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ABSTRACT Complex problems can be analyzed by usingmodel simulation but its use is not straight-forward
since modelers must carefully calibrate and validate their models before using them. This is specially
relevant for models considering multiple outputs as its calibration requires handling different criteria jointly.
This can be achieved using automated calibration and evolutionary multiobjective optimization methods
which are the state of the art in multiobjective optimization as they can find a set of representative Pareto
solutions under these restrictions and in a single run. However, selecting the best algorithm for performing
automated calibration can be overwhelming. We propose to deal with this issue by conducting an exhaustive
analysis of the performance of several evolutionary multiobjective optimization algorithms when calibrating
several instances of an agent-based model for marketing with multiple outputs. We analyze the calibration
results using multiobjective performance indicators and attainment surfaces, including a statistical test for
studying the significance of the indicator values, and benchmarking their performance with respect to a
classical mathematical method. The results of our experimentation reflect that those algorithms based on
decomposition perform significantly better than the remaining methods in most instances. Besides, we also
identify how different properties of the problem instances (i.e., the shape of the feasible region, the shape of
the Pareto front, and the increased dimensionality) erode the behavior of the algorithms to different degrees.

INDEX TERMS Model calibration, agent-based modeling, evolutionary multiobjective optimization.

I. INTRODUCTION
Model simulation is a common approach to the analysis
of complex phenomena. It allows users and stakeholders to
recreate the desired dynamics so these phenomena could be
studied in a controlled environment, where different policies
or strategies can be tested. The agent-based model (ABM)
methodology [1]–[3] is a well-known model simulation tech-
nique that relies in the behaviour of artificial agents, which
are autonomous entities that act following simple rules and
interacting with other agents. The aggregation of the agent’s
behavior and the social interactions allow the modeler to
simulate complex emergent dynamics using a bottom-up
approach [2]. This approach has proven useful in both the
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forecasting of hypothetical scenarios and the definition of
what-if scenarios [4], which has increased the visibility of
ABM in the latter years [5], [6].

However, the use of these models is not straight-forward as
they require the modelers to deal with several issues. On one
hand, ABMs must be designed following certain guidelines
and methodologies for ensuring their rigor [7]. On the other
hand, they require to be properly calibrated and validated
before being used [8], [9]. The calibration of a model refers
to the process of adjusting its parameters so it can correctly
simulate the desired dynamics. This stage in model devel-
opment can be carried out manually, since many parameters
are usually set based on data, but it can be impracticable for
models with high dimensionality.

This limitation can be overcome using automated calibra-
tion [10], a procedure that relies on two main components
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for adjusting the model’s parameters: a given error measure
and an optimization method. With this approach, the error
measure is minimized using the optimization method by
adjusting the model’s parameters so the simulated output
can match the provided real data [11], [12]. Nevertheless,
the success of an automated calibration process depends on
the capability of its optimization method for exploring the
model’s parameters search space. This is specially relevant
if the model being calibrated considers multiple conflicting
criteria since the optimization method requires to handle
these criteria jointly [13].

Multiobjective optimization methods are specially tailored
for working under these restrictions [13]. In particular, evolu-
tionarymultiobjective optimization (EMO) algorithms can be
considered the best approach to multiobjective optimization,
as they obtain a set of representative Pareto solutions in a sin-
gle run. In addition, EMO algorithms obtain Pareto-optimal
solutions in a reasonable time and can perform successfully
without requiring specific properties of the optimized func-
tion [14] and have proven to be successful when dealing with
dynamic multiobjective optimization problems which are
common in real-world applications [15]–[19]. However, there
is a large number of EMO algorithms available in the special-
ized literature and finding the best algorithm for conducting
the automated calibration process can be overwhelming.

We propose to delve into this issue by conducting an
exhaustive analysis of the performance of the most promi-
nent and recent EMO algorithms when calibrating multiple
instances of an ABM jointly optimizing different key per-
formance indicators. The study considers well-known EMO
algorithms from the main EMO categories: based on Pareto
dominance, indicators, and decomposition. The selected
methods include the non-dominated sorting genetic algorithm
II (NSGA-II) [20], the improved strength Pareto evolutionary
algorithm (SPEA2) [21], the general indicator-based evolu-
tionary algorithm (IBEA) [22], the S metric selection mul-
tiobjective optimization algorithm (SMS-EMOA) [23], and
the multiobjective evolutionary algorithm based on decom-
position (MOEA/D) [24], [25]. Additionally, we also make
use of two recent EMO developments that have shown com-
petitive results when dealing with real problems [26]–[28].
Specifically, we incorporate to the study the many-objective
metaheuristic based on the R2 indicator II (MOMBI2) [29]
and the global weighting achievement scalarizing function
genetic algorithm (GWASF-GA) [30]. Finally, we included
a classical optimization method such as the Nelder-Mead’s
simplex method [31] as the baseline for the EMO algo-
rithms, that we adapted to our multiobjective problem by
using the adaptive ε−constraint method, which is a common
approach [32], [33]. We analyze the results of the selected
algorithms using multiobjective performance indicators and
attainment surfaces [34]. In addition, we perform a statistical
test for studying the significance of the performance indicator
values.

Our study considers a benchmark of 15 instances of an
ABM for marketing, which is the selected computational

model for our experiments. This ABM tackles marketing
scenarios involving two conflicting outputs or key perfor-
mance indicators: the global awareness of the consumers
regarding the brands available in the market and the number
of word-of-mouth consumer interactions for those brands.
Both the instances and historical data for our calibration
benchmark are taken from a real banking marketing scenario
in Spain. Although there is previous work using EMO for
multicriteria calibration of ABMs [35]–[37], none of these
contributions considers a rigorous and exhaustive comparison
of several EMO algorithms for calibrating multiple model
instances and the subsequent analysis of the algorithms’
performance according to the problem characteristics.

Hence, the main contributions of the current manuscript
are:

• An exhaustive analysis of the performance of relevant
EMO algorithms when calibrating multiple instances of
an ABM for marketing considering different outputs.

• The design of an appropriate experimental setup for
the study, which is based on a benchmark compris-
ing 15 instances considering two key performance
indicators and up to 175 decision variables.

• A comprehensive analysis of the results which considers
both unary and binary performance indicators, attain-
ment surfaces, statistical significance/tests, and two dis-
cussion sections addressing both the influence of the
instances’ properties on the algorithms’ performance
and the drawbacks of the methods.

