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ABSTRACT This paper provides an extensive review of the popular multi-objective optimization algorithm
NSGA-II for selected combinatorial optimization problems viz. assignment problem, allocation problem,
travelling salesman problem, vehicle routing problem, scheduling problem, and knapsack problem. It is
identified that based on the manner in which NSGA-II has been implemented for solving the aforemen-
tioned group of problems, there can be three categories: Conventional NSGA-II, where the authors have
implemented the basic version of NSGA-II, without making any changes in the operators; the second one is
Modified NSGA-II, where the researchers have implemented NSGA-II after making some changes into it
and finally, Hybrid NSGA-II variants, where the researchers have hybridized the conventional and modified
NSGA-II with some other technique. The article analyses the modifications in NSGA-II and also discusses
the various performance assessment techniques used by the researchers, i.e., test instances, performance
metrics, statistical tests, case studies, benchmarking with other state-of-the-art algorithms. Additionally,
the paper also provides a brief bibliometric analysis based on the work done in this study.

INDEX TERMS NSGA-II, combinatorial optimization, multi-objective optimization, genetic algorithms.

I. INTRODUCTION
The Non-Dominated Sorting Genetic Algorithm (NSGA-II)
is a powerful decision space exploration engine based on
Genetic Algorithm (GA) for solving Multi-objective Opti-
mization Problems (MOOPs). It was initially proposed by
Deb et al. [1] in the year 2000 in ‘International Conference
on Parallel Problem Solving from Nature.’

In 2002, it was published as a full-length research arti-
cle in the journal, IEEE Transactions on Evolutionary
Computation [2], and since then, it has been cited more
than 20630 times according to IEEE Xplore. Presumably,
NSGA-II is the 4th most cited journal article in the database
of IEEE Xplore. Further, as per Google scholar, it has
been cited more than 35240 times, out of which more than
19600 citations are from web of science. This informa-
tion is sufficient to show the popularity of NSGA-II for
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solving MOOPs. During its 20 years of existence, NSGA-II
has been implemented on a wide range of MOOPs having
continuous as well as discrete variables. However, to the
best of the authors’ knowledge, there is no comprehensive
review of NSGA-II, which can guide the researchers working
in this area. To bridge this gap and to acquaint the readers
with the versatility of NSGA-II, in this paper, the focus is
on the application of NSGA-II and its variants on selected
Combinatorial Optimization Problems (COPS): assignment
problem, allocation problem, travelling salesman problem
(TSP), vehicle routing problem (VRP), scheduling problem,
and knapsack problem.We have particularly chosen COPS as
in the broad world of optimization, COPs are considered to
be one of the most challenging and complex problems. Since
most COPs are NP-hard in nature, the computational com-
plexity for solving these problems increases as the problem
size increases. Therefore, for such problems, approximate
methods such asmetaheuristics approaches are preferred over
classical methods [3].
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A. COMBINATORIAL OPTIMIZATION PROBLEMS (COPS)
In the early ’70s, when metaheuristics such as evolutionary
algorithms were proposed to solve COPs, they did not have
a significant influence due to the lack of efficient computa-
tional facilities [4]. However, with the passage of time and
with the advent of fast and high-end computational facili-
ties, many metaheuristics were proposed for solving complex
COPs. Literature reveals that a lot of attention has been given
to COPs with multiple objectives due to their challenging
nature and practical utility.

Multi-objective Combinatorial Optimization Problems
(MOCOPs) have been surveyed from time to time by various
researchers.

In 1994, Ulungu & Teghem [5] surveyed and sug-
gested the adaptations of metaheuristics to multi-objective
environment as a direction of future research. Thereafter,
researchers proposed effective heuristics and meta-heuristics
to solve MOCOPs.

Coello Coello et al. [6] gave a detailed overview of multi-
objective combinatorial optimization that included relevant
definitions and the basic idea of using metaheuristic for
MOCOP. An overview of hybrid approximation methods for
MOCOPs can be found in [7] and [8]. According to [8], an
approximation algorithm for MOCOPs should necessarily be
hybridized, i.e., it should be a combination of an evolutionary
algorithm, a neighbourhood search algorithm (local search
procedure), and problem-specific components because the
universal method for a problem cannot perform better than the
technique specially tailored for it. More recently, Liu et al. [9]
reviewed the literature of multi-objective metaheuristics for
multi-objective discrete optimization problems (MODOPs)
and provided information about its application areas, test
instances, and performance metrics. As a direction of future
research, the author suggested reviewing various metaheuris-
tics for different type of MODOPs.

