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ABSTRACT With the increasing application of battery energy storage in buildings, networks and trans-
portation, an emerging challenge to overall system resilience is in understanding the constituent asset
health. Current battery energy storage considerations focus on adhering to the technical specification of
the service in the short term, rather than the long-term consequences to battery health. However, accurately
determining battery health generally requires invasive measurements or computationally expensive physics-
based models which do not scale up to a fleet of assets cost-effectively. This paper alternatively proposes
capturing cumulative maloperation through a physics model-free proxy for cell health, articulated via the
strong influence misuse has on the internal chemical state. A Hidden Markov Chain approach is used to
automatically recognize violations of chemistry specific usage preferences from sequences of observed
charging actions. The resulting methodology is demonstrated on distribution network level electrical demand
and generation data, accurately predicting maloperation under a number of battery technology scenarios.

INDEX TERMS Battery energy storage, battery limitations, storage longevity, secondary batteries,
input-output hidden Markov model.

I. INTRODUCTION
Electrical Energy Storage (EES) is becoming an increasingly
important component in power distribution networks, with its
ability to accommodate uncertain demand and intermittent
renewable generation reducing the need for excessive standby
generation [1], [2], accommodating peak demands, grid fre-
quency regulation [2] and other services. Battery energy stor-
age (BES), among the lowest cost and most compact form
of storage, has great potential as the key provider of these
services but has limitations that need to be considered for
long-term practical operation. As an electrochemical device
that behaves according to its underlying chemistry, BES can
perform sub-optimally when exposed to conditions such as
fast charge and discharge rates, overcharge, over-discharge,
shallow or deep charging cycles and high or low temperature.
Prolonged maloperation can compromise useful life and in
some cases result in catastrophic failure. The understand-
ing of the difference between BES chemistries and their
behaviour under different operating conditions becomes vital
when matching them to an energy storage operation strat-
egy in the power system, otherwise high costs of premature
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replacement and resulting risk to system resilience can be
incurred.

Planning charge/discharge schedule of BES around its
chemical limitations to preserve its operational integrity,
presents an additional layer of complexity over the EES
scheduling problem: not only do demand and generation need
to be anticipated and charge/discharge actions dispatched, but
these also must be done within the chemical constraints of the
battery.

BES are capable of providing multiple network services
such as energy bulk services (arbitrage [3], support of renew-
able integration [2], [4], [5]), ancillary services (regulation
black start, load following and ramping, frequency response
[6], [7]), transmission and distribution infrastructure ser-
vices [7], [8], customer energy management services (power
quality and reliability [9], [10]), but these rely heavily on
optimal scheduling to leverage their flexibility. The need to
work within cell chemical limits may hamper the provision
of these services and requires a model of battery behaviour,
or rather preferred battery behaviour, which articulates the
bounds of operation for this device according to its chemistry.

Battery models developed to-date can be divided into
four groups: namely physics models [11]–[13], equiva-
lent circuits models [14]–[18], analytical models [19]–[21]
and data-driven models [23]–[32]. In the physics category,
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the electrochemical battery model [11]–[13], being the first
principle in nature, is one of the most accurate models but
also the least suitable to EES applications due to its com-
plexity, computational effort and need for detailed param-
eter values. These models will capture battery nonlinear
behaviour but will not directly address the estimation of the
state of charge (SoC) or state of health (SoH) [12], [32].
The second group of the battery models, electrical-circuit
models [14]–[16], describe battery behaviour with simple
electrical circuits where different electrical components like
resistors, capacitors and voltage source mimic the battery
cell characteristics. Most of these models capture I-V char-
acteristics; some can predict the runtime and can track the
SoC [18]. The simplified electric-circuit models [15]–[17]
are computationally fast and can be easily incorporated into
more complex systems and simulations tools [33] Unfortu-
nately, they do not integrate non-linear capacity behaviour
which leads to inaccurate predictions of the remaining battery
capacity and operating time [15] - which is crucial for bat-
tery management systems. Imprecise prediction of remaining
battery capacity can lead to battery over-discharging and
over-charging limiting its lifespan. Zhang et al. [34] devel-
oped an enhanced electric circuit model by combining the
electric circuit model developed in [15] with Rakhmatov’s
diffusion analytical model developed in [19]. The resulting
model is capable of capturing the battery recovery effect
but its applicability for performance prediction for battery
management systems is limited due to the complexity of the
analytical part of the model [35]. The next group of models
are analytical models such as the Rachmatov and Vrudhula
diffusion model [19], [20] and the Kinetic battery model [21],
while easily implemented, these lack a means of accurately
capturing the potential degradation that is important to stor-
age asset health. The last group are data-drivenmodels widely
used for battery SoH estimation and prediction due to their
flexibility and being model-free [32]. Among these models,
numerous approaches to predict battery SoH and remaining
operating time were used such as Bayesian network [22],
neural network [24], support vector machine [25], artificial
neural network [26], fuzzy logic [27] and Gaussian Process
Regression [28]. The advantage of data-driven models is that
they require little or no knowledge of the complex electro-
chemical mechanisms taking place in the battery cell [36]
and they have good performance to nonlinear problems [37].
The drawback of those methods is that they require a sig-
nificant amount of experimental data from extensive and
often complex laboratory tests, which is time-consuming to
obtain [36], [38]. The testing of long term ageing effects
in real operating conditions may span 6-11 years depending
on battery technology. It can be accelerated to 1-2 years
under laboratory conditions [39], however with the current
development of the high-performance batteries [40]–[42]
characterised by an extended lifetime, obtaining a sufficient
amount of ageing data becomes a more resource-intensive
task. Another drawback of these models is that their perfor-
mance heavily depends on the quality and quantity of data

