mem-
ory& energy. For this situation, the presented approach is also
appropriate (considering VMs as operating-systems & VMs
as processes). For productively using the computational-
assets’ expanding performance abilities, our research focuses
on virtualized-computing as it is more alluring than non-
virtualized-computing.

VII. CONCLUSION AND FUTURE WORK
This research simulates a feature to Xen’s Credit sched-
uler called a memory-aware scheduling algorithm to reduce
energy consumption. A simulator RTSim that can evaluate the
memory and energy consumption in actuality. It is also used
to examine the consumption of energy of memory in vari-
ous systems. In addition, this paper describes the scheduling
algorithms like RM, EDF, and LLF based memory-aware in
VMs.

It can be concluded that memory-aware administration
diminishes memory and energy demand efficiently, and also,
EDF scheduling algorithms save more energy than the other
identified scheduling algorithms. In particular, EDF take
835.14 sec for scheduling and it can save approximately
58.3 percent of memory’s energy than conventional systems
that would not benefit from memory-aware energy man-
agement. The energy efficiency of the algorithms continues
to improve as the level of server consolidation increases.
We implement the EDF scheduling algorithm in Xen ’s credit
scheduler to see if the simulation fallouts can be simulated on
real systems or not. Results of simulation and deployment are
equated, and similar results are achieved. We observed that
shared memory between virtual machines pointedly impacts
memory’s energy consumption based on hardware resource
configuration. This study also figures out that to reduce
energy consumption (with the primary focus on the competi-
tion of all real-time tasks before the deadline), energy-aware
memory management is essential. RTSim and deployment
presently do not aid virtual machine relocation among pro-
cessor cores, as Xen stereotypically controls virtual machine
migration to benefit from the processor caches. We plan
to provide aid to virtual machines’ migration and develop
different migration policies to save memory energy further.

REFERENCES
[1] T. Chen, Y. Zhang, X. Wang, and G. B. Giannakis, ‘‘Robust workload

and energy management for sustainable data centers,’’ IEEE J. Sel. Areas
Commun., vol. 34, no. 3, pp. 651–664, Mar. 2016.

VOLUME 9, 2021 55445

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

[2] C. Y. Lu and H. M. Lin, ‘‘Balancing of servers based on sampled utiliza-
tion ratio and corresponding power consumption,’’ U.S. Patent 9 857 865,
Jan. 2, 2018.

[3] T. Pan, W. Qin, T. Huang, F. Yang, E. Xinhua, and H. Li, ‘‘Towards
power-aware network function virtualization on multi-core processors,’’ in
Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
Apr. 2018, pp. 1–2.

[4] J. Chase and R. Doyle, ‘‘Energy management for server clusters,’’ in
Proc. 8th Workshop Hot Topic Operating Syst., IEEE Computer Society,
May 2001, p. 0165.

[5] H. Usui, L. Subramanian, K. K.-W. Chang, and O. Mutlu, ‘‘DASH:
Deadline-aware high-performance memory scheduler for heterogeneous
systems with hardware accelerators,’’ ACM Trans. Archit. Code Optim.,
vol. 12, no. 4, pp. 1–28, Jan. 2016.

[6] K. Xie, X. Huang, S. Hao, and M. Ma, ‘‘Distributed power saving for
large-scale software-defined data center networks,’’ IEEE Access, vol. 6,
pp. 5897–5909, 2018.

[7] M.-L. Chiang and T.-T. Hou, ‘‘A scalable virtualized server cluster pro-
viding sensor data storage and Web services,’’ Symmetry, vol. 12, no. 12,
p. 1942, Nov. 2020.

[8] E. M. Dow, J. P. Gilchrist, S. K. Schmidt, and C. J. Stocker, IV, ‘‘Virtual
machine collaborative scheduling,’’ U.S. Patent 9 971 625, May 15, 2018.

[9] G. Raghu, N. K. Sharma, S. G. Domanal, and G. R. M. Reddy, ‘‘Memory-
based load balancing algorithm in structured peer-to-peer system,’’ in
Progress in Intelligent Computing Techniques: Theory, Practice, and
Applications. Singapore: Springer, 2018, pp. 431–439.

[10] W. Tian, M. He, W. Guo, W. Huang, X. Shi, M. Shang, A. N. Toosi, and
R. Buyya, ‘‘On minimizing total energy consumption in the scheduling of
virtual machine reservations,’’ J. Netw. Comput. Appl., vol. 113, pp. 64–74,
Jul. 2018.

[11] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
‘‘Near-threshold computing: Reclaiming Moore’s law through energy
efficient integrated circuits,’’ Proc. IEEE, vol. 98, no. 2, pp. 253–266,
Feb. 2010.

[12] J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck, ‘‘Energy-aware schedul-
ing of multi-version tasks on heterogeneous real-time systems,’’ in Proc.
36rd Annu. ACM Symp. Appl. Comput. (SAC), 2021.

[13] M. A. El Sayed, E. S. M. Saad, R. F. Aly, and S. M. Habashy, ‘‘Energy-
efficient task partitioning for real-time scheduling on multi-core plat-
forms,’’ Computers, vol. 10, no. 1, p. 10, Jan. 2021.