The review studies on COPs in the existing literature either
discussed both single and multi-objective versions of a spe-
cific COP or only its multi-objective version along with the
solution approaches. Some of the reviewed single-objective
COPs by the researchers focus on specific areas like block-
ing flowshop scheduling problem (FSP) [10], permutation
FSP [11], non-permutation FSP [12], agricultural land-use
allocation [13], facility location problems [14], emergency
material scheduling[15], allocation of distributed genera-
tion [16], location-routing problems [17], resource allocation
for CRAN in 5G and beyond networks [18], VRP [19], cell
formation problem [20] and many more.

The selected papers are divided into three categories that
are identified based on the implementation of NSGA-II
to MOCOPs and are-conventional NSGA-II, modified
NSGA-II, and hybrid NSGA-II. The papers under the first
category used NSGA-II in its traditional form with the
same crossover, mutation, and selection operators [2]. The
papers under the second category modified the conventional
NSGA-II, mainly in terms of the initialization, selection
scheme, crossover and mutation operators, crowding distance

operator, constraint handling technique, or some other cri-
teria. Furthermore, the third category contains the papers in
which either the conventional NSGA-II or modifiedNSGA-II
is hybridized with a heuristic strategy, a local search oper-
ator, a machine learning technique, or another single/multi-
objective optimization algorithm. On the other, those papers
in which multi-criteria decision-making (MCDM) techniques
are applied to the trade-off solutions obtained using con-
ventional NSGA-II are not considered in the third category.
In this study, an MCDM technique is viewed as a post-
optimization technique for selecting the best-compromised
solution. Such papers are studied under the first category
and analyzed separately in terms of applied decision-making
methods.

In the selected papers, the benchmarking of NSGA-II
based algorithms with other state-of-the-art algorithms, the
algorithms used for hybridization with NSGA-II, the meth-
ods used for the post-Pareto optimality analysis, the number
of objective functions involved in the papers are discussed.
Additionally, the test instance or datasets, case studies, per-
formance metrics, and statistical tests used in the papers are
also analyzed.

In summary, this paper makes the following contributions:
� Provides a detailed analysis of NSGA-II and its variants
for solving six selected MOCOPs.

� Discusses the modifications in NSGA-II algorithms.
� Provides a brief bibliometric analysis including infor-
mation about post-Pareto optimality analysis, number of
objective functions, test instances, case studies, perfor-
mance metrics and statistical tests.

� Future research directions in this field.
Accordingly, the remaining of the paper is organized as fol-

lows: Section 2 contains the background of MOOP, MOCOP,
concept of Pareto dominance, and NSGA-II, including its
basic structure and working procedure. Section 3 provides
the research methodology for the study. Section 4 addresses
the literature survey, including NSGA-II implementation to
MOCOPs, performance assessment, performed case stud-
ies, statistical analysis, and post-Pareto optimality anal-
ysis. Section 5 is about the analysis of modifications
in NSGA-II. Section 6 discusses the bibliometric analysis,
and lastly, Section 7 provides the conclusion and future direc-
tions drawn from this study.

II. BACKGROUND
In this section, we describe the concepts of MOOP, MOCOP,
and Pareto dominance. The basic structure and procedure of
NSGA-II are also discussed.

A. MULTI-OBJECTIVE OPTIMIZATION PROBLEM
A MOOP includes a set of n decision variables, k objective
functions, and a set of (m inequality and p equality) con-
straints. The optimization goal is-

Min/Max y = f (x) = (f1(x), f2(x), . . . , fk (x)) , k ≥ 2 (1)

Subject to gi(x) ≤ 0, i = 1, 2, . . . ,m (2)

hj(x) = 0, j = 1, 2, . . . , p (3)
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where x = (x1, x2, . . . , xn) is an n-dimensional decision
vector in X ⊆ Rn (R is the set of real numbers), y is a
k-dimensional objective vector in Rk , f defines the mapping
function, gi is the ith inequality constraint, and hj is the
jth equality constraint. Further, (2-3) determine the set of all
feasible solutions X .

B. MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
PROBLEM
The MOCOPs form a particular class of MOOPs, that can be
formulated as:

Min/Max y = f (x) = (f1(x), f2(x), . . . fk (x)) , k ≥ 2 (4)

Subject to gi(x) ≤ 0, i = 1, 2, . . . ,m (5)

hj(x) = 0, j = 1, 2, . . . , p (6)

where x = (x1, x2, . . . , xn) ∈ D is an n-dimensional vector in
decision-space D = D1 × D2 × . . . × Dn (Dn is the domain
of xn), y is a k-dimensional objective vector in Rk , f is the
mapping function, gi is the ith inequality constraint, hj is the
jth equality constraint. The other variables, k, m, and p, rep-
resent the numbers of objective functions, inequality con-
straints, and equality constraints, respectively.

The set S is the set of all feasible solutions that satisfy (5-6)
and may describe a combinatorial structure such as spanning
trees of a graph, paths, and matching. Some examples of
COPs are assignment problem, allocation problem, schedul-
ing problem, VRP, TSP, knapsack problem, sum of subset
problem, network design problem, graph-colouring problem,
location-routing problem, and facility location problem.

C. CONCEPT OF PARETO DOMINANCE
Let x1 and x2 be the two feasible solutions of the multiobjec-
tive minimization problem (1). The solution x1 can be viewed
as better than x2 if the following conditions hold:

1. fj(x1) ≤ fj(x2) for all j = {1, 2, . . . , k}
2. fj(x1) < fj(x2) for at least one j = {1, 2, . . . , k}

where k is the number of objective functions, fj(x) is the
jth value of an objective function for decision vector x. In this
case, we say that x1 dominates x2 (or x2 is dominated by x1):
x1 is better than x2. The relation ‘<’ (or ‘>’ for maximiza-
tion problem) can be denoted as a dominance operator G.
x1 G x2 represents x1 dominates x2.

When a solution x of (1) is not dominated by any other
feasible solutions, it is called a Pareto optimal solution. The
set of all Pareto optimal solutions are referred to as a Pareto
set. The objective vector corresponding to the Pareto set is
defined as a Pareto front, as shown in Fig. 1.

D. NSGA-II
NSGA-II is an improved version of the non-dominated sort-
ing genetic algorithm (NSGA) [21], which has been criticized
by researchers due to its limitations such as the absence of
elitism, the need to define sharing parameter for diversity
preservation, and its high computational complexity. On the
other hand, the design of NSGA-II exhibits the property of
elitism and does not need any sharing parameter. It uses the

FIGURE 1. Pareto dominance.

crowding distance operator for the mechanism of diversity
preservation. Moreover, it is computationally fast and lives
up to its name ‘Fast Elitist NSGA-II.’ The overall complexity
of NSGA-II is at most O(MN2), where M is the number of
objective functions, and N is the population size.

1) BASIC STRUCTURE OF NSGA-II
The philosophy of NSGA-II is based on four main principles,
which are: Non-Dominated Sorting, Elite Preserving Oper-
ator, Crowding Distance and Selection Operator. These are
described in brief in the following subsections.

a: NON-DOMINATED SORTING
In this procedure, the population members are sorted
using the concept of Pareto dominance. The process of
non-dominated sorting begins with assigning the first rank
to the non-dominated members of the initial population.
These first ranked members are then placed in the first
front and removed from the initial population. After that,
the non-dominating sorting procedure is performed on the
remaining population members. Further, the non-dominated
members of the remaining population are assigned the second
rank and placed in the second front. This process continues
until thewhole populationmembers are put on different fronts
according to their ranks, as shown in Fig. 2 (a).

b: ELITE-PRESERVING OPERATOR
Elite preserving strategy retains the elite solutions of a pop-
ulation by directly transferring them to the next generation.
In other words, the non-dominated solutions found in each
generationmove on to the next generations till some solutions
dominate them.

c: CROWDING DISTANCE
The crowding distance is calculated to estimate the density
of solutions surrounding a particular solution. It is the aver-
age distance of two solutions on either side of the solution
along each of the objectives. On comparing two solutions
with different crowding distances, the solution with the large
crowded distance is considered to be present in a less crowded
region. The crowded distance of the ith solution is the average
side-length of the cuboid, as shown in Fig. 2(b). If f ij is the
jth value of an objective function for the ith individual
and, f max

j and f min
j are the maximum and minimum values
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FIGURE 2. Non-dominated sorting procedure and Crowding distance
calculation.