available for modelling and applying the modeling technique
[37]. Moreover, it is difficult to reproduce realistic operating
regimes in the laboratory settings, thus the resulting model
can be more error prone in online prediction [36]. Another
group of data-driven models are stochastic models of battery
discharging and charging processes based on Markov Chains
that were developed to model primary (non-rechargeable)
[29], [30] and secondary (rechargeable) batteries [23], [31].
These models assumed a fully observable state space where
the SoC was represented as a Markov Chain whose state
transitions captured the charging and discharging process.
While these models attempt to estimate SoC, most of them
do not quantify how it was achieved, obscuring a high charge
rate or a micro-cycle.

The model introduced in this paper is based on the Hid-
den Markov Model (HMM) which stochastically models the
battery limitations imposed by its chemistry as a combi-
nation of present and previous sequential charging actions,
and articulates the preferred operating regime as a measure
of health consequence. In contrast to models based on the
Markov Chain introduced in earlier works, it addresses the
issue of the partially observable state space which is a more
realistic assumption due to the inability to observe the internal
state and chemical processes taking place inside the cell.
With scalability in mind, the approach applied in this work
requires no telemetry other than would be required to meter
the use of the battery, unlike other data-driven methods,
the model developed does not require extensive or invasive
laboratory battery performance data; training data is instead
generated based on simplified knowledge of preferences to
operating regime dictated by battery chemistry. Additionally,
only a single input is used to predict the maloperation level
that approximates SoH of BES compared to multiple inputs
required in other data-driven models; for example, three
inputs (temperature, discharge current and end-of-discharge
voltage) required in the model based on a Bayesian network
proposed in [22] and three (charging time, the instantaneous
voltage drop at the start of discharge, the open-circuit voltage
of a fully discharged battery) in the model based on the
probabilistic neural network applied in [26]. The resulting
model developed here makes predictions simply based only
on the operating regime imposed on the device (e.g. actions
set by a BES controller) thus minimising requirements for
extensive monitoring of battery parameters across an asset
fleet.

The paper is structured as follows: the physics of battery
health is discussed in Section II, providing a selection of
contemporary battery storage types along with an explana-
tion of how their chemistry dictates restrictions to opera-
tion. This section concludes with an articulation of the rules
that constitute the general guidelines for managing battery
health within charging regimes. In order to accommodate this
relation in the inherently stochastic operational environment,
the use of Input-Output Hidden Markov Models (IOHMM)
is introduced along with its saliency to the application in
Section III. Section IV provides operational case studies on

54580 VOLUME 9, 2021



J. Sobon, B. Stephen: Model-Free Non-Invasive Health Assessment for BES Assets

a low voltage (LV) community energy system comprising
photovoltaic (PV) generation in order to show the impact
of various charge profiles on battery health. Section IV also
demonstrates the agreement of the proposed model with
capacity degradation observed in lab-based battery tests.

II. BATTERY CHEMISTRY CHARGE CONSTRAINTS
All batteries experience a decline in capacity which can be
accelerated if the battery is subject to stress factors such as
temperature, a high or low state of charge, high depth of
discharge, cycling under a partial state of charge and long
intervals between recharging to fully charged state [43], [44].

This section describes the underlying chemical processes
dictating the operational constraints for different recharge-
able battery chemistries currently used as BES in the energy
sector and is concluded with a definition of the charging rules
for different battery types.

A. LEAD-ACID BATTERY
Possibly the most established type of battery, the lead-acid
battery takes a number of forms but two dominant tech-
nologies, valve-regulated lead-acid battery (VRLA - sealed
lead acid) and flooded lead-acid are considered here. Both
types are chemically alike but have fundamental differences
in construction impacting on their behaviour during cycling
and therefore possible applications.

Lead-acid batteries are sensitive not only to overcharging
and overdischarging but also to chronic undercharging: if
not fully charged, a harmful build-up of sulphate crystals on
the electrodes in a process called sulphation [45], [46] raises
the battery internal resistance. When sulphation is prolonged,
crystals reach a size that cannot be easily broken down by the
charging process, meaning irreversible damage [45] Hence
the lead-acid battery should be stored in a fully charged state
to prevent performance deterioration.