The structure of this paper is as follows. Section II
addresses the related work on the use of EMO algorithms for
multicriteria calibration of computational models. Then, our
approach to themulticriteria calibration of ABMs using EMO
algorithms is depicted in Section III, which reviews several
concepts of EMO-based model calibration and the algorithms
selected for our study. The ABM to be calibrated in our exper-
iments is described in Section IV. The analysis of the results
is thoroughly reviewed in Section V. Finally, Section VI dis-
cusses our final remarks and Section VII reviews the practical
implications and future directions of our work.

II. RELATED WORK
There are some examples of the use of EMO algorithms for
multicriteria calibration of computational models [38]–[44].
Many of them are focused in the calibration of hydrological
models, such as the soil and water assessment tool [45]–[48],
the rainfall–runoff models [41], empirical hydrological mod-
els for streamflow forecasting [39], and an integrated water
system model [44]. The thorough review of these contribu-
tions reveals that their usual approach relies on employing
the NSGA-II for running the calibration process, probably
because it is the most popular EMO algorithm. Apart from
NSGA-II, we can also find some studies using SPEA2 [39],
[40], [47], [48].

The application of EMO for multicriteria calibration of
ABMs is not frequent although there are few examples
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tackling this issue [35]–[37]. Farhadi et al. [35] present a
framework for sustainable groundwater management includ-
ing a Nash bargaining model, which is implemented as an
ABM incorporating cooperative and non-cooperative agents
that consume the water of the modeled scenario at different
ratios. The parameters of the model are calibrated using
NSGA-II and considering three objectives and a single cal-
ibration scenario. Narzisi et al. [36] deal with the calibra-
tion of an ABM for emergency response planning using
NSGA-II. Their model is calibrated for minimizing the per-
centage of fatalities and the average waiting time of the
population before receiving attention at the hospitals. This
calibration process is applied to a single scenario considering
ten real-coded model parameters with several restrictions.
Finally, Read et al. [37] introduce the calibration of arti-
ficial murine multiple sclerosis simulation, an established
immunological ABM for computational biology. They use
NSGA-II in the calibration of 16 integer and real parameters
with respect to four objectives. The authors consider a single
scenario for the model and run three independent calibration
executions for its analysis.

Therefore, NSGA-II is the recurrent EMO algorithm for
multicriteria calibration of ABMs and there is not any com-
parative study on different EMO algorithms for this problem.
In addition, it can also be recognized that the methodology of
these contributions generally limit their experimentation to a
single run of the EMO algorithm, which can be explained by
the high computational cost of simulating multiple times for
every evaluation of a single model configuration. However,
this approach is not taking into account that EMO algorithms
are stochastic, thus requiring multiple runs using different
seeds. Analyzing the results of a single algorithmic execution
reduces the amount of information provided by the calibra-
tion process because valuable model configurations may be
skipped in the initial run, specially if the EMO algorithm is
not properly tuned.

III. MULTICRITERIA CALIBRATION OF ABMs USING EMO
ALGORITHMS
This section describes the key features of using EMO
algorithms for multicriteria calibration of ABMs. First,
Section III-A reviews some basics on multiobjective opti-
mization and Section III-B presents the common design of
the EMO algorithms. Then, Section III-C includes several
subsections for introducing the selected EMO algorithms
according to their category, depending on their operation
mode.

A. MULTIOBJECTIVE OPTIMIZATION
The multicriteria calibration of ABMs can be approached as
a multiobjective optimization problem since there is usually a
need for calibrating the model according to different outputs.
In these kinds of problems, the quality of a setting is evaluated
regarding multiple conflicting criteria instead of considering
a single error measure. Thus, the optimization algorithm aims
to minimize F(x) = f1(x), . . . , fm(x), where m represents the

number of objectives and x is the set of decision variables
for the optimization problem (i.e., decision space). Each
function fi computes the quality of the parameter setting to
a calibration objective using a deviation error measure εi.
In a calibration problem, each objective is associated to one
simulated output oi, resulting in fi(x) = εi(oi(x), õi), with õi
being the historical target values for the i-th output. Any of
the well-known deviation measures such as MAPE, RMSE,
or MARE [49] can be chosen for computing this deviation
error.

Multicriteria model configurations thus need to be ana-
lyzed using multiobjective semantics like the Pareto domi-
nance concept [13]. Given two feasible configurations u and
v from the decision space with u 6= v, u dominates v if
ui ≤ vi,∀i : 1 ≤ i ≤ m and ∃j : 1 ≤ j ≤ m : uj < vj, i.e., if u
is equal or better than v for every objective and strictly better
for at least one objective. However, these inequalities should
be reversed for any objective that is being maximized (to
dominate means to be better). Using the dominance concept,
the global Pareto-optimal configurations are those vectors u
such that there is no feasible vector v that dominates u. A set
of u configurations where there is no v that dominates any of
the other solutions is called a Pareto-optimal set. In addition,
the representation of the solutions in the Pareto set as points
from the objective space is called a Pareto-optimal front [13].

B. COMMON DESIGN
Before describing the selected EMOalgorithms, we introduce
their common characteristics. Each candidate solution has
n decision variables corresponding to the model parame-
ters being calibrated, which can either be integer-coded or
real-coded values. The considered algorithms include poly-
nomial mutation [14] as their mutation strategy. It modifies
the values of a solution’s variables with a probability pm ∈
[0, 1] using a polynomial distribution. This mutation strategy
uses a distribution index parameter that regulates the strength
of the mutation. Unless stated otherwise, the proposed algo-
rithms use simulated binary crossover (SBX) [14] with a
crossover probability pc ∈ [0, 1] as their crossover strategy.
SBX emulates the operation of a single-point crossover from
binary-encoding when performing crossover into real-coding
decision variables. SBX operates as follows: given two par-
ents P1 = (p11, . . . , p1n) and P2 = (p21, . . . , p2n), SBX
generates two springs C1 = (c11, . . . , c1n) and C2 =

(c21, . . . , c2n) as c1i = X̄ − β̄/2 · (p2i − p1i) and c2i =
X̄ + β̄/2 · (p2i − p1i), where X̄ = 1/2 · (p1i + p2i). β̄ is a
random value fetched from a random distribution initialized
by setting a distribution index that acts as the spread factor of
the operation.

C. CONSIDERED EMO ALGORITHMS
1) ALGORITHMS BASED ON PARETO DOMINANCE
Pareto dominance-based algorithms assign the quality of the
solutions (thus guiding the selection mechanism) according
to their dominance of other solutions in the population.
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The selected Pareto dominance-based algorithms are
NSGA-II and SPEA2.