[14] P. Mohanamuraly and G. Staffelbach, ‘‘Hardware locality-aware parti-
tioning and dynamic load-balancing of unstructured meshes for large-
scale scientific applications,’’ in Proc. Platform Adv. Sci. Comput. Conf.,
Jun. 2020, pp. 1–10.

[15] A. Mascitti, T. Cucinotta, M. Marinoni, and L. Abeni, ‘‘Dynamic parti-
tioned scheduling of real-time tasks on ARM big. LITTLE architectures,’’
J. Syst. Softw., vol. 173, Mar. 2011, Art. no. 110886.

[16] J.-W. Jang, M. Jeon, H.-S. Kim, H. Jo, J.-S. Kim, and S. Maeng, ‘‘Energy
reduction in consolidated servers through memory-aware virtual machine
scheduling,’’ IEEE Trans. Comput., vol. 60, no. 4, pp. 552–564, Apr. 2011.

[17] H. Yoda, N. Shimomura, Y. Ohsawa, Y. Kato, S. Shirotori, M. Shimizu,
K. Koi, T. Inokuchi, H. Sugiyama, S. Oikawa, B. Altansargai, M. Ishikawa,
A. Tiwari, and A. Kurobe, ‘‘The pursuit of saving energy consumption of
memory systems by MRAMs, from STT-MRAM to voltage-control spin-
tronics memory (VoCSM),’’ in Proc. IEEE Int. Magn. Conf. (INTERMAG),
Singapore, Apr. 2018, p. 1, doi: 10.1109/INTMAG.2018.8508840.

[18] H. Yoda, E. Kitagawa, N. Shimomura, S. Fujita, and M. Amano,
‘‘The progresses of MRAM as a memory to save energy consumption
and its potential for further reduction,’’ in Proc. Symp. VLSI Circuits
(VLSI Circuits), Kyoto, Japan, pp. 104–105, Jun. 2015, doi: 10.1109/
VLSIC.2015.7231365.

[19] S. Aqueel and K. Khare, ‘‘Design and FPGA implementation of DDR3
SDRAM controller for high performance,’’ Int. J. Comput. Sci. Inf. Tech-
nol., vol. 3, no. 4, pp. 101–110, Aug. 2011.

[20] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang,
R. Illikkal, and R. Iyer, ‘‘Leveraging heterogeneity in DRAM main mem-
ories to accelerate critical word access,’’ in Proc. 45th Annu. IEEE/ACM
Int. Symp. Microarchitecture, Dec. 2012, pp. 13–24.

[21] J. Ahn, C. Kim, J. Han, Y. R. Choi, and J. Huh, ‘‘Dynamic virtual
machine scheduling in clouds for architectural shared resources,’’ in
Proc. 4th USENIX Workshop Hot Topics Cloud Comput., vol. 12, 2012,
pp. 1–6.

[22] B. R. Chang, H. F. Tsai, and C. M. Chen, ‘‘Evaluation of virtual machine
performance and virtualized consolidation ratio in cloud computing sys-
tem,’’ J. Inf. HidingMultimedia Signal Process., vol. 4, no. 3, pp. 192–200,
2013.

[23] D. G. Lago, E. R. M. Madeira, and D. Medhi, ‘‘Energy-aware virtual
machine scheduling on data centers with heterogeneous bandwidths,’’
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 83–98, Jan. 2018,
doi: 10.1109/TPDS.2017.2753247.

[24] S. Sotiriadis, N. Bessis, and R. Buyya, ‘‘Self managed virtual machine
scheduling in cloud systems,’’ Inf. Sci., vols. 433–434, pp. 381–400,
Apr. 2018.

[25] X. Li, P. Garraghan, X. Jiang, Z. Wu, and J. Xu, ‘‘Holistic virtual machine
scheduling in cloud datacenters towards minimizing total energy,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 6, pp. 1317–1331, Jun. 2018, doi:
10.1109/TPDS.2017.2688445.

[26] A. Pegkas, C. Alexakos, and S. Likothanassis, ‘‘Credit-based algorithm
for virtual machines scheduling,’’ in Proc. Innov. Intell. Syst. Appl.
(INISTA), Thessaloniki, Greece, 2018, pp. 1–6, doi: 10.1109/INISTA.
2018.8466305.

[27] A. Alhammad, S. Wasly, and R. Pellizzoni, ‘‘Memory efficient global
scheduling of real-time tasks,’’ in Proc. 21st IEEE Real-Time Embed-
ded Technol. Appl. Symp., Apr. 2015, pp. 285–296, doi: 10.1109/RTAS.
2015.7108452.

[28] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, and G. Lipari,
‘‘Energy-efficient scheduling for moldable real-time tasks on hetero-
geneous computing platforms,’’ J. Syst. Archit., vol. 74, pp. 46–60,
Mar. 2017.

[29] G. Xie, G. Zeng, X. Xiao, R. Li, and K. Li, ‘‘Energy-efficient scheduling
algorithms for real-time parallel applications on heterogeneous distributed
embedded systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 12,
pp. 3426–3442, Dec. 2017.