Overdischarging of the lead-acid battery or storing it in
a discharged state too long leads to the occurrence of the
hydration process where lead hydrates are deposited on the
separators leading to permanent damage from short circuits
between negative and positive plates during recharging [46].

B. NICKIEL-CADMIUM BATTERY
The stability of the active materials gives nickel-cadmium
(NiCd) batteries the potential of maintaining stable capacity
and internal resistance over 1000 cycles until rising self-
discharge compromises performance [47]. A NiCd battery
experiences a memory effect when repeatedly shallow cycled
which limits the possible applications to those that allow deep
cycling operation or those that permit conditioning [47].

Loss of capacity due to repeated charging battery before
it is completely discharged can be reversed by conditioning
charging, performing a couple of charge cycles after the full
discharge of the battery [47]. NiCd has a high self-discharge
rate of 10-15% per month [48].

The NiCd can be charged with the rate of 1C and achieve
a high percentage of nominal capacity in just 55 minutes;

increasing the charging rate to 2C, a low charging cur-
rent rate needs to be applied at the end of charging until
full charge state to prevent damage of the battery due to
overcharging [49].

C. NICKEL-METAL HYBRID BATTERY
Nickel-metal hybrid (NiMH) batteries were designed to elim-
inate the memory effect shortcomings of the NiCd battery by
using hydrogen-absorbing metal for the negative electrode.
The NiMH battery is characterized by high self-discharge,
around 20% in the first 24 hours and 10%monthly afterwards,
and low cycling life, strongly influenced by deep discharges,
overcharges and elevated temperatures [50].

Due to intensive heat generation during fast charging and
high-load discharging, the application of this battery technol-
ogy should be limited to those with slower rates of charging
and the elimination of possible high-load discharge events.
The charging rate of the NiMH battery above 0.5 C can be
dangerous due to the fast raising of internal battery tempera-
ture [49]. Additionally, charging at higher rates, 1 C, is inef-
ficient and causes a reduction of battery standard capacity to
less than 65% from before charging event [49].

D. LITHIUM-ION BATTERY
The lithium-ion battery has a self-discharge rate much lower
than NiCd, typically up to 5% per month [51]. It does not suf-
fer the memory effect compared to NiCd technologies, does
not require periodic cycling like lead-acid or nickel-cadmium
to prolong the life and also tolerates microcycles (minimal
charging can actually prolong life) [52].

Lithium-ion batteries cannot tolerate overcharge and over-
discharge. During the overcharging of the cell excess energy
is produced due to exothermic decomposition of the cathode
material leading to oxygen production [53] and fast cell tem-
perature rise which in turn leads to thermal runaway of the
cell and potential fire and explosion risk [54].

Overdischarging or low voltages, below low threshold volt-
age limit of the lithium-ion cell, 2.7V, influence the battery
performance due to the collapse of the lead lattice [54].

During over-discharge or extremely low voltages, the elec-
trolyte reduction and the production of the combustible gas
occurs introducing potential safety risks [54]. Recharging
over-discharged cell can lead to a short circuit within the
cell due to copper dendrites, which form on the negative
electrode [54] and irreversible damage to the cell. The battery
technology can be chargedwith relatively fast rates, 1C or 2C,
only if the upper charge voltage limit is not reached [52].

E. VANADIUM REDOX FLOW BATTERY
TheVanadiumRedox FlowBattery (VRFB) can reach 12000-
13000 cycles [55] and is not directly influenced by the depth
of discharge as long as the battery is operated within its
voltage limits [55], [56]. The long cycle life is the result
of a lack of change in the electrode material during cycling
operation that would limit the cyclic lifetime of conventional
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batteries due to electrode material degradation over time
[57], [58].

The VRFB does not experience life degradation due to
repeated deep discharges, can be stored completely dis-
charged for long periods without a negative effect on its
performance, can be over-discharged within the limits of
the capacity of the electrolytes, but overcharging must be
prevented [58]. In the overcharged state, oxygen and hydro-
gen evolution occur at the positive and negative electrodes
respectively leading to interruption in electrolyte flow that
reduces the operational state of charge and decline of the
battery efficiency [59].

The VRFB can be charged and discharged at any rate [60],
however, the cycle efficiency decreases when the charging
rate is too high due to oxygen and hydrogen evolution that can
occur during rapid recharge [61]. It is also claimed that VRFB
can withstand fluctuating power demand without any signs
of performance deterioration [58]. Similar to the lithium-ion
battery, the performance of VRFB is not affected by micro
cycling [58].