• NSGA-II [20] can be identified as the most popular
and well-known EMO algorithm. NSGA-II’s approach
relies on non-dominated sorting, which allows it to com-
bine elitism with good levels of diversity in a single
population while being computationally fast, specially
for problems with two or three objectives. NSGA-II
produces an offspring set Qt at each generation using
the solutions of the previous set Pt . Then, both sets
are merged into the temporary set Rt where previous
and newly generated solutions are ranked according to
its non-dominance level. The non-dominance level of
a solution corresponds with the number of solutions
that dominate it. The next set Pt+1 is generated by
selecting the solutions with the best ranking, which are
the solutions not dominated by other solutions in the
previous set. This process is iterated for the next ranks
until a population size |P| is reached. This strategy
guides the algorithm to non-dominated regions while
a set of non-dominated solutions are maintained in the
population. The first solution set that does not fit Pt+1
is filtered using a crowding mechanism for boosting the
diversity of the new population.

• SPEA2 [21] is a well-known EMO algorithm that
computes the fitness of its individuals calculating a
‘‘strength’’ value that represents how many solutions
it dominates. Then, the fitness value for each solution
is computed by summing the ‘‘strength’’ values of the
solutions that dominate it. SPEA2 considers a separate
population, named the ‘‘archive’’ (Pt ), designed to store
non-dominated solutions. At each step, non-dominated
solutions inPt andPt are copied toPt+1. IfPt+1 exceeds
the size of P, then its solutions are filtered using a
truncation operator inspired in the k-th nearest neighbor
method that selects the solutions with the minimum dis-
tance. If there are not enough solutions for filling Pt+1
then the dominated solutions with the minimum fitness
are included until |Pt+1| = P. Then a mating pool is
set using binary tournament on Pt+1. Finally Pt+1 is the
result of applying the crossover and mutation operators
to the mating pool.

2) ALGORITHMS BASED ON INDICATORS
Indicator-based algorithms assign the fitness of the solutions
using indicator values. The selected indicator-based EMO
algorithms are IBEA, SMS-EMOA, and MOMBI2.

• IBEA [22] is a classic EMO algorithm that qualifies
solutions regarding their relative contribution to a given
performance indicator with respect to the rest of solu-
tions of the population. Therefore, IBEA computes the
loss of quality of removing a solution from the pop-
ulation using dominance preserving binary indicators.
In order to carry out this task, some suitable indicators
would be the additive Iε or the IHD indicator, that is

based on the concept of hypervolume [50]. Using these
concepts, IBEA’s fitness evaluation for solution x using a
binary indicator I and a scaling parameter κ is computed
as F(x) =

∑
y∈P\x −exp[−I (y, x)/κ]. Finally, IBEA

performs elitism and only the worst solutions of the
population are removed, althought this implies that the
fitness of the remaining solutions need to be updated
each time a solution is removed from the population.

• SMS-EMOA [23] introduces the maximization of the
dominated hypervolume into the search process for
approximating the true Pareto front. SMS-EMOA bor-
rows NSGA-II’s non-dominated sorting mechanism for
merging the current population Pt with the offspring
population Qt into Pt+1. However, SMS-EMOA con-
siders a replacement strategy that targets the solutions
from the worst front with the lesser contribution to
the hypervolume of their respective front. This process
maximizes the quality of the population regarding their
hypervolume [50]. In addition, as the repeated calcula-
tion of hypervolume values is computationally expen-
sive, SMS-EMOA follows a steady-state scheme for
easing the replacement mechanism and allowing an easy
parallelization of the fitness evaluation. Unlike other
EMO algorithms like SPEA2, SMS-EMOA does not
consider a separate archive for storing non-dominated
solutions. Instead, it maintains a population of constant
size that includes dominated and non-dominated solu-
tions (as NSGA-II does). SMS-EMOA also preserves
the extreme solutions (i.e., the ones with best fitness
for one objective and worst fitness for the other) into
the population for biobjective problems such as our
ABM calibration problem instead of requiring a refer-
ence point for computing hypervolume. For problems
with more objectives, a reference point is calculated
dynamically at each generation.

• MOMBI2 [29] relies in the R2 quality indicator for
ranking the solutions, a Pareto compliant indicator with
a reduced computational cost. This quality indicator uses
a utility function formapping each objective into a single
value. A common MOMBI2 configuration employs the
achievement scalarizing function (also used byGWASF-
GA) since it allows the algorithm to obtain weekly
Pareto optimal solutions, although there are several
candidate utility functions for the algorithm. In addi-
tion, instead of updating the nadir point at each gen-
eration, MOMBI2 updates this reference point taking
into account its historic values during previous gener-
ations. This update takes two parameters α and ε as
the threshold and the tolerance threshold, respectively.
These historic values are used for estimating how far
current solutions are from the true Pareto front: high
variance suggests that the solutions are far from it and
a low variance suggests that the solutions are close. The
solution ranking using R2 proceeds as follows: first,
the solutions with the best rank (i.e., those that optimize
the weight vectors) are selected, removed from Pt and
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introduced into Pt+1; then, this process goes on ranking
solutions until every solution has been ranked and |P|
solutions are selected. In case two solutions provide the
same utility value, the solutionwith the lowest Euclidean
distance is selected.

3) ALGORITHMS BASED ON DECOMPOSITION
Decomposition-based algorithms transform a given multi-
objective problem into several subproblems. The selected
decomposition-based EMO algorithms are MOEA/D and
GWASF-GA.

• MOEA/D [24], [25] is an evolutionary algorithm that
has received great attention in the evolutionary com-
putation literature in the last few years. It employs
decomposition techniques for reducing the multiobjec-
tive problem into as many subproblems as individuals
(|P|). Then, MOEA/D solves every subproblem jointly
by evolving its solution population (Pt ), which con-
tains the best solution found for each subproblem. The
optimization of each subproblem is performed by only
using information from its neighboring subproblems.
Although MOEA/D is compatible with any decompo-
sition approach that transforms the Pareto approxima-
tion problem into several scalar optimization problems,
we choose the Tchebycheff approach in this paper,
as recommended by the authors [24], [25]. In addition,
MOEA/D uses an external population for storing the
non dominated solutions found during the execution of
the algorithm, similarly to SPEA2. Finally, we select
a differential evolution operator as the crossover strat-
egy instead of the SBX employed in the other algo-
rithms, also following authors’ recommendation [24].
This operator generates each offspring C = (c1, . . . , cn)
as ci = P1(i) + F · (P2(i)− P3(i)) with probability CR
and ci = P1(i) with probability 1 − CR, where P1, P2,
and P3 are the donor individuals and CR and F are the
control parameters.