respectively of jth objective function among all the individu-
als. Then, the crowding distance of ith individual is defined as
the average distance of two nearest solutions on either side,
as given in (7).

cd(i) =
k∑
i=1

f i+1j − f i−1j

f max
j − f min

j

(7)

where k is the number of objective functions.

d: SELECTION OPERATOR
The population for the next generation is selected using a
crowded tournament selection operator, which uses the rank
of the population members and their crowding distances for
the selection. The rule for selecting one out of two population
members for the next generation is-

(i) If both the population members are of different ranks,
then the one with the better rank is selected for the next
generation

(ii) If both the population members are of the same ranks,
then the one with the higher crowding distance is selected for
the next generation.

2) PROCEDURE OF NSGA-II
The procedure of NSGA-II begins with generating an initial
population Pt of size N . Then, a new populationQt is created
after performing crossover and mutation operations on the
population Pt . After that, the population Pt and Qt are com-
bined to form a new population Rt , and the non-dominated
sorting procedure is performed on Rt . Then, the population
members of Rt are ranked into different fronts according to
their non-domination levels.

The next process is to select N members from Rt to create
the next population Pt+1. If the size of the first front is greater
than or equal to N, then only Nmembers are selected from the
least crowded region of the first front to form Pt+1. On the
contrary, if the size of the first front is less than equal to N,
then the members of the first front are directly transferred
to the next generation, and the remaining members are taken
from the least crowded region of the second front and added
to Pt+1. If the size of Pt+1 is still less than N, then the same
procedure is followed for the next consecutive fronts until the
size of Pt+1 becomes equal to N. The populations Pt+2, Pt+3,
Pt+4, . . . , for the next generations are constructed using the

same procedure until the stopping criteria are not satisfied.
The working of NSGA-II is shown in Fig. 3.

FIGURE 3. Procedure of NSGA-II.

III. RESEARCH METHODOLOGY
A. MATERIAL COLLECTION
This study is conducted using research databases till
April 2020 from Science Direct, Taylor & Francis Online,
Wiley Online Library, Springer, and IEEE Xplore. The
database of Science Direct was searched for article type
‘Research articles’ with search terms ‘NSGA-II, travel-
ling salesman problem,’ ‘NSGA-II, assignment problem,’
‘NSGA-II, allocation problem,’ ‘NSGA-II, knapsack prob-
lem,’ ‘NSGA-II, vehicle routing problem’ and ‘NSGA-II,
scheduling problem.’ The database of Springer was searched
for article and conference paper using advance search
option with the word ‘NSGA-II’ and exact phrases ‘travel-
ling salesman problem,’ ‘assignment problem,’ ‘allocation
problem,’ ‘knapsack problem,’ ‘vehicle routing problem’
and ‘scheduling problem.’ The database of Taylor &
Francis Online was searched using words’ ‘NSGA-II +
travelling salesman problem’, ‘NSGA-II+ assignment prob-
lem,’ ‘NSGA-II + allocation problem,’ ‘NSGA-II + knap-
sack problem,’ ‘NSGA-II + vehicle routing problem,’ and
‘NSGA-II + scheduling problem’ anywhere in the articles.
The database of IEEE Xplore was advance searched using
the search term ‘NSGA-II and travelling salesman problem,’
‘NSGA-II and assignment problem,’ ‘NSGA-II and alloca-
tion problem,’ ‘NSGA-II and knapsack problem,’ ‘NSGA-II
and vehicle routing problem’ and ‘NSGA-II and scheduling
problem’ anywhere in the metadata. The database of Wiley
Online Library was searched for journal papers with the same
procedure as used for the IEEE Xplore database.