F. ZINC-BROMINE FLOW BATTERY
Zinc-Bromine battery (ZnBr FB) has a cycle life in the range
of 2000 cycles and is not affected by the depth of discharge
which actually promotes battery health by removing zinc
deposits on the negative electrode as well as zinc dendrites
[62], [63]. If the operating regime of the battery does not
allow full discharge every cycle, the full discharge should
be performed every couple of days to maintain battery life
[63]. Overcharging, in the extreme case, leads to electrolysis
of the electrolyte and the production of water leading to
irreversible damage of battery cell. A major drawback of the
ZnBr FB is its high self-discharge rate which is attributed
to diffusion of Br2 from the bromine side electrode, across
the membrane, to zinc electroplated electrode and subsequent
oxidization of the plated zinc that causes the decline of the
battery charge when stored unused in the fully charged state
[64]. The charging and discharging rate have an important
impact on the performance of ZnBr FB. An increase in the
rate of charge/discharge decreases the cycle efficiency of this
technology [58].

G. SODIUM SULPHUR HIGH-TEMPERATURE BATTERY
SodiumSulphur batteries (NaS) have a very low self-discharge
rate due to the good conductivity of beta-alumina solid
electrolyte for sodium ions and its insulating properties for
electrons - characteristics that do not allow cross mixing of
active materials with electrodes [65].

The beta-alumina ceramic electrolyte used, in its solid
state, separates the active material of molten electrodes and
allows sodium ions to flow from the negative to the posi-
tive electrode during charging processes and in the opposite
direction during discharging of the cell [66]. NaS has a high
cycling efficiency of 80-90% [65] with only a small portion
of the energy used to maintain battery operational temper-
atures [66]: NaS operates in temperatures in the range of

300-350 ◦C to maintain the molten state of the positive and
negative electrode, made of Sulphur and Sodium respectively
[67], [68].

This battery type has long cycle life in a range of 3500 to
5000 cycles at 80% depth of discharge [65] due to the absence
of morphological changes of electrodes due to their molten
state [69], which is a limiting factor for batteries with solid
electrodes. One of the important advantages of the NaS bat-
tery is its flexible operation over a wide range of different
charging/discharging rates and depth of discharge. However,
during overcharging, the solid electrolyte can be damaged due
to ceramic breakdown and the cell voltage can be reduced due
to insulating properties of molten Sulphur, the final product
of charging [66]; overdischarging of NaS battery leads to irre-
versible chemical changes in Sulphur electrode, where high
resistance solid Na2S2 is formed, leading to poor recharging
performance and even structural damage [66].

H. ARTICULATION OF RULES REQUIRED FOR MODEL
TRAINING
Table 1 summarizes the operating preferences for the battery
chemistries documented in this section. The term charge
sensitivity, used in the table, means the preference of the bat-
tery cell to: not being overcharged (charged above the maxi-
mum energy that battery can safely accept), over-discharged
or undercharged (more specifically, partially charged). The
cycle preference describes how deep the battery prefers to be
discharged. Here ‘deep’ means continuous discharge until it
is fully discharged, identified when the battery cell reaches its
cut-off voltage. This is an important preference for the NiCd
and ZnBr batteries as it can prevent the memory effect occur-
ring [47] in NiCd battery and avert zinc dendrite formation
potentially resulting in separator puncture for ZnBr batteries
[62], [63]. A shallow cycle means discharging the battery to
some point, for example, 50% of the SoC. This is particularly
important for the lead-acid battery which prefers to be shal-
low cycled; deep cycling can accelerate softening of the active
material leading to capacity loss [70]. In contrast, the ZnBr
battery prefers to be deep cycled as it helps remove zinc
dendrite formations from the battery cell [63]. Micro-cycling
here is defined as constant charging and discharging without
a prior complete cycle of the device. The charge condition
describes the battery preference to reach a particular state
of charge to ensure device healthy operation (full –SoC at
practical maximum, empty - SoC at practical minimum).
For example, a lead-acid battery prefers to be fully charged
before discharging in order to prevent sulphation processes
occurring, thus positively influencing battery health [45].
On the contrary, ZnBr battery prefers to be fully discharged
before charging again to break down the zinc dendrites cre-
ated during battery cycling [63]. The last term, idle SoC,
is the one in which a battery prefers to be kept in when at
rest. As an example, lead-acid batteries have a preference for
being stored fully charged as it can prevent battery perfor-
mance deterioration due to the sulphation process occurring
as a consequence of self-discharge [44]. For ZnBr batteries,
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FIGURE 1. Cell performance for commonly used battery chemistries in
contemporary BES [48], [71]–[73].

TABLE 1. Battery operating preferences.

the preferred idle SoC is the fully discharged state, as it
can prevent oxidization of the plated zinc leading to loss of
charge [63].

