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ABSTRACT In this article, the problem of receiver autonomous integrity monitoring (RAIM) is transformed
into a modeling problem using dynamic data and an artificial neural network. A new RAIM method based
on a probabilistic neural network (P-RAIM) is presented to improve integrity monitoring performance.
Compared with existing RAIM methods, P-RAIM has a greater ability to meet the monitoring requirements
for localizer performance with vertical guidance down to altitudes of 250 feet (LPV-250) in a single global
navigation satellite system. First, by projecting the pseudorange error model from the measurement domain
into the positioning domain through multiconvolution, patterns including a satellite fault pattern and a fault-
free pattern are obtained based on variance inflation theory. Second, the P-RAIM model is proposed as a
modified dynamic-data-driven probabilistic neural network with five layers; moreover, unique methods for
training sample collection and integrity support are presented. Then, particle swarm optimization is applied
to optimize a fitness function based on the false alarm probability and missed detection probability thereby
improving the ability of P-RAIM to meet the LPV-250 requirements, including the false alarm probability,
missed detection probability, vertical alarm limit and alarm time. Finally, utilizing real satellite data from a
receiver located in Beijing to verify the effectiveness and universality of P-RAIM, evaluation experiments
show that both the false alarm probability andmissed detection probability can be effectively reduced to meet
the LPV-250 requirements when the positioning bias is no less than 40 m. Compared with least-squares-
residuals RAIM, P-RAIM can more easily detect potential faulty satellites in a single constellation.

INDEX TERMS Receiver autonomous integrity monitoring, LPV-250, global navigation satellite system,
multi-layer neural network, alarm systems.

I. INTRODUCTION
When a global navigation satellite system (GNSS) is used
for positioning, its integrity must be evaluated to ensure
the reliability of the positioning results [1], [2]. Receiver
autonomous integrity monitoring (RAIM) is a method of
checking satellite integrity that is independently performed
by receivers to provide real-time protection for users [3].
When a satellite navigation system fails or cannot meet the
required positioning accuracy, the RAIM function promptly
alerts users so as to avoid accidents [4].

The associate editor coordinating the review of this manuscript and
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Pseudorange bias caused by satellite faults can result in
erroneous positioning [5]. RAIM depends on the measured
noise and the false alarm probability (FAP) to detect satel-
lite faults [6]. Two styles of RAIM have attracted atten-
tion: the least-squares-residuals approach and the Bayes
approach. First, RAIMbased on classical least-squares theory
was used to detect single faults in the Global Positioning Sys-
tem (GPS) [7], [8]. At the same time, Sturza [9] projected the
observation matrix into the parity space and solved the fault
detection problem using a parity method. This method was
demonstrated to have the same performance as least-squares-
residuals RAIM (LSR-RAIM). Since then, many studies have
been devoted to improving the monitoring performance of
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RAIM. For example, Joerger et al. [10] proposed a non-
least-squares-residuals method to reduce themissed detection
probability (MDP), and Brown [11] proposed a multiple-
hypothesis solution separation algorithm that could deal with
multiple-fault detection in the case of multiple constellations.
Based on this method, in 2012–2016, a research group [12],
[13] formed by the Federal Aviation Administration and the
European Space Agency developed the Advanced RAIM
(ARAIM) algorithm [14], which has the potential to meet
the navigational requirements for localizer performance with
vertical guidance down to altitudes of 250 feet (LPV-250)
[15] when both GPS and Galileo are applied in an integrated
manner [16].

Second, following least-squares theory, RAIM algorithms
based on Bayesian detection theory has also seen rapid
development. Researchers have attempted to improve the
efficiency of detection in various ways. For example,
Pesonen [17] proposed a RAIM method relying on Bayesian
theory to detect single-satellite faults and developed a frame-
work in which the problem of evaluating satellite navigation
integrity is transformed into the problem of estimating a pos-
terior probability distribution for the positioning parameters.
Zhang and Gui [18] presented a RAIMmethod for multisatel-
lite fault detection that is also based on a Bayesian hypoth-
esis testing framework. Satellite faults can be determined
by calculating the probabilities of hazardously misleading
information. In 2020, Sun [19] attempted to utilize artificial
neural networks to detect faulty satellites and proposed a
RAIM approach based on a deep neural network.