• GWASF-GA [30] is a recent aggregation-based evolu-
tionary algorithm. GWASF-GA approximates the true
Pareto front transforming the original problem into a
set of scalar subproblems that are minimized using the
achievement scalarizing function, based on the Tcheby-
chev distance. This scalarizing function uses two refer-
ence points: the nadir point and the utopian point. The
former is a point containing the worst objective values of
the solutions of the entire Pareto-optimal set. The latter
is a point that is chosen for dominating the ideal point
and that will not be obtainable for any solution. During
each algorithm iteration, every solution in the population
is classified into different fronts by computing their
achievement scalarizing function values using the two
mentioned reference points and a set of weight vectors.
Each of these fronts contains the solutions with the
lowest scalarizing function value for the weight vectors
in the set. The set of weight vectors is predefined for

FIGURE 1. General scheme of the ABM showing an example of the
effects of an ad to an agent. The agents reached by advertising can
activate its awareness value for the ad brand and spread it to other
agents in the social network.

ensuring that its inverse is well distributed, ensuring that
the algorithm maintains diversity. Then, the fronts with
the lowest function values are introduced into the next
population until |P| solutions are selected.

IV. ABM DESCRIPTION
The current section summarizes the main characteristics of
the selected ABM [51]. Section IV-A presents the general
structure of the model and the mechanics of the agents.
Then, Section IV-B summarizes the parameters selected for
calibration.

A. ABM GENERAL STRUCTURE
The model performs a terminating simulation during a given
number of steps T of a market with a set of B compet-
ing brands, where the time-step represents a natural week.
The model simulates a set of agents I and their behavior
when exposed to social interactions and the advertisement
of C mass media channels. It considers two outputs relevant
to market expansion [52], [53]: the word-of-mouth interac-
tions between consumers (referred as WOM volume) and the
awareness of the brands. During the simulation, the I con-
sumer agents are exposed to the information spread by mass
media channels and the WOM process generated through
their social network. These two processes are connected
because the activation of brand awareness using advertising
also increases WOM volume due to the buzz effect produced
by the campaign. Additionally, WOM interactions spread
the agents’ brand awareness through the social network.
Therefore, we can see that both outputs cannot be adjusted
separately, since improving the fitting of one output decreases
the fitting of the other. As a consequence, there is no config-
uration that jointly satisfies the fitting of both outputs. We
present a general scheme of our marketing model in Figure 1.

We model agent’s awareness with respect to the different
brands (b ∈ B) using a binary state variable abi ∈ {0, 1}. If
abi (t) = 1 at a given time step t ∈ [1,T ], the awareness
of agent i ∈ I is active for brand b (i.e., it is aware of the
brand). In contrast, a value of 0 represents that the awareness
is not active at this time step. This variable is initialized by
using a parameter called initial awareness (ab(0) ∈ [0, 1])
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FIGURE 2. Example chromosome for a model instance with |C | = 3 where the first decision variable matches the
network’s generation parameter m, an integer parameter bounded to

{
2, . . . ,8

}
. The remaining decision

variables match the real-coded parameters of the model, which are limited to [0,1].

that represents the percentage of the agent population whose
awareness is active at the start of the simulation for each brand
(ab(0) = 1/|I | ·

∑|I |
i=1 a

b
i (0)).

Agents’ awareness values are dynamic because the aware-
ness of any brand can be activated or deactivated at every
simulation step. On the one hand, brand awareness can be
activated by WOM interactions within the social network or
through brand advertising. On the other hand, agents’ brand
awareness can be deactivated [54], [55] if it is not reinforced
during the simulation. This activation/deactivation effect is
modeled with additional parameters. First, the awareness
deactivation parameter (d ∈ [0, 1]) models the probability
of an agent deactivating its awareness of a given brand.
This parameter takes effect during the start of each step t ,
when every agent i checks each brand b that it is aware of
(abi (t) = 1). Then, each brand awareness value is deactivated
with probability d by switching abi (t) to 0.
The agents in I compose an artificial scale-free social

network [56] where their awareness values flow due to their
social interactions. This effect is modeled as a contagion pro-
cess [57] by the probability of talking of the agents (p(t)bi ∈
[0, 1]). Thus, each agent i can spread their brand awareness
for every brand b ∈ B where abi = 1 at time step t . The
WOM awareness impact parameter (αWOM ∈ [0, 1]) regu-
lates the probability for each neighboring agent to activate its
awareness of a brand after one of its neighbors talked about it.
Additionally, the scale-free network is generated byBarabasi-
Albert’s preferential attachment algorithm [56], which con-
siders a main parameterm that regulates the network’s growth
rate and its final density. Using m, the average degree of the
social network can be computed as 〈k〉 = 2 · m. Finally,
variable ωbi (t) stores the number of new conversations of the
agent i about brand b in the WOM process.

The mass media channels in C influence agents randomly
depending of the capability of the channel to reach high
percentages of the population and the amount of investment
employed. The reach parameter (rc ∈ [0, 1],∀c ∈ C)
regulates the maximum percentage of the population that can
be reached by channel c during a single step.We can schedule
the resulting media impressions over the agent population
using the given investment by assigning them at random
between the agents without violating the reach constraints for
the media channel [51], [58].

All the channels c ∈ C consider an awareness impact
parameter (αc ∈ [0, 1]) that regulates the likelihood
for an impacted agent to activate its awareness of the
announcing brand after a single media impact. In addition,
the advertising scheduled in mass media may generate a
viral buzz effect [58], increasing the talking probability (pbi )

of the reached agent for the announcing brand. This effect
is modeled by the buzz increment parameter (τc), which
increases the current talking probability by a percentage of
its initial value (pbi (0)). Nevertheless, the buzz created by
advertising is dynamic and decays over time by buzz decay
parameter (dτc) if it is not reinforced.

B. PARAMETERS SELECTED FOR CALIBRATION AND
OBJECTIVE FITTING FUNCTIONS
The parameters selected for automated calibration are those
involved in modifying the agents’ volume of conversations
and their awareness values as those are themost uncertain and
the hardest to set manually. From the parameters controlling
the WOM behavior, we calibrate the m parameter for the
network’s generation, the initial talking probability (pbi (0)),
the WOM’s awareness impact (αWOM ), and the awareness
deactivation probability (d). From the parameters which con-
trol the behavior of the mass media channels, we include
the awareness impact (αc), buzz increment (τc), and buzz
decay (dτc).