Long-term cell performance for the same battery
chemistries is shown in Fig. 1 [48], [71]–[73]. Based on
the operating preferences of the batteries, Table 1, the set of
rules dictating the favoured operation from the battery health
point of view are defined. These rules are then learned by
the developed BES models. The rules are dictated by battery
chemistry and therefore are different for each battery type,
with some similarities between some types of batteries; for
example, a rule to discharge device fully before recharging
again applies to both ZnBr FB and NiCd batteries. Although
this rule is the same for both batteries, it is dictated by
completely different chemical reactions taking place inside
cells when running contrary to preference (specifically the
memory effect for NiCd battery and dendrite formation in
ZnBr FB).

To train the prediction models, the set of preferences for
each battery chemistry are summarised in Table 1. These
are used to create rules which will label exemplar charge
schedule actions according to the resulting impact on the
battery health. Taking the lead-acid battery as an example,
the resulting preference rule consequents would be: ‘do not
overcharge’, ‘do not overdischarge’ and ‘do not undercharge’
for generation surpluses, sustained generation deficits and
prolonged high demand rule antecedents respectively.

III. INPUT-OUTPUT HIDDEN MARKOV MODEL OF
BATTERY PERFORMANCE
Operationally, the modelling challenge being faced is
recognising maloperation from observed sequences of
charge/discharge actions – this is inherently stochastic as well
as dependent on ordering and recency of previous actions.
While degradation from maloperation will be modelled, it is
assumed that the BES operating environment is not hostile
and that the sole threat to asset life is through misuse.

An IOHMM is proposed as a means of capturing
the stochastic nature of the charge process impact on
non-observable battery chemical states but also by introduc-
ing time dependency of these state transitions and relation
to preferred actions. IOHMM assumes that the next state
depends only on the current state (Markov assumption),
the probability of output observation depends only on the
state that produces this observation (observation indepen-
dence assumption) [74], and the probability of state transition
depends on the time when the transition took place [75].
IOHMM have previously been used in a variety of appli-
cations ranging from sequence processing in grammatical
inference problems [76], synthesis of facial animation from
audio [77], hand gesture recognition [78], modelling of finan-
cial returns series [79], modelling of forecasting of electric-
ity prices [80] and fault diagnosis and prognosis of diesel
generators [81]. This method accommodates incomplete data
(unobserved internal state of the battery), captures long-term
dependencies in data and captures the stochastic character of
the overall modelled energy system.

A. INPUT-OUTPUT HIDDEN MARKOV MODEL
The IOHMM is used for supervised learning of time
series data and defines the conditional distribution
P(y1, . . . , yT |u1, . . . , uT ) of an output sequence yT =

y1, y2, . . . , yT given an input sequence uT = u1, u2, . . . , uT .
The IOHMM is a doubly stochastic process in which

the underlying dynamic process cannot be observed directly
instead being observed through another stochastic process as
a function of the first one. The latent and output variables
of the IOHMM are influenced by the input variable, often
called the control signal, resulting in non-homogeneous (time
dependent) Markov chain [75]. In consequence, the dynam-
ics of the system defined by the transitions probability in
IOHMM changes with time according to the input signal.

The IOHMM can be defined as a tuple:

H = 〈Z , �,U ,A,B, π〉 (1)
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FIGURE 2. Diagram of IOHMM indicating the information flow in the
maloperation model. Notation: u – input signal (scheduled action for the
storage: ‘perform charge’, ‘discharge’, ‘hold’), x – output signal (preference
index: ‘positive’, ‘negative’, ‘zero’), zt – hidden state of the battery at
time t.

where:
Z = {z1, z2,. . . ,zn} is a set of N states,
� = {x1, x2 ,. . . , xM} is the observation sequence,
U = {u1, u2,. . . , uK} is the input signal sequence,
A= {aijk} is the transition probability matrix, where aijk is

probability of transition from state i to j at time t, given input
signal signal ut = k, aijk = P(zt+1 = j|zt = i, ut = k),
B = {bi(k)} is the observation distribution probability,

also called emission probabilities of an observation xt being
generated by state zt = i given input ut = k,
π = {πi} is the initial state distribution where πi is the

distribution of the system starts in state zi.

B. IOHMM SPECIALIZATION TO BATTERY OPERATING
STATE
The model framework proposed comprises the set of
actions, observables and hidden states that encapsulate the
time-dependent chemical processes taking part inside the
battery during operation. Among the actions comprising
the input signal to the model, ‘u’ in Fig. 2, there are three
possibilities: perform charge, discharge or hold.

The model observables, the output from the model, ‘x’
in Fig. 2, are the battery preference indexes emitted by the
unobservable chemical internal states of the battery due to
the performed action, ‘z’ in Fig. 2. This observed index can
be either: positive, indicating the positive effect on the battery
due to the performed action, negative indicating that battery
is harmed by the performed action because it was contrary
to preferences dictated by its chemistry, or zero indicating
that battery neither benefits nor degrades as a consequence
of the action. Dependencies between the states and transitions
between states resulting from a particular action are modelled
as an IOHMM with the information flow shown in Fig. 2.