[30] A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, and H. Xiong, ‘‘Energy-
efficient real-time scheduling of DAG tasks,’’ ACM Trans. Embedded
Comput. Syst., vol. 17, no. 5, pp. 1–25, Nov. 2018.

[31] X. Wang, Z. Li, andW. M.Wonham, ‘‘Optimal priority-free conditionally-
preemptive real-time scheduling of periodic tasks based on DES super-
visory control,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 47, no. 7,
pp. 1082–1098, Jul. 2017.

[32] A. Sufian, A. Banerjee, and P. Dutta, ‘‘Survey of various real and non-real-
time scheduling algorithms in mobile ad hoc networks,’’ in Industry Inter-
active Innovations in Science, Engineering and Technology. Singapore:
Springer, 20018, pp. 121–133.

[33] H. Alhussia, S. J. Abdulkadir, N. Zakaria, A. Patel, and A. Alzahrani,
‘‘Practical performance analysis of real-time multiprocessor schedul-
ing algorithms,’’ J. Fundam. Appl. Sci., vol. 10, no. 2S, pp. 60–73,
2018.

[34] R. Tyagi and S. K. Gupta, ‘‘A survey on scheduling algorithms for par-
allel and distributed systems,’’ in Silicon Photonics & High Performance
Computing, R. Schmidt and A. García-Ortiz, Eds. Singapore: Springer,
Sep. 2020, pp. 51–64.

MOHAMMAD A. ALQUDAH received the B.S.
degree in mathematics from Yarmouk University,
the M.S. degree in applied mathematics from the
Jordan University of Science and Technology, Jor-
dan, and the M.S. and Ph.D. degrees in mathe-
matics from Central Michigan University, Mount
Pleasant,MI, USA, in 2008 and 2010, respectively.
He was an Assistant Professor with the Depart-
ment of Mathematics and Statistics, Northwood
University, Midland, MI, USA, where was a Fac-

ulty Member, from January 2011 to September 2015. From June 2011 to
September 2015, he was the Chairperson with the Department of Mathemat-
ics, Northwood University. Since September 2015, he has been a Faculty
Member with the Department of Basic Sciences, German Jordanian Univer-
sity, where he is currently an Associate Professor. His main research interests
include numerical analysis, computational and applied mathematics, com-
puter aided geometric design, neural networks, and computing techniques.

55446 VOLUME 9, 2021

http://dx.doi.org/10.1109/INTMAG.2018.8508840
http://dx.doi.org/10.1109/VLSIC.2015.7231365
http://dx.doi.org/10.1109/VLSIC.2015.7231365
http://dx.doi.org/10.1109/TPDS.2017.2753247
http://dx.doi.org/10.1109/TPDS.2017.2688445
http://dx.doi.org/10.1109/INISTA.2018.8466305
http://dx.doi.org/10.1109/INISTA.2018.8466305
http://dx.doi.org/10.1109/RTAS.2015.7108452
http://dx.doi.org/10.1109/RTAS.2015.7108452

M. A. Alqudah et al.: Energy Reduction Through Memory Aware Real-Time Scheduling

IQRA AHMED received the bachelor’s degree
in computer sciences. She is currently pursuing
the Master of Philosophy degree in computer
science with the Department of Computer Sci-
ences, Institute of Management Sciences, Lahore,
Pakistan. Her research interests include the Inter-
net of Things, energy management, optimization,
and real-time scheduling.

FAHAD AHMAD received the Ph.D. degree in
computer science from the National College of
Business Administration and Economics, Lahore,
Pakistan, in 2017. He worked as an Assistant
Professor with the Department of Computer Sci-
ences, Kinnard College for Women, Lahore. He is
currently working with the Department of Basic
Sciences, Deanship of Common First Year, Jouf
University, Sakaka, Saudi Arabia. His research
interests include machine learning, deep learning,

medical image processing, quantum computing, mathematical modeling,
information security, fuzzy logic, theory of approximation, and splines.

SHAHID NASEEM received the Doctor of
Philosophy degree in computer science from the
National College of Business Administration and
Economics, Pakistan. He is currently working as
an Assistant Professor with the University of Edu-
cation, Lahore, Pakistan. He is also an active
researcher. He is actively involved in taking dif-
ferent undergraduate and postgraduate courses
and performing research activities at UE. His
research interests include emotional intelligence,

fuzzy logic, the Internet of Things, quantum computing, and blockchain.

KOTTAKKARAN SOOPPY NISAR is currently a
Full Professor of applied mathematics with Prince
Sattam bin Abdulaziz University, Saudi Arabia.
He has published more than 400 research arti-
cles in various international journals. His current
research interests include special functions, frac-
tional calculus, fluid dynamics, inequalities, CAD,
machine learning, SAC OCDMA, and multidis-
ciplinary applications of mathematics. He is an
editorial board member of many reputed journals.

He is the winner of number of awards, including PSAU Research Excellent
Award and Riemann Young Researcher Award.

VOLUME 9, 2021 55447