The details of the search results are given in Table 1. Out
of these, the papers focused on using conventional NSGA-II/
modified NSGA-II/hybrid NSGA-II for solving MOCOPs
are considered for the study. Further, only those journals
articles are selected, which are published in Science cita-
tion index expanded (SCIE) and emerging sources citation
index (ESCI) indexed journals. In total, 169 papers got
selected for review, of which 135 are journal papers, and the
rest 34 are conference papers. The list of journals in which
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TABLE 1. Database search results.

selected papers are published is shown in Table 2 with their
latest impact factors and quartile ranking based on JCR 2019.
The number of papers based on different publishers is shown
in Table 3. The maximum number of papers are from the
Elsevier publisher.

B. CATEGORIZATION OF SELECTED PAPERS
The reviewed papers are initially classified into three cat-
egories, conventional NSGA-II, modified NSGA-II, and
hybrid NSGA-II based on the implementation of NSGA-II.
These three categories are further classified into different
sub-categories based on the type of MOCOPs, as shown
in Table 4. The miscellaneous category includes the papers
based on the combinations of the above six MOCOPs.

IV. REVIEW OF LITERATURE
In COPs’ literature, many approximation algorithms are
used for solving the MOCOPs, such as, multi-objective dis-
crete artificial bee colony (ABC) [22]–[27]; multi-objective
ant colony optimization (MOACO) [28]; improved artifi-
cial immune algorithm [29]; MOEA/D [30]; multi-objective
memetic algorithm [31]–[34]; water wave optimization [35];
modified particle swarm optimization (PSO) [36], [37];
multi-objective hybrid immune algorithm [38]; GA [39]; grey
wolf optimization [40]; cooperative swarm intelligence algo-
rithm for MODOP [41]; multi-objective fruit fly optimization
algorithm [42]; multi-objective discrete virus optimization
algorithm [43]; NSGA-II & SPEA-II [44] and subpopulation
based multi-objective evolutionary algorithm [45]. As this
study is focussed on reviewing NSGA-II for MOCOPs,
a detailed view of NSGA-II implementations for selected
MOCOPs is given in next sub-sections.

TABLE 2. List of journals.
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TABLE 3. Number of papers from different publishers.

TABLE 4. Classification of papers based on different categories.

A. NSGA-II FOR MOCOPS
In the literature, NSGA-II was applied to solve the MOCOPs
in conventional, modified, or hybrid forms. The modifica-
tions are often done due to the unsuitability of the conven-
tional NSGA-II for the problems in terms of chromosome
representation, crossover operator, and mutation operator.
The modification and hybridization aim to improve the effi-
ciency of NSGA-II for a particular problem or a class of
problems. These improvements in NSGA-II need validation,
which is done by comparing it with other state-of-the-art
algorithms, including NSGA-II.

In this section, the implementation of NSGA-II to six
selectedMOCOPs is discussed. The basic definitions of these
problems are given in Table 5.

From the searched literature, the problems consid-
ered under the category of assignment problems are
generalized assignment problem [46], cell formulation
problem [47]–[49], critical job assignment problem [50],
load balancing of network traffic [51], platform-assignment
problem [52], [53], frequency assignment problem [54],
multi-stage weapon target assignment (MWTA) prob-
lem [55]–[57], location problem [58], [59], land-use
optimization [60], optimal configuration selection [61], opti-
mal transmission line assignment [62], multi-skilled worker
assignment problem [63], spectrum assignment problem [64]
and multi-stage assignment optimization for emergency res-
cue teams [65].

The problems categorized as allocation problems are
resource allocation problem (RAP) [66]–[72], redundancy
allocation problem (denoted as ReAP) [73]–[85], reliability
redundancy allocation problem [86], buffer allocation [87],
order allocation planning [88], land allocation [89], allocation
of D-STATCOM in DSs [90], channel allocation in mobile
computing [91], agile team allocation problem [92] and con-
tinuous berth allocation problem [93].

In the category of knapsack problems, the prob-
lems such as search based requirements selection [94],

RAP [95], [96], optimal selection of safety measures in oil
and gas facilities [97] and multi/many objective knapsack
problem [98]–[104] are included.

The pickup and delivery problem [105], multiple
TSP [106], GEO satellite mission planning problem [107],
and [108]–[110], [45] come under the category of TSPs.

The other problems such as pollution routing prob-
lem [111], [112], ship weather routing problem [113],
urban freight transportation planning problem [114],
many-objective dynamic route planning [115], VRP with
demand responsive transport [116], [117], VRP with time
windows [118], and other routing problems [119]–[124] are
considered under the category of VRPs.