The introduction of a latent variable facilitates the mod-
elling of micro-cycling, preference to be fully charged or
discharged before discharged or charged again, respectively
and similar phenomena into the battery model.

Training data D is used to find optimal parameters of the
IOHMM. D is the set of R pairs of input/output sequences,
where the input describes the action that is scheduled to
perform by BES and the output of the model is the resulting
preference index describing the battery preference to the
performed action dictated by cell chemistry:

D def
=

{
(uTr1 (r), xTr1 (r)); r = 1 . . .R

}
(2)

The training set D was generated based on the set of rules
articulated in Section II (H – Table 1) and on resources
available in the system.

C. IOHMM PARAMETER ESTIMATION
The optimal parameters of IOHMM, transition probabilities
and observation probability matrices learned using a for-
mulation of the Expectation-Maximization (EM) algorithm
proposed in [76] for training IOHMM that is similar to the
Baum-Welch algorithm used to train an HMM [74]. EM is
a general technique that is used in the estimation of the
distribution with hidden data. This is an iterative approach
to maximum likelihood estimation (MLE) that aims to maxi-
mize the log-likelihood function

l (2;D) = log(L(2;D)) (3)

where 2 are the model parameters and log-likelihood
function is defined by

L (2;D)
def
=

∏R

r=1
P
(
xTr1 (r) | (uTr1 (r) ;2)

)
(4)

As the state variables zt (describing the path in the state space)
are not observed, (4) is treated as parameter estimation with
missing data. Let Df be the complete data set defined as

Df
def
=

{(
uTr1 (r) , x

Tr
1 (r) , zTr1 (r)

)
; r = 1 . . .R

}
(5)

and corresponding complete-data likelihood is

Lf
(
2;Df

)
=

∏R

r=1
P
(
xTr1 (r) , zTr1 (r) | (u

Tr
1 (r) ;2)

)
(6)

Due to the unobservable nature of state variables Z,
Lf
(
2;Df

)
cannot be maximized directly. The solution

requires the introduction of an auxiliary function

Q(2; 2̂) = E[Lf
(
2;Df

)
|D, 2̂] (7)

and iterating it over the distribution of Z in two steps until a
local maximum of the likelihood is found. Where Q(2; 2̂) is
expected value of complete data log-likelihood given model
parameters computed at the end of the previous iteration
2̂ and observed data D. The iteration steps comprise com-
putation of Q(2;2k ) = E[Lf

(
2;Df

)
|D,2k ] for k = 1,

2,... (expectation step) and the parameters updates as 2k
=

argmax2Q(2;2k ) (maximization step). Application of EM
requires careful initialization of the parameters (specifically,
initial state transition probability, observation probability and
the initial state distribution) to avoid convergence in a sub-
optimal local minima - the standard practice of replications
with random restarts was employed is employed to address
this.
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D. RECOGNITION HEALTH INDEX SEQUENCES
For given cell chemistry, the trained model can be used to
predict an observation sequence of preference/health indices
given an input sequence of charge actions. The complete data
model was used, as in the Viterbi algorithm, to calculate
the joint values of the states and outputs that is the most
likely. This approach was applied due to high computational
requirements when calculating directly the output sequence
that is most likely given the input signal (which grows expo-
nentially with the sequence length). The algorithm (8) for
asynchronous IOHMM proposed by [82] was used.

V (i, t) = max
yz

(b(i, z, t) max
j
a (i, j, t)V (j, t − 1)) (8)

where V (i, t) is the probability of the best state and output
subsequence ending up in state i at time t;a (i, j, t) is the
probability of transition from state i to state j at time t,
given input ut = k; b(i, z, t) is the probability of observation
xz being generated by state zt = i at time t, given input
ut = k. The computational time of the proposed method is
equal to that of the Viterbi algorithm, which is employed for
the state sequence estimation and therefore the preference
index prediction.

IV. COMMUNITY ENERGY SYSTEM CASE STUDY
Training and testing of the model are performed on 30-minute
resolution historical data of electrical demand and PV gen-
eration measured at a community LV distribution feeder.
The model is applied to estimate what would happen to a
hypothetical battery as it is charged according to the pre-
dicted generation and the predicted demand on the basis of
self-supply maximization. The output from the trained model
on subsequently observed data is a cost measure that acts as
a proxy for battery health.

A. CASE STUDY DATA
A representative sample of three consecutive days of demand,
generation and storage schedule actions, are shown in Fig. 3.
Demand data (upper part of Fig. 3) have a noisy and volatile
character due to the low level of load aggregation typical at
LV level. This exhibits a peak value of 4.8 kW. The generation
data available (shown in the middle part of Fig. 3) has an
intermittent nature across its daily pattern, consistent with
small PV installations. A peak value of 8.6 kW (not shown)
was exhibited within the period considered.