Many researchers [20] have devoted efforts to reducing
the missed detection probability and alarm limit of RAIM in
order to meet the stringent LPV-250 navigation requirements.
Among existing methods, multiconstellation ARAIM with
integrity support messages has the potential to be used for
LPV-250; however, the availability of single-constellation
ARAIM [21] is low, so there is still a need to develop
single-constellation RAIM methods that can meet the moni-
toring requirements for LPV-250 [22], [23]. In reference [24],
although we attempted to achieve the critical value of the
characteristic slope to reduce the fault detection risk of the
LSR algorithm, it was still difficult to use LSR-RAIM for
LPV-250 in a single constellation. In this paper, following
the ARAIM algorithm, integrity support messages were used
to model the pseudorange error distribution [25], and we
used big data techniques to sample a large amount of data
from the error distribution model to train an artificial neural
network (e.g., a probabilistic neural network) to monitor GPS
integrity.

Probabilistic neural networks (PNNs) have been widely
used for data classification and pattern recognition [26].
Essentially, the detection of satellite faults is a pattern recog-
nition problem; thus, it is feasible to introduce PNN tech-
niques into satellite fault detection. However, few related
studies have been published, mainly because fault samples
for satellites are extremely rare, with no more than three fail-
ures annually. Moreover, satellite failures are complex, and

identical failures rarely occur repeatedly, making it almost
impossible to train a PNN on fault samples. Thus, devel-
oping a solution for selecting fault samples and training a
corresponding PNN model is of key importance for integrity
monitoring.

In this paper, a new RAIMmethod based on a probabilistic
neural networks (P-RAIM) is presented for integrity moni-
toring. First, we propose a modeling method based on a fault
model and a fault-freemodel. In this method, the pseudorange
noise in the measurement domain is assumed to follow a
normal distribution with zero mean and unknown variance
[27], and we project the noise model into the position domain
via a multiple convolution formula. In accordance with vari-
ance inflation theory, a fault-free model is derived from the
position precision, and a fault model is derived from the
inflation factor. Thus, integrity monitoring is formulated as
a problem of determining whether the statistical model of the
position error includes the inflation factor.

Then, we propose the structure of P-RAIM. It has five
layers: an input layer, a pattern layer, an averaging layer, a
comparison layer, and an output layer. Unlike other methods,
P-RAIM is based on variance expansion and focuses on the
differences arising from a group of position values.

Third, we propose a training method for P-RAIM. The
training method consists of two stages: collecting training
samples and optimizing P-RAIM. To ensure that the detec-
tion performance of P-RAIM meets the LPV-250 navigation
requirements [28], particle swarm optimization (PSO) is uti-
lized to search for the optimal value of the fitness function,
which is based on the false alarm probability and the missed
detection probability, and an optimal smoothing parameter λ
is selected to improve the integrity of P-RAIM.

Finally, the P-RAIM method is verified to be superior to
LSR-RAIM [24] on the basis of GPS data received over
24 hours.

II. METHODOLOGY
A. CLASSIFICATION MODEL BASED ON VARIANCE
EXPANSION
Let n denote the number of visible satellites, and let the
linearized single-point positioning equation be:

y = Gx+ e (1)

where y is an n × 1 vector of observations containing the
differences between the expected ranging values and the raw
pseudorange observations to each of the n satellites. x is an
m × 1 vector that expresses the three components of the
correct position deviation from the nominal position and the
clock bias between the receiver and constellation; when a
single constellation is used for positioning, m = 4. G is
an n × m observation matrix, and e = (e1, · · · · · · , en)T

is the n × 1 vector of measurement residuals. In general,
the statistical model of e is considered to be e ∼ N (0,