Each parameter is represented by a real-coded decision
variable in [0, 1], with the exception of m that is limited
to {2, . . . , 8} because it requires integer values. The over-
all number of parameters to be calibrated depends on the
number of channels |C| in themarket. Hence, the final dimen-
sionality of each instance is |C| · 3 + 4. Figure 2 shows an
example of a chromosome encoding a candidate solution for
a market instance with |C| = 3.
The objective fitting functions for our model are defined

by Equations 1 and 2. These functions are a specification
of the generic multicriteria calibration approach given in
Section III-A: f1 computes the awareness deviation error and
f2 computes the error for the number of conversations. Both of
these fitting functions are similar to a standard MAPE func-
tion. The series of target data are represented by ã and ω̃, with
the former being the target awareness values and the latter
being the target WOM volume values. The simulated outputs
are the result of running multiple Monte-Carlo simulations
for each set of calibrated model’s parameters encoded in a
chromosome and averaging the values of these independent
runs. As introduced in Section IV-A, both model’s outputs
are in conflict and should not be adjusted separately since
improving the fitting of one output decreases the fitting of
the other [51].

f1 =
100
T · |B|

T∑
t=1

∑
b∈B

∣∣∣∣ab(t)− ãb(t)ãb(t)

∣∣∣∣ (1)

f2 =
100
T · |B|

T∑
t=1

∑
b∈B

∣∣∣∣ωb(t)− ω̃b(t)ω̃b(t)

∣∣∣∣ (2)
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V. EXPERIMENTATION
Section V-A explains the setup of our experiments, which
includes the description of the different benchmark instances
and algorithms’ configuration. Section V-B discusses the cal-
ibration results using multiobjective performance indicators,
attainment surfaces, and statistical tests. Finally, Section V-C
reviews the drawbacks observed in the performance of the
EMO algorithms and Section V-D analyzes the influence of
the instances’ properties on the behavior of the algorithms.

A. SETUP
We consider a benchmark with 15 instances of the model
corresponding to different market configurations with a vari-
able number of mass media channels. These instances are
the result of synthetically generating 14 additional instances
from an initial real-world, baseline instance, referred as
P1(25) [51]. Notice that, this original instance corresponds
to a market with 7 channels, thus resulting in 25 parame-
ters to be calibrated, the number enclosed in brackets. The
additional instances are generated applying variations on the
initial baseline instance. Each model variation incorporates
newmass media channels that are generated from the existing
ones by perturbing their investment values. The new instances
also include modifications on the target data for the fitting of
both outputs (i.e., WOM values and awareness values). Each
new instance increases the dimensionality of the previous
one as the parameters of the new channels are added as
new decision variables, enabling a deeper analysis of the
algorithms’ performance.

On the one hand, the perturbations on the existing mass
media channels C consist of multiplying the investment of
each brand at each time step by a given factor. We con-
sider reductions in the original investment by 15%, 30%,
45%, and 60%. In addition, we increase the original invest-
ment by 100%, 200%, 300%, and 400%. The decision of
whether increasing or decreasing a brand investment is made
at random and remains constant for each step.

On the other hand, the modifications on the target his-
torical values for both objectives involve directly adding or
subtracting a different value for each brand to each of its
time steps. In order to avoid unrealistic values we truncate
the resulting awareness values to a maximum of 100% and a
minimum of 1%. Each addition/subtraction on the awareness
target values will be by 2%, 5%, 8%, or 10%. In the case
of WOM volume each addition/subtraction will be by 1,000,
2,000, 4,000, or 6,000 conversations, with a minimum value
of 0. Similarly to mass media investment, the decision of
whether increasing or decreasing the target values is made
at random and remains constant for each step.

The new generated instances are labeled according to
their dimensionality: P2(40), P3(46), P4(55), P5(61), P6(70),
P7(76), P8(85), P9(91), P10(100), P11(115), P12(130),
P13(145), P14(160), and P15(175). The parameter configu-
ration of baseline P1(25) considers |I | = 1000, |B| = 8,
|C| = 7, and T = 52. Awareness is initialized to a(0) = (0.7,
0.75, 0.58, 0.25, 0.08, 0.42, 0.39, 0.34) and mass media

TABLE 1. Parameters settings for the EMO algorithms.

channels consider r = (0.92, 0.57, 0.54, 0.03, 0.43, 0.38,
0.69). The generated instances share this baseline configu-
ration, including the reach parameters values rc of the new
channels, that take the value of the channel used for its
generation. For example, if a new channel 9 is generated from
the original channel 5, the reach value of the former channel
is set to the value of the latter (i.e., r9 = r5).
Each EMO algorithm is run 30 times using different seeds

for each run to account for the probabilistic nature of the
calibration algorithms considered. Every algorithm considers
a population of 100 individuals (P = 100) and evolves for
100 generations with a stopping criteria of 10,000 evalua-
tions. Due to the highly time-consuming task of simulating
multiple times for every parameter configuration, each eval-
uation of a candidate solution involves 15 Monte-Carlo runs.
The distribution index of themutation operator is set to 10 and
the mutation probability value is set to pm = 1/n where n
is the number of parameters being calibrated for the model
instance (i.e., decision variables). The SBX crossover opera-
tor considers a crossover probability of pc = 1.0 and sets its
distribution index value to 5. In addition, the EMO algorithms
designed to use a set of weights, such asMOEA/D,MOMBI2,
and GWASF-GA, initialize their values by generating a uni-
form set of 100 vectors. That is the usual setup when dealing
with two objectives and only 100 individuals. In addition,
MOMBI2 is set to ε = 0.001 and α = 0.5. Finally, MOEA/D
uses a neighborhood size of 20 and its differential evolution
operator considers CR = 0.5 and F = 0.5. We have
implemented all the EMO algorithms in Java using the jMetal
framework [59]. Table 1 shows a brief summary of the EMO’s
parameters.

In addition, we have included a classical mathematical
optimization method in our experiments, the Nelder-Mead
simplex method [31]. This classical method allows us to
benchmark the performance obtained by the different EMO
algorithms when compared with traditional approaches. In
order to adapt the Nelder-Mead algorithm to our mul-
tiobjective problem, we employ the adaptive ε-constraint
method [32], [33], which allows single-objective opti-
mization methods to deal with multiple objectives. The
Nelder-Mead’s approach also involves starting from different
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TABLE 2. Average HVR values for every algorithm and model instance. The best value for each model instance is shown in bold font. Additionally,
the average HVR values across the multiple instances is shown along with the standard deviation.

solutions for obtaining a Pareto set approximation. Therefore,
each run generates 50 random solutions that are optimized
until reaching 200 evaluations. This setup slightly modi-
fies the one employed by the EMO algorithms because the
Nelder-Mead simplexmethod requires a model evaluation for
every single modification in the decision variables.