These characteristics of demand and generation data make
the forecasting task challenging. This often results in large
forecasting errors, which in turn introduce uncertainty in the
system, thus making it difficult and demanding to plan the
BES regime. To capture and demonstrate the identification of
maloperation, a BES of 10 kWh was assumed, with a naïve
persistence generation forecast and a day ahead Gradient
Boost Machine forecast for the demand [83]. This scenario
has been designed to capture frequent instances of malop-
eration due to the excess of the generation with respect to
demand.

FIGURE 3. Three days of time series of demand, PV generation with the
resulting discrete schedule for the BES based on the forecast of demand
and generation under criteria of maximization of self-supply (storing
excess generated energy and using it to meet demand).

B. EXPERIMENTAL PROCEDURE
The battery model development process is divided into two
phases. In the first phase, the original sequence of the obser-
vations, preference/health indexes, were produced based on
the available resources, load requirements and a set of rules
described in the previous section that encoded operational
preferences of the battery summarized in Table 1 into the
health index. The index is assigned based on the battery pref-
erences for the action to be performed in relation to the pre-
vious actions and SoC, and is strictly battery type dependent.
When the action is in agreement with operational preferences
of the battery then the positive index is produced; when there
are no preferences to the performed action, the zero index is
produced; in other cases, the negative index is generated. The
resulting data set was split into training and testing sets in
the proportion of 70% to 30% of data respectively, to allow
training and then out-of-sample evaluation.

Next stage involves the generation of IOHMM based on
the original preference index, constituting output signal from
the model, and the input signal of the model, a sched-
uled actions for the storage, training dataset. The trained
model estimates the health index itself (output of the model)
based only on the input actions (input of the model). The
scheduled actions for energy storage: ‘perform charge’, ‘dis-
charge’ or ‘hold’, constitute the only required input to the
model; the information about BES state, SoC and previous
action is not required as this knowledge is encoded in the
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FIGURE 4. Flow chart of model development procedure with the flow of
information in the system. The blue dashed arrows indicate the external
inputs required, black arrows indicate the internal flow of information
and data. (For all battery types except lithium-ion battery, only
out-of-sample test I was performed due to absence of suitable test data).

IOHMM parameters. A flow chart of the model development
procedure with the flow of information in the system is shown
in Fig. 4.

C. MODEL SELECTION
The basic problem of the HMMand IOHMM implementation
includes the choice of hidden states number. The decision
basing only on the value of likelihood, by choosing the model
with the highest value, is not simply the best criterion as the
chosen model can be overfitting or can be computationally
intractable to use. Bayesian Information Criterion (BIC) is
minimized to decide the optimal number of hidden states for
the IOHMM based battery model. BIC is the form of penal-
ized log likelihood that allows a tradeoff between the model
likelihood and its computational complexity [84] which in
turn limits its ability to generalize. It can be represented as

BIC = − log
(
Lf
(
2;Df

))
+
k
2
∗ log (T ) (9)

where: Lf is a model likelihood (6), k is the degree of free-
dom or number of parameters in the model, and the length
of the training data is T . Applying BIC different battery
chemistries resulted in different numbers of states: 11 states
for Lithium-ion and NaS batteries, 12 states for NiMH, NiCd,
ZnBr FB and VRFB batteries, and 6 states for Lead-acid
battery. The change of BIC value with an increasing number
of states in the model for NaS battery is shown in Fig. 5.

The minimum value of BIC indicates the fewest number of
states for a model that gives the best likelihood of the model
when complexity as the penalty is applied.

FIGURE 5. BIC values for an increasing number of hidden states in the
IOHMM model of NaS battery.

FIGURE 6. Comparison of battery degradation measure in terms of
capacity loss and the maloperation level due to random
charging/discharging profiles for Lithium-ion battery.

D. VALIDATION OF METRIC AGAINST LABORATORY TEST
DATA
To assess the effectiveness of the proposed battery maloper-
ation model as a proxy for actual battery degradation, out-
of-sample testing was performed using publically available
detailed battery usage data obtained under lab conditions [85]
This dataset consists of current, voltage and charge schedule
information for a lithium-ion battery. Due to the minimal
input requirements for the IOHMMmaloperationmodel, only
the sequence of charge actions is required. The IOHMM
model output is compared against the measurement of battery
capacity from every 50 random cycles of operation. Compari-
son of capacity fade and cumulative maloperation/preference
index produced by the IOHMM is shown in Fig. 6.

From Fig. 6 it can be seen that the IOHMM maloper-
ation measure follows the trend observed in the capacity
of lithium-ion battery operated under random charging. The
level of battery maloperation reflects battery capacity degra-
dation due to ageing processes. During the first month of
operation, the IOHMM exactly follows the real degrada-
tion in capacity and then the maloperation model slightly
overestimates the battery degradation level. From an asset
management point of view, it is always more appropriate to
take the worst-case scenario into account rather than deal with
consequences of battery failure due to underestimating its
degradation level.
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FIGURE 7. The comparison of the state transitions distribution for input
signal one – ‘discharge action’ (blue, first from the left), two – ‘hold
action’ (red, in the middle) and three – ‘charge action’ (green, first from
the right) for (a) the Lithium-ion and (b) ZnBr FB batteries. Thickness of
arrows indicate increased probability of transition between the states.