∑
),

where
∑

is a covariance matrix with diagonal elements σ 2
i .

b = (bx, by, bz, bt)T is the 4×1 vector containing the position
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errors and clock error, which are given by:

y = Gx̃ (2)

x̃ = (GTG)−1GTy (3)

b = x− x̃ = −(GTG)−1GTe (4)

where x̃ represents the estimated value of x, which includes
the positioning error.We assume thatA = −(GTG)−1GT and
rewrite (4) as:

b = Ae (5)

According to (5), bx, by, and bz can be expressed as:

b(j) =
n∑
i=1

ajiei, (j ∈ {1, 2, 3}, i ∈ {1, · · · , n}) (6)

where ei ∼ N (0, σ 2
i ) and the aji are constants. The statistical

model of b in the position domain can be obtained from that
of e in the measurement domain. The multiple convolution
formula given in (7) is used to obtain bx; expressions for by
and bz are obtained in a similar manner.

fbx(bx4) =
∫
+∞

−∞

· · ·

∫
+∞

−∞︸ ︷︷ ︸
n−1

fe1 (a11e1) · · · fei−1 (a1,i−1ei−1)

× fei+1(a1,i+1ei+1) · · · fen (a1nen)

× fei (bx −
∑n−i

j=1
a1jej)de1dei−1dei+1den (7)

where fei and fbx represent the marginal probability density
functions of ei and bx , respectively, and n−i = (1, · · · , i −
1, i + 1, · · · , n). When each ei is assumed to be indepen-
dent of the others, b ∼ N (0,

∑
position) and

∑
position =

(σ 2
x , σ

2
y , σ

2
z )
T , where the diagonal elements σ 2

x , σ
2
y and σ 2

z
are calculated as:∑

position
(j) =

n∑
i=1

a2jiσ
2
i , (j ∈ {1, 2, 3}, i ∈ {1, · · · , n})

(8)

If the fault value f from a satellite is regarded as a random
variable, it can be considered that the variance of bf contain-
ing a fault value will be enlarged, but the mean will not be
biased [29]. In this case, bf ∼ N (0, k2

∑
position), where k is

called the inflation factor.
When a set of positioning data is collected as a sample, s2x ,

s2y , and s
2
z are the sample variances of the position values on

the three axes. The model for fault detection can be expressed
as:

sj =

{
σj bj ∼ N (0, σ 2

j )
kσj bj ∼ N (0, k2σ 2

j ),
(j ∈ {x, y, z}) (9)

Thus, the problem of satellite fault detection has been
transformed into one of identifying a statistical model of ran-
dom variables. In accordance with the principle of Bayesian
hypothesis testing [30], when P(sj = σj)

/
P(sj = kσj) > 1,

we consider sj = σj to be more credible, indicating that bj
is normal. Otherwise, if P(sj = kσj) > P(sj = σj), bx is
identified as containing a fault.

FIGURE 1. The network structure of P-RAIM.

B. STRUCTURE OF P-RAIM
The five layers of P-RAIM are described as follows (see
Fig. 1).

1. The input layer is used to store the position data collected
by the receiver; typically, the number of data is greater than
30. The input layer is divided into three parts correspond-
ing to the x-axis, y-axis, and z-axis. When a satellite fails,
the pseudorange fault values projected along the three axes
are different from each other, depending on the geometry
of the satellites used for positioning [31]. It is difficult to
determine on which axis the projection value will be suffi-
cient to be detected; therefore, the standard deviations of the
position errors in all 3 dimensions are detected. The number
of neurons is equal to the number of position data.