B. ANALYSIS OF THE EMO ALGORITHMS’ PERFORMANCE
We evaluate the performance of the selected EMO algorithms
using widely-used unary and binary multiobjective perfor-
mance indicators. First, the calibration results are analyzed
using a unary performance indicator and attainment surfaces
in Section V-B1. Then, we continue the analysis by means
of a binary performance indicator and a statistical test in
Section V-B2.

1) UNARY PERFORMANCE INDICATOR AND ATTAINMENT
SURFACES
Unary performance indicators evaluate a single Pareto front
approximation individually. We have selected hyper-volume
ratio (HVR) [13] as our unary performance indicator. HVR
measures the distribution and convergence of a given Pareto
front approximation. It is defined asHVR = HV (P)/HV (P∗),
with HV (P) being the volume of the given Pareto front
approximation and HV (P∗) the volume of the true Pareto
front. However, we do not know the true Pareto front for
any of the model instances, so we use a pseudo-optimal
Pareto front for computing the HVR values instead. The
pseudo-optimal Pareto front is an approximation obtained
by merging all the Pareto front approximations generated
by every algorithm for that instance in every independent
execution and removing the dominated solutions.

Table 2 shows the computed values of HVR for the result-
ing Pareto front approximations of each algorithm for every
model instance. These values are presented using the aver-
age of the individual HVR values computed for the indi-
vidual Pareto front approximations resulting in each of the
30 algorithm executions. The average HVR values show
that MOEA/D consistently achieves better values than the
other algorithms for most model instances, obtaining the best
average HVR in all but four instances. However, for these
four instances MOEA/D obtains values close to the best
ones. For example, in P9 and P12 the best HVR values are
obtained byMOMBI2 (0.863 and 0.824), closely followed by
MOEA/D (0.857 and 0.812). In addition, MOEA/D obtains
the best average value across the 15 instances with the second
lowest standard deviation. These results also highlight the

poor performance of the Nelder-Mead simplex method when
calibrating our problem instances. It obtains the lowest HVR
value for every problem instance with a very significant
difference with respect to the EMO approaches (an average
value of 0.321 while the worst performing EMO algorithm is
over 0.83).

The results of HVR can be visually corroborated using
attainment surfaces [60] for each model calibration instance,
reported in Figure 3. These attainment surfaces exhibit that
the surface obtained by MOEA/D (represented using green
filled circles) outperforms the other algorithms for most
instances. These surfaces are coherent with the HVR values
and P12 is the only problem instance where MOEA/D is
visually dominated by other algorithm (MOMBI2, repre-
sented by orange circles). Nevertheless, these surfaces also
reflect how every EMO algorithm performs competitively
for certain instances such as P2 where every attainment sur-
face converges to the aggregated Pareto front approxima-
tion. By using these surfaces we can also observe the visual
difference between Nelder-Mead and the EMO algorithms,
where Nelder-Mead’s surface is outperformed by every EMO
algorithm.

2) BINARY PERFORMANCE INDICATORS AND STATISTICAL
SIGNIFICANCE/TESTS
A binary performance indicator compares two given Pareto
front approximations generated for the same model instance.
Our selected binary performance indicator is the multiplica-
tive Iε measure [34]. The calculation of Iε(P,Q) for Pareto
front approximations P andQ is shown in the following equa-
tion: Iε(P,Q) = infε∈R{∀z2 ∈ B ∃z1 ∈ A : z1 �ε z2}. The
value computed by Iε(P,Q) represents the minimum factor
required to multiply every element in P in order to weekly
dominate Q. That is, the minimum ε so P ε-dominates Q. As
our calibration problem constitutes a minimization problem,
if Iε(P,Q) < Iε(Q,P) then we can assume that P is better
than Q.
Tables 3 and 4 present the multiplicative Iε values com-

puted for the resulting Pareto front approximations of each
algorithm for every model instance. These values are the
average of each possible Iε(P,Q), with P and Q being
any pair of Pareto front approximations of different algo-
rithms, resulting from any of the 30 independent executions
(i.e., a pair-wise comparison of every run). The values for
Tables 3 and 4 support the previous conclusions drawn from
the HVR indicator: MOEA/D outperforms the remaining
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FIGURE 3. Attainment surfaces for the different problem instances. Each attainment surface represents the aggregated Pareto front approximation
obtained by each algorithm: MOEA/D (green filled circles), SPEA2 (red squares), SMS-EMOA (yellow crosses), IBEA (brown asterisks), NSGA-II (blue
triangles), GWASF-GA (purple blades), MOMBI2 (empty orange circles), and Nelder-Mead (light purple empty circles). Finally, inverted triangles represent
the aggregated Pareto front.

TABLE 3. Average I-ε values for every pair of algorithms for P1, P2, P3, P4, P5, P6, P7, and P8 instances. Best values for each pair of algorithms are shown
using bold font.

algorithms for most model instances. MOEA/D obtains a
lower average Iε value for every comparison with the other
algorithms, with the exception of P2, where GWASF-GA
obtains a better indicator value. The Nelder-Mead’s simplex
method is again outperformed by every EMO algorithm in
every model instance.

In addition, we develop a statistical test and study the
significance of the Iε values to avoid that isolated results
could bias our former analysis.We perform this test following
the methodology described in [61], [62]: let N be the number
of repetitions of two algorithms A and B; then let Ai and Bj
be two arbitrary resulting Pareto front approximations with
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TABLE 4. Average I-ε values for every pair of algorithms for P9, P10, P11, P12, P13, P14, and P15 instances. Best values for each pair of algorithms are
shown using bold font.

1 ≤ i ≤ N and 1 ≤ j ≤ N ; finally let pAi (Bj) be 1 if Ai dom-
inates Bj based on the computed Iε value (i.e., Iε(Ai,Bj) ≤ 1
and Iε(Bj,Ai) > 1) and 0 otherwise. Using pAi (Bj), we can
define P by the equation PAi (B) = 1/N ·

∑N
j=1 pAi (Bj) as the

percentage or resulting Pareto front approximations obtained
by algorithm B that are dominated by Ai.
We have included boxplots representing the resulting ε

dominance percentage values in Figure 4, which contains
the computed PA(B) for every pair of algorithms and each
model instance with the exception of Nelder-Mead’s sim-
plex method, which has been widely outperformed at this
stage of the analysis. In these charts we can observe how
MOEA/D generally obtains bigger dominance percentages
than the remaining algorithms. On the one hand, the boxplots
on the right of the MOEA/D label contain the values of
PB(MOEA/D). In these charts we can observe how both their
boxes and whiskers cover a considerable percentage of the
interval, implying a big dominance probability. In contrast,
boxplots below the MOEA/D label contain the values of
PMOEA/D(A), where we can notice that, in general, the values
for all instances but P9 are small. This is coherent with the
previous conclusions of our analysis asMOEA/Dwas already
outperformed by other algorithms in instances like P9.