Lastly, the scheduling problems which is the most
discussed category of MOCOPs consists of open shop
scheduling problem [125], [126], job shop scheduling
problem (JSSP) [127]–[132], FSP [133]–[138], project
scheduling problem (PSP) [139], resource constrained
PSP (RCPSP) [140]–[145], timetabling problem [146],
cross-docking scheduling problem [147], task scheduling
problem [148]–[154], machine scheduling prob-
lem [155]–[161], satellite range scheduling problem [162],
multi-objective satellite data transmission scheduling prob-
lem [163], satellite scheduling of large areal tasks [164],
operating room scheduling [165], [166], harvest sche-
duling problem [167], energy-efficiency schedul-
ing problem [168], [169] scheduling of demand response
programs [170], [171], economic dispatch problem [172],
order scheduling problem [173], preventive maintenance
scheduling [174], [175] resource-constrained discrete time-
cost-resource optimization [176], time-cost-quality trade-
off problem [177], [178], production-distribution scheduling
problem, [179], job scheduling in computational grid [180],
contraflow scheduling problem [181], practical scheduling
release times in steel plants [182], real-time routing selec-
tion [183], resource scheduling in fog computing [184],
inter-site earthmoving optimization [185], process plan-
ning and scheduling [186]–[188], cross-trained workers
scheduling [189], cross-docking scheduling [190], workforce
scheduling problem [191], multi-objective optimized opera-
tion of integrated energy system with hydrogen storage [192]
and multi-objective integrated optimization of configuration
generation and scheduling [193].

The remaining problems, which are combinations of
the above six MOCOPs, are considered under the cate-
gory of miscellaneous problems. The problems included
in this category are resource allocation supply chain
scheduling and VRP [194], resource allocation and
activity scheduling for fourth-party logistics [195], sus-
tainable hub location-scheduling problem for perishable
food supply chain [196], routing and scheduling of
ships [197], location-routing problem [118], [198]–[202],
integrated maintenance scheduling and VRP [203], trav-
elling thief problem [204], lock scheduling and berth
allocation [205], assignment-allocation [206], nursing
home location-allocation problem [207], location-allocation
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TABLE 5. Definitions of combinatorial problems.

TABLE 6. Summary of reviewed papers using conventional NSGA-II for MOCOPs.

problem [208], high-level synthesis problem [209], industrial
hazardous waste location- routing problem [210], and multi-
objective RWA network design problem [211].

1) CONVENTIONAL NSGA-II FOR MOCOPS
This section presents a detailed study of the conventional
NSGA-II implementation to MOCOPS. The summary of the
related literature is shown in Table 6.

a: ASSIGNMENT PROBLEM
In [49], Azadeh et al. utilized NSGA-II to solve a large-sized
cell formation problem, a traditional problem of assignment
of parts, operators, and machines to the cells. In this study,
the operators’ personality and decision-making styles, exper-
tise in dealing with machines, and job security are also
incorporated, which demonstrates the novelty of the pro-
posed model. The results were validated using NSGA-II,
multi-objective PSO (MOPSO), weighted sum method
(WSM), and epsilon constraint method (ECM). Out of these
methods, the metaheuristic approaches outperformed the
classical approaches.

Zhang et al. [65] used NSGA-II to optimize multi-stage
assignment for emergency rescue teams in the disaster chain.
The proposed NSGA-II performed better than GAwhen com-
pared using scenarios designed for experiments.

In [53], NSGA-II outperformed the Greedy ran-
domized adaptive search procedure (GRASP) to solve

a multi-objective oil platform location problem. Other imple-
mentations of NSGA-II to assignment problems include the
load balancing of network traffic [51] and the bi-objective
facility location problem [58].

b: ALLOCATION PROBLEM
Attar et al. [80] suggested NSGA-II for free distributed
repairable multi-state availability-ReAP. The proposed
approach was compared with the strength Pareto evolutionary
algorithm (SPEA-II) under cold standby and hot standby
scenarios using accuracy and diversity metrics. The findings
obtained from the statistical analysis showed that NSGA-II
was superior to SPEA-II

c: VEHICLE ROUTING PROBLEM
In [122], the researchers proposed NSGA-II with a novel
framework to solve multi-objective capacitated VRP. The
reference value method and ranking objective method were
used to prune the size of the Pareto optimal solutions accord-
ing to the preferences of the decision-maker. The efficiency
of the algorithm was demonstrated using Solomon datasets,
a standard instance for the capacitated VRP.

d: SCHEDULING PROBLEM
In [154], the researchers compared NSGA-II and NSPSO
for Distributed heterogeneous computing systems on
benchmark instances using standard performance metrics.
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The compromised optimal schedules obtained by NSGA-II
have better quality than the other approach.