2. The pattern layer is used to calculate the standard devi-
ation of X1, for which the function is expressed as follows:

X2 = (
1

n− 1

n∑
i=1

(xi −
1
n

n∑
j=1

xj)2)1/2 (10)

where X2 represents the value of a neuron corresponding to
the x-axis. In the pattern layer, the neurons are divided into
two patterns, representing the fault class and the fault-free
class. The number of neurons in the pattern layer is equal to
s+ w.
3. The averaging layer calculates the value of the activation

function at which the input X2 is similar to the detected sam-
ple. In the P-RAIM model, a Gaussian function is selected as
the activation function:

φ(X ) = exp(−
(X − LX )2

2λ2
) (11)

X31 =
s∑
i=1

e
|X2−LXi|

λ2 (12)

X32 =
w∑
i=1

e
|X2−LXFi|

λ2 (13)
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FIGURE 2. Collection of training samples from the fault-free class (LX)
and the fault class (LXF).

X31 represents the output for the fault-free pattern, X32
represents the output for the fault pattern, X2 represents the
information of the input sample, LX represents a fault-free
training sample, and LXF represents a faulty training sample.
The number of neurons in the averaging layer is equal to the
number of classes.

4. The comparison layer performs comparison calculations
using the outputs of the averaging layer. fx1 represents the
average probability of a sample belonging to the fault class,
and fx2 represents the average probability of a sample belong-
ing to the fault-free class.

fx1 = X31/u (14)

fx2 = X32/w (15)

X4 =

{
0 if fx1 > fx2
1 if fx1 ≤ fx2

(16)

If the probability that the sample standard deviation
belongs to the fault class is greater than the probability that
it belongs to the fault-free class, X4 outputs a value of 1.

FIGURE 3. Process of collecting training samples.

Otherwise, X4 will output 0. This layer has three neurons. The
modeling approach for Y2, Y31, Y32, and Y4 on the y-axis and
Z2, Z31, Z32, and Z4 on the z-axis is the same as that for X2,
X31, X32, and X4 on the x-axis.

5. The output layer performs Boolean OR operations on the
x-axis, y-axis and z-axis output values from the comparison
layer and produces the final detection result. An output R
value of 1 indicates that the satellite used for positioning has
a fault, and 0 indicates that the satellite is fault free. There is
one neuron in the output layer.

R = X4 ∧ Y4 ∧ Z4 (17)

C. TRAINING OF P-RAIM
1) COLLECTION OF TRAINING SAMPLES BASED ON
DYNAMIC-DATA-DRIVEN ANALYSIS
The training samples should include both fault-free samples
and fault samples. Fault-free samples are used to represent
the statistical model of the standard deviation of a group of
normal positioning values, whereas fault samples are used
for fault positioning values. Such samples can be obtained by
sampling data from a model of the position error distribution
(PED). Affected by the number of satellites and the elevation
angle, the PED is dynamic; as a result, the training samples
will also be dynamic.

Suppose that d samples are extracted from the PED to
form a sample groupM. When d is less than 30, the standard
deviation s ofM can be described as:

s ∼ W (a, b, c) (18)

where W (a, b, c) is the three-parameter Weibull distribution
and a, b, and c are given in reference [32]. When d is greater
than 30, the statistical model of s can be described as:

s ∼ N (cmσ, σ 2/(2d)) (19)

where σ is the standard deviation of the PED and cm is a
parameter to correct the difference between the expectation
of the sample standard deviation and the actual value, which
can be obtained by calculating the average of the standard
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FIGURE 4. Process of computing F.

FIGURE 5. Process of using PSO to solve for λ.

deviation. For example, when σ 2
= 6.5, the distribution of s

is shown in Fig. 2(a).
A set of values is selected as training samples from the

fitted distribution. In the 3-sigma range of the distribution,
10 training sample values {LX1, · · · ,LX10} for the fault-free
class are selected at equal intervals. The equation is shown as

FIGURE 6. Experimental process.

follows:

LXi = (Cm −
3
√
2d
+

2(i− 1)

3
√
2d

)σ (20)

Similarly, if k = 9, 10 training sample values {LXF1, · · · ,
LXF10} for the fault class are selected from the 3-sigma range
of the corresponding distribution, as shown in Fig. 2(b). The
equation is shown as follows:

LXFi = (Cm −
3
√
2d
+

6(i− 1)

(w− 1)
√
2d

)kσ (21)
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TABLE 1. Performance indexes of P-RAIM.