Formally, Spearman correlation between the IOHMM out-
put and the capacity fade was 0.99 with a corresponding
p-value of 1.42∗10−4, indicating that the IOHMM model
metric can determine a measure of the battery degradation
with minimal knowledge of battery state, without invasive
measurements or an intensive physics-based model.

E. RESULTS AND DISCUSSION
From (1), the trained model consists of probabilities of emis-
sion of health index by state, initial state distribution a and
state transition probabilities matrix, examples of which are
given in Fig 7 for two battery models, ZnBr FB and Lithium-
ion. In the IOHMM the input variable can influence either
the distribution of the latent variable, output variable or both.
In the case of the NiMH, Lithium-ion and NaS battery models
the influence of input signal on transitions was not observed,
shown in Fig. 7 (a) on the Lithium-ion battery example.

For the Lead-acid, ZnBr FB, VRFB and NiCd batteries the
influence of the input signal on the state transition probabili-
ties was observed and is illustrated in Fig. 7 (b) for ZnBr FB.
For the purposes of this work, the latent variable structure is
valued for its ability to adapt to different functional forms; the
actual interpretation of this latent structure in chemical terms
is subject to further research.

The results presented in Fig 8 show that the health index
predicted by the models does not follow the short-term diur-
nal patterns of the actual index, although a general long-term
trend is recovered, providing valuable knowledge about the
impact of the forecast error. The prediction of the battery pref-
erence indexes at the end of the testing stage are summarized
in Table 2. Examples comparing the original cumulative pref-
erence indexwith cumulative index generated by the IOHMM
for Lithium-ion and VRFB batteries are shown in Fig. 8.
At the end of the test periods, the actual cumulative health
index of the VRFB is highest of all cell chemistries consid-
ered, which is in agreement with its more robust design. The
occurrence of the same value of the index for most battery
models except VRFB indicates that the batteries degrade at

FIGURE 8. The comparison of the original cumulative preference index
and index predicted by the IOHMM learned for the Lithium-ion (upper)
and VRFB (lower).

TABLE 2. Cumulative health index out of sample prediction.

the same pace, indicating that the maloperation metric is
reflective of the physical degradation process.

The actual cumulative health index, Fig. 8, is characterized
by diurnal patterns observed in the photovoltaic generation
data. The lower peak on the graph corresponds to the time
when the generation drops below the load requirements, and
the higher one when generation starts to exceed demand.
In the case of the Lithium-ion model, Fig 8(upper), the pre-
dicted index alternately overperforms and underperforms the
original index (point 1 and 2 on Fig 8(upper), respectively).

At the end of the test period, the predicted cumulative
index differed only by 5.99%. For the VRFB battery model,
the predicted preference index behaved in similar to that of
Lithium-ion until day six then starts to increasingly under-
estimate the maloperation index, Fig 8 (lower). At the end
of the test period, the predicted index differs from the actual
one by 16.6%. Underestimating the battery health can have
less severe consequences than overestimating it, but it could
lead to loss of the opportunity to use the BES or needless
replacement of the asset ahead of the end of its life.

V. CONCLUSION
As battery storage aggregation becomes more commonplace,
the management of the constituent battery assets will require
health metrics to ensure ongoing contractual turn up and
turn down commitments are fulfilled to their agreed capac-
ity. To address this, this paper has presented a non-invasive
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approach that predicts the extent to which a battery asset has
been maloperated.

The proposed IOHMM based metric captures the differ-
ences in the preferred operation of the battery, dependent on
its chemistry, that allows the incorporation of preferences like
micro cycling, deep cycling and maintaining full capacity.
By capturing the information on how well the battery is
operated in regard to its chemical preferences, the model
becomes a potential decision support tool for planning and
asset management tasks by increasing knowledge about suit-
ability of a BES for its intended application or the suitabil-
ity of the planned charging/discharging regime for a BES.
The IOHMM model can be potentially incorporated as the
cost function in a charge schedule optimizer, allowing bat-
tery health awareness in a BES management system to be
established.

Theminimal knowledge requirement alsomakes themodel
suitable when dealing with practical cases where installations
may comprise heterogeneous cell chemistries. While this can
undoubtedly be developed to support condition monitoring
and remaining useful life estimates, the wider interest could
be from using this as the policy function in an automated
scheduler – this can be used to diversify the impact of malop-
eration across a portfolio of battery assets, prolonging their
life and reducing the capital expenditure costs for storage
aggregators.
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