Finally, we can consider vector PA(B) = PA1 (B), PA2 (B),
. . . ,PAN (B)) as a random variable representing the percent-
age of times that algorithm A outperforms algorithm B, since
it is the proportion of resulting Pareto approximations of
algorithm A dominating the Pareto approximations delivered
by algorithm B. Therefore, if the expectation of PA(B) is
greater than the expectation of PB(A) we can claim that A is
better than B because it is more likely that the resulting Pareto

approximations of A dominate those obtained by B. Our
selected test is the Wilcoxon ranksum test (null hypothesis
E(PA(B)) = E(PB(A)), alternate hypothesis E(PA(B)) >

E(PB(A))), seeing that it has proven to be useful when ana-
lyzing the performance of evolutionary algorithms [63]. The
significance level considered is 0.05.

Table 5 shows the significance for the resulting p−values
of the statistical test. These results are again consistent
with the previous indicator values, as MOEA/D shows
an outstanding and robust behavior, being able to per-
form significantly better than the remaining algorithms in
most instances. Hence, MOEA/D is the best performing
decomposition-based algorithm for our problem, since it
almost always outperforms GWASF-GA. Regarding the per-
formance of the rest of the algorithms, we can see how
the Pareto dominance-based EMO algorithms (NSGA-II and
SPEA2) outperform most of the algorithms for the first seven
instances. However, if we compare these two algorithms,
we can observe that SPEA2 does not significantly outperform
NSGA-II in any instance, suggesting that NSGA-II is the
best algorithm from this family when dealing with the ABM
calibration problem. SMS-EMOAwould be the best perform-
ing indicator-based EMO algorithm but we can find some
instances like P12 where it is outperformed by MOMBI2.

Nevertheless, the behavior of MOEA/D is eroded when
dealing with specific instances like P6 or some of the bigger
instances like P9, P12, and P15. Although MOEA/D obtains
the best HVR values for some of these instances, the statisti-
cal tests revealed that it is dominated by other algorithms. In
the case of P6, SMS-EMOA and NSGA-II are the best per-
forming algorithms and significantly outperform MOEA/D.
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FIGURE 4. Boxplots representing the ε dominance percentage values for each model instance and every pair of EMOs.

As we pointed out, MOMBI2 arises as the best performing
algorithm for the P12 model instance. The p-values for the
P9 instance, where SMS-EMOA and IBEA perform signif-
icantly better than the other algorithms, with SMS-EMOA
finally outperforming IBEA. SMS-EMOA shows better con-
vergence for this instance, which explains the better domi-
nancePB(A) values shown at Figure 4 and corroborated by the
statistical test. Finally, SMS-EMOA is the best performing
EMO for the P15 instance, as it dominates the remaining
six algorithms despite obtaining the fourth average HVR
value, which shows the great convergence of SMS-EMOA for
this instance. Therefore, we can observe how SMS-EMOA’s
specific features (such as its combination of hypervolume
maximization and its replacement strategy) are effective with
optimization problems with these characteristics.

C. DRAWBACKS OF THE METHODS
The previous sections have shown how the EMO algorithms,
specially MOEA/D and SMS-EMOA, successfully perform
in our ABM calibration problem. However, we also acknowl-
edge that these algorithms present certain drawbacks. For
example, we can observe how the increased dimensionality of
the bigger instances erodes the behavior of most algorithms
(we will analyze the impact of the dimensionality in next

Section V-D). The drawbacks of the EMO algorithms are
presented next:
• The main drawback of MOEA/D is its sensitivity to the
properties of the different problem instances, further dis-
cussed in Section V-D. In addition, we can observe how
the increased dimensionality reduces its performance.
This can be identified even if MOEA/D outperforms
other algorithms. For example, the values of Table 2
show that its HVR value for instances bigger than P8 do
not surpasses the computed average HVR value for
every instance, showing a decay of performance even
when outperforming other algorithms.

• SPEA2 and NSGA-II present similar drawbacks.
According to their p-values, they perform competi-
tively for the instances below P10, where they signif-
icantly outperform several EMO algorithms. However,
they reduce their performance, specially for the bigger
instances, where they are outperformed by IBEA and
GWASF-GA. In addition, a direct comparison between
SPEA2 and NSGA-II reveals that NSGA-II is better in
most instances.

• SMS-EMOA is the most robust EMO algorithm regard-
ing the dimensionality of our calibration problem. This
could be related to its combination of hypervolume
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TABLE 5. Significance of the results with respect of the computed p−values for every EMO algorithm against the other methods for every model instance.
Cells marked as + represent statistical significance.

maximization and the replacement strategy that mainly
targets the solutions that contribute poorly to the hyper-
volume of its respective fronts. However, SMS-EMOA
is unsuccessful dealing with the smaller instances since
it barely outperforms GWASF-GA and IBEA for the
instances below P6, where its strategy seems to obtain
a lesser impact.

• IBEA and GWASF-GA also present similar drawbacks.
In general, they both show a poor performance for our
ABM calibration problem, with the only exceptions of
P9 for IBEA and P14 for GWASF-GA. However, this
can be related with the loss of performance observed in
the rest of the algorithms.

• Finally, MOMBI2 stands out by obtaining the best HVR
values for two instances and increasing its performance
with the number of decision variables of the instances.
Nevertheless, its behavior seems unstable, since it out-
performs the remaining algorithms for P12 but fails to
outperform any of them for P14.

D. INFLUENCE OF THE INSTANCES’ PROPERTIES ON THE
ALGORITHMS’ PERFORMANCE
In view of the results obtained by both the unary and
binary indicators, we can observe how specific properties
of the problem instances are affecting the performance of
the evaluated EMO algorithms. These properties are the
shape of the feasible region, the shape of the Pareto front,
and the dimensionality of the problem instance. Some stud-
ies [64], [65] have pointed out a relationship between the
performance of decomposition-based EMO algorithms (such
as MOEA/D, the best performing algorithm in our study)

and the shapes of both the feasible region and the Pareto
front.

Figure 5 shows an approximation to the search space con-
figuration of the problem instances tackled in the current
contribution using scatter-plots. In addition, Figure 6 displays
the shape of the Pareto fronts. The shape of the feasible region
is approximated by sampling 100,000 random configurations
for each problem instance. In the plots in Figure 5, we can
observe that the search space extent is considerably bigger
for P2, P6, P7, and P10 instances when compared with the
rest of the problem instances. Therefore, the shape of the
feasible region for these instances can explain their difficulty,
specially for the performance of the EMO algorithms that
employ reference points [65].