The authors in [174] proposed a new multi-objective non-
linear model for preventive maintenance scheduling for off-
shore wind farms.

Here, NSGA-II was implemented to obtain the trade-off
between two conflicting objectives, maximum utilization,
and minimum costs.

In [185], NSGA-II was used to plan the inter-site earth-
moving in which it deals with two conflicting objectives of
minimizing earthmoving costs associated with cut and fill
sites along with satisfactory construction schedules.

In [171], NSGA-II configurations based on different num-
ber of function evaluations were applied to solve the schedul-
ing problem of demand resource programs in retail electricity
markets. Here, the performance of the algorithm increases as
the number of function evaluations increases.

e: KNAPSACK PROBLEM
In [97], two mathematical models for optimal selection of
safety measures in oil and gas facilities are developed, solu-
tions of which are obtained using NSGA-II

f: MISCELLANEOUS
Rabbani et al. [199] applied NSGA-II and MOPSO to the
newly proposed industrial waste location-routing problem,
which includes three objectives, minimization of total costs,
total risk, and transportation risk for all routes. The above
algorithms are applied to randomly-generated test instances
for comparison based on the quantity of non-dominated solu-
tions, CPU time, spacing, and diversity metrics using a statis-
tical t-test. Out of these, NSGA-II outperformed MOPSO for
the first three performance measures.

De et al. in [197] introduced a new MINLP model for the
routing and scheduling of ships and solved it using NSGA-II
and MOPSO. The Problem instances are developed for the
verification of the proposed model and comparison of the
algorithms. NSGA-II was claimed to be computationally
more efficient than MOPSO for large-sized instances.

2) MODIFIED NSGA-II FOR MOCOPS
In some MOOPs, NSGA-II cannot be applied directly due
to their different problem structure. For solving such prob-
lems, NSGA-II can be modified according to their require-
ment. Also, the performance and efficiency of conventional
NSGA-II can be further improved usingmodifications related
to initial population generation, mutation and crossover oper-
ator, crowding distance operator, selection mechanism, con-
straint handling technique, and many other criteria. This
section presents a detailed study of the implementation of
modified NSGA-II to MOCOPS. The summary of the related
literature is shown in Table 7.

a: ASSIGNMENT PROBLEM
Lian et al. [63] proposed a new multi-objective model for
the assignment of multi-skilled workers to seru production
systems, considering heterogeneous workers with different
work skills. NSGA-II based algorithm was tested on medium

size numerical examples and applied to the proposed model.
The seru swap crossover strategy and a mutation strategy
designed according to the given problemwere used as genetic
operators for the proposed NSGA-II.

Li et al. [55] performed a comparative analysis of two
algorithms, adaptive MOEA/D (AMOEA/D) and, adaptive
NSGA-II to solve the MWTA problem. When comparing the
efficiency of the proposed algorithms on MWTA instances,
the adaptive NSGA-II was found better than the adaptive
MOEA/D algorithm. Juan et al. [56] employed NSGA-II to
solve a multi-objective dynamic weapon-target assignment
problem (DWTA) and compared it with Monte Carlo ran-
dom sampling method on DWTA instances. Jie et al. [57]
solved a multi-objective missile-target assignment problem
using three multi-objective optimization methods MOEA/D,
DMOEA-εC, and NSGA-II. The computational experiments
are performed, and the results claimed that DMOEA-εC and
NSGA-II could find more non-dominated solutions.

Lin & Yehwas [62] used NSGA-II in integration with
the Technique for order of preference by similarity to ideal
solution (TOPSIS) to optimally assign transmission lines
to computer/communication networks with minimum cost
and maximum network reliability. The uniform and simple
mutations principles and SPX were used for the proposed
NSGA-II. Martínez-Vargas et al. [64] proposed NSGA-