FIGURE 7. P-RAIM testing process.

FIGURE 8. Relationship between the measurement precision σ2 and the
elevation angle.

TABLE 2. Standard deviation parameters [36].

Fig. 3 shows the process of collecting the training samples,
which consists of 4 steps.

2) ENHANCING THE INTEGRITY OF P-RAIM THROUGH PSO
The smoothing parameter λ affects the performance of a
PNN [33]; thus, the detection accuracy of P-RAIM can be
improved by selecting an appropriate λ [34]. In this section,
the detection efficiency of P-RAIM is optimized to meet

FIGURE 9. Number of visible satellites at the data collection point.

TABLE 3. List of test items.

the requirements for LPV-250, including the false alarm
probability, missed detection probability, vertical alarm limit
(VAL) and alarm time (AT). The fitness function F(Pi) is
given by:

F(Pi) = 1
/
(1+ Ffa(Pi)+ Fmd(Pi)) (22)

where Ffa(Pi) and Fmd(Pi) are piecewise functions:

Ffa(Pi) =

{
Qfa(Pi) if Qfa(Pi) > 4
0 if Qfa(Pi) ≤ 4

(23)

Fmd(Pi) =

{
Qmd(Pi) if Qmd(Pi) > 1
0 if Qmd(Pi) ≤ 1

(24)

where Pi represents the i-th λ value, Ffa is the function for
the false alarm probability, Fmd is the function for the missed
detection probability, and Q is a counter. Qfa is used to count
the number of results that are identified as belonging to the
fault class by P-RAIM, and Qmd is used to count the number
of fault-free results. The constraint conditions, including the
false alarm probability, missed detection probability, vertical
alarm limit and alarm time, are used to calculate the fitness
function F to improve the detection performance of P-RAIM.
The process is described below.
Step 1: Initialize the performance requirements of P-RAIM

and provide the statistical model of e.
Step 2: Extract samples.
Step 3: Utilize P-RAIM with a smoothing parameter λ to

detect faulty samples and fault-free samples, respectively.
Step 4: Compute Qfa, Qmd, Ffa, Fmd and F .
PSO is used to select the optimal λ. PSO is a swarm

intelligence method that uses a particle swarm to search for
potential solutions to an optimization problem in a given
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FIGURE 10. Standard deviations of position errors along the three axes.

FIGURE 11. Correct positioning in all three coordinates.

search space [35]. The mathematical model is expressed as:

vi+1 = ω × vi + C1 × R1 × (Pbesti − Pi)

+C2 × R2 × (Gbest − Pi) (25)

Pi+1 = Pi + vi+1 (26)

where P is the objective λ value (also called the particle
position in PSO), v is the update parameter (also called the
particle velocity in PSO), Pbest is the local optimum value,
Gbest is the global optimum value, ω is an inertia factor, C1
and C2 are constants, and R1 and R2 are random numbers
in the range 0-1. Equation (25), which is used to update the
velocity, is the core of the PSO algorithm and determines the
search performance.When the particles adjust their positions,
the positions and velocities should be limited to a certain
space to maintain the search capability of the particles. The
process of optimizing λ is shown in Fig. 5.
At the beginning of the algorithm, the positions, velocities

and other parameters are initialized. The velocity of a particle
determines the position of that particle in the next iteration,
and the particle information is updated via Pbest and Gbest.
The particles iteratively search for better solutions in the solu-

FIGURE 12. Positioning on three axes: (a) x-axis faults; (b) y-axis faults;
(c) z-axis faults.

FIGURE 13. P-RAIM detection results.

tion space near the current optimal particle. If F(Gbest) < 1,
then the positions and velocities of the particles will be
updated. When the fitness value is 1 (F(Gbest) = 1), this
indicates that the false alarm probability is less than 10−6, the
missed detection probability is less than 10−7 and the vertical
alarm limit is less than 40 m; at this time, λ takes its optimal
value. The performance indexes of P-RAIM are summarized
in Table 1.
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FIGURE 14. Results of 24-hour monitoring. F represents the detection of a fault, and I represents that no fault was detected.

As described above, the final P-RAIM model is obtained
by collecting training samples and optimizing λ. The exper-
imental process, including the use of PSO to solve for λ and
training on sample data, is shown in Fig. 6.

III. EXPERIMENTAL RESULTS
Real satellite data were collected using a receiver to test
P-RAIM to verify its effectiveness and universality. The test-
ing process is shown in Fig. 7.

A. DATA PREPARATION
Ephemeris data were collected from 00:00:01 to 23:59:59
on December 3, 2015, and January 27, 2021, using a
T300 GNSS receiver, a high-precision multiconstellation
triband receiver. The pseudorange data consisted of the true
distances and random errors. The selected location was
in Beijing (N: 39.95979167◦, E: 116.31525278◦, altitude:
58 m), and the sampling interval was 1 s; thus, 86,400 epochs
were sampled throughout the day.

55840 VOLUME 9, 2021



X. Zheng et al.: Dynamic-Data-Driven Method for Improving the Performance of RAIM

The measurement error is represented by ei ∼ N (0, σ 2
i ) ,

where σi includes the clock/ephemeris error, residual iono-
spheric error, residual tropospheric error, receiver noise, and
multipath error. These errors are all related to the elevation
angles of the visible satellites. Table 2 shows the relationship
between the standard deviation of the measurement errors
and the elevation angle. As summarized in Table 2, σi was
obtained from Fig. 8 to model ei ∼ N (0, σ 2

i ) .

B. MODELING OF P-RAIM
The available satellites with elevation angles greater than 10◦

were selected for analysis. Fig. 9 shows the number of visible
satellites over time.

Fig. 10 shows the standard deviations of the position
errors on the three axes over 5000 epochs, which were com-
puted using (8). We collected training samples for P-RAIM
and used the PSO algorithm to select the optimal smooth-
ing parameter λ. To quickly search for the optimal value,
the search space was selected to be (0, 1].

C. TEST RESULTS CONCERNING THE EFFECTIVENESS OF
P-RAIM
The position error model was derived from Fig. 10, and pseu-
dorange data were simulated by adding random noise to the
true range data. Faulty data were then created by artificially
adding a fault value to the pseudorange data. The test items
are listed in Table 3; each fault lasted for 6 s.

Fig. 11 shows correct position data with fault-free satel-
lites, whereas Fig. 12 shows inaccurate position data with
faulty satellites. Comparing these figures, we see that the
positions at epochs 100, 500, and 1000 show abnormal biases
after the addition of the fault value to the pseudorange data;
however, the biases on the three axes are not the same. When
G17 fails, no abnormal bias occurs in the z-axis positioning
value, potentially resulting in an unnecessary missed detec-
tion. A similar situation occurs in epoch 1000, where the
fault in G30 does not affect the positioning on the x-axis.
Thus, monitoring on all three axes is necessary to ensure
the detection accuracy. The P-RAIM detection results are
shown in Fig. 13, where 1 denotes the occurrence of a fault
in the satellites used for positioning and 0 denotes normal
positioning.

D. TEST RESULTS CONCERNING THE UNIVERSALITY OF
P-RAIM
To demonstrate the universality of P-RAIM, we utilized the
real 24-hour ephemeris data from January 27, 2021, to mon-
itor the integrity every 2 hours, and the results are shown
in Fig. 14. A five-pointed star represents a satellite that was
visible at that time, and a 40-meter fault value was added to
every visible satellite. If the monitoring results indicate a fault
in a satellite used for positioning, the corresponding five-
pointed star shape is filled with solid color; otherwise, if the
monitoring results show that a satellite used for positioning
was normal, the corresponding five-pointed star is hollow.
For the 106 test instances, all five-pointed stars are filled with

FIGURE 15. Visible satellites.

FIGURE 16. Efficiency comparison between P-RAIM and LSR-RAIM.

solid color, representing that all satellites with added faults
were detected correctly.

IV. DISCUSSION AND ANALYSIS
In this section, P-RAIM is compared with LSR-RAIM to
analyze the efficiency of detection.

All visible satellites shown in Fig. 15 were tested over 600
epochs. Biases were added to every satellite, with the range
biases increasing from 0 m to 100 m in steps of 5 m. The test
results were sampled every 20 s. The correct detection prob-
abilities for each satellite with P-RAIM and LSR-RAIM are
shown in Fig. 16. When the range bias is less than 40 meters,
the correct detection probabilities for all visible satellites are
higher with P-RAIM than with LSR-RAIM. As the range bias
increases, the detection probability for visible satellites with
faults also gradually increases; when the range bias is greater
than 60 meters, P-RAIM can identify the fault patterns of all
visible satellites. Under these conditions, the detection prob-
ability with P-RAIM exceeds that with LSR-RAIM. G25 is
the most potentially faulty satellite, and the range bias in
G25 is hardest to detect with LSR-RAIM, whereas it is easier
to detect G25 as a faulty satellite with P-RAIM. Therefore,
the integrity monitoring performance of the P-RAIM exceeds
that of LSR-RAIM in this test.

V. CONCLUSION
In this paper, we propose the P-RAIMmethod for monitoring
the integrity of a GNSS based on a five-layer PNN. Based
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on the theory of variance inflation, P-RAIM is used to detect
the variance of the position error rather than a positioning
bias. This method includes a collection method for extracting
training samples from a statistical model of the standard devi-
ation and an optimization method based on a fitness function
F . To verify the applicability and universality of P-RAIM,
106 test instances over 24 hours were considered, and the
results show that P-RAIM can be effectively used to monitor
the integrity of a GNSS. When the pseudorange bias was no
less than 40 m, P-RAIM was always effective in all tests.
P-RAIMwas also compared with LSR-RAIM, and the results
showed that even the satellite that is the most difficult to
detect as faulty with LSR-RAIM can be easily detected with
P-RAIM. In particular, the detectable bias due to potential
faults in P-RAIM is less than that in LSR-RAIM.

APPENDIX
DERIVATION OF THE POSITION ERROR DISTRIBUTION
As seen in (5), the position error vector is expressed as:

bx
by
bz
bt

 =

a11 a12 · · · a1n
a21 a22 · · · a2n
a31 a32 · · · a3n
a41 a42 · · · a4n



e1
e2
...

en

 (27)

bx = a11e1 + a12e2 + · · · + a1nen (28)

We suppose that fbx(bx) is the probability density function of
bx:

fbx(bx) =
∫
+∞

−∞

f (a11e1, · · · , a1,n−1en−1,

bx −
∑n−n

j=1
a1jej)de1den−1 (29)

When e1, . . . , en are independent, (29) can be written as:

fbx(bx) =
∫
+∞

−∞

· · ·

∫
+∞

−∞︸ ︷︷ ︸
n−1

fe1 (a11e1) · · · fen−1 (a1,i−1ei−1)

× fen (bx −
∑n−n

j=1
a1jej)de1den−1 (30)

When ei ∼ N (0, σ 2
i ), according to (30), we can derive bx ∼

N (0, σ 2
x ):

σ 2
x = a211σ

2
1 + a

2
12σ

2
2 + · · · + a

2
1nσ

2
n (31)

In a similar way, we can derive by ∼ N (0, σ 2
y ) and bz ∼

N (0, σ 2
z ):

σ 2
y = a221σ

2
1 + a

2
22σ

2
2 + · · · + a

2
2nσ

2
n (32)

σ 2
z = a231σ

2
1 + a

2
32σ

2
2 + · · · + a

2
3nσ

2
n (33)

bx, by, and bz denote the position errors. In accordance with
(31), (32), and (33), we obtain the PED on each axis, i.e.,
N (0, σ 2

x ), N (0, σ 2
y ) and N (0, σ 2

z ).
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