We approximate the shape of the global Pareto fronts by
using the aggregated Pareto fronts, which contain the overall
non-dominated solutions obtained for each problem instance.
In the plot in Figure 6, we can observe that P2, P6, and
P10 instances have a long tail shape compared with the rest
of instances. These long tail shapes can explain a reduc-
tion of performance for the algorithms using weight vec-
tors because these shapes are non-symmetric and mismatch
a distribution of uniformly generated weight vectors [64].
Hence, the problem instances with these properties may
require a customized set of weight vectors for improving its
performance.

We can also observe how these instances’ properties pro-
duce different effects on the behavior of the EMO algorithms
for the identified instances P2, P6, P7, and P10:
• In the case of P2, it was observed how most EMO
algorithms obtain HVR values over 0.95 and compete
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FIGURE 5. Sampled solutions for the different instances using 100,000 random configurations. The non-dominated solutions are coloured in red. The axis
of the charts have been fixed for comparing the different shapes of the feasible region for each problem instance.

FIGURE 6. Approximation to the shape of the Pareto fronts using the aggregated Pareto fronts for each problem instance. Each front contains the overall
non-dominated solutions obtained for each problem instance.

similarly, since MOMBI2 is the only EMO that results
dominated by the rest of EMOalgorithms. Thus, the long
tail shape of the P2 instance is not sufficient for erod-
ing the behavior of the EMO algorithms, but this
could be explained by reduced the number of variables
considered by this instance (only 40).

• With respect to the P6 instance, we have seen
that MOEA/D obtains the best HVR values, closely

followed by SMS-EMOA and NSGA-II. Despite that,
the results of the statistical test pointed out that
MOEA/D is dominated by SMS-EMOA and NSGA-II.
A deeper analysis of the Pareto sets obtained by
MOEA/D’s in its individual runs reveals that for
some of these runs MOEA/D performed poorly.
This lack of consistency solving P6 explains why
is dominated by SMS-EMOA and NSGA-II although
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it obtains a better average HVR value across the
30 runs.

• It can be observed that the shape of the feasible region
for P7 is not so long-tailed as other instances, but it is
still remarkable. However, the results for this instance
are comparable with those obtained for other regular
instances, as MOEA/D is clearly the best performing
algorithm (obtains the best HVR values with some mar-
gin and significantly outperforms the remaining EMOs).
This suggests that the shape of the feasible region
for P7 is not wide enough for eroding MOEA/D’s
behavior.

• In the case of P10, NSGA-II obtains the best HVR value,
closely followed by SMS-EMOA and SPEA2. However,
the results of the statistical tests for P10 showed that
none of the EMO algorithms is able to significantly
dominate more than two of the remaining algorithms.
Similarly to the P2 instance, it could be argued that most
EMO algorithms are performing similarly, but in this
case the HVR values are sensibly lower for P10 than for
P2. Because MOEA/D is the best performing algorithm
for most of the instances in this study, we can argue that
its behavior is more influenced by P10’s properties than
NSGA-II or SMS-EMOA.

VI. FINAL REMARKS
In this paper we have conducted an exhaustive analysis of
the performance of several EMO algorithms when calibrating
multiple instances of an ABM for marketing jointly con-
sidering global awareness and WOM volume as its main
outputs. Starting from an initial model instance built with real
data, we have synthetically generated 14 additional model
instances by changing the market characteristics to achieve a
progressive dimensionality increase. Using this set of bench-
marks, we have tested the calibration performance of seven
EMO algorithms from different families and a classical math-
ematical method. We have analyzed the calibration results
using both unary and binary performance indicators along
with Wilcoxon ranksum test for assessing the significance
of the results. In addition, we have used attainment sur-
faces for visually supporting the analysis of the performance
indicators.

The results of our experimentation allow to provide the
following insights:

• MOEA/D shows outstanding and robust behavior for
our problem, being able to perform significantly bet-
ter than the other EMO algorithms in most instances.
Therefore, the decomposition-based strategy proposed
byMOEA/D is clearly the best performing for the search
space of the analyzed problem.

• We could also observe how the performance of
MOEA/D was reduced when dealing with certain
instances. A deeper analysis of the shape of the feasible
region and the shape of the Pareto front of the instances
revealed that some of them have certain characteristics

that can affect the performance of decomposition-based
algorithms [64], [65].

• The calibration results on the high-dimensional
instances have shown that its dimensionality erodes
the performance of most of the algorithms. This is
not the only characteristic of the instances causing
this behavior in some of the algorithms. For instance,
SPEA2 and NSGA-II outperform most of the remaining
EMO algorithms for instances having less than 90 deci-
sion variables. However, their performance decays for
the biggest instances and IBEA and GWASF-GA are
able to outperform them.

• SMS-EMOA is the most robust EMO algorithm with
respect to both the dimensionality of the instances
and the shapes of their feasible region and Pareto
front. This suggests that the strategy used by the
SMS-EMOA, which combines hypervolume maximiza-
tion and a replacement strategy targeting those solutions
that poorly contribute to the hypervolume of its respec-
tive fronts, is effective when dealing with optimization
problems having these characteristics.

VII. PRACTICAL IMPLICATIONS AND FUTURE
DIRECTIONS
In view of our results, we conclude as final practical
implications that the calibration of similar ABM models
(i.e., high-dimensional models using a set of historical data
values that the model is intended to reproduce) can be
improved by using either MOEA/D or SMS-EMOA for tun-
ing their parameters. Although the performance of NSGA-II
is competitive for some of our model instances, we encourage
practicioners and modelers to go beyond the use of the most
popular EMO algorithm.

Future work will be focused on evaluating the possible
improvement of including qualitative pattern features, which
could be useful for minimizing the loss of information pro-
duced by the fitness functions [66], [67]. Since fitness func-
tions like those employed in our study mainly focus on the
distance between series of points, the aggregation of these
values can potentially loose the shape of the series in the
process. This issue can be solved in multiple ways. For
example, the current fitness functions could be modified
or additional objectives related to each of the model’s out-
put could be incorporated. Further research should clarify
which alternative produces the best results. Apart from the
use of qualitative patterns, other ABM consumer models
may require the calibration of additional key performance
indicators, such as the calibration of sales. Calibrating more
outputs could be approached by including them as additional
objectives, which defines a new scenario where the use of
many-objective EMO algorithms will be required. Besides
we believe that surrogate fitness functions would be useful
for future studies due to the high computational costs of sim-
ulating multiple times for every evaluation of a single model
configuration [68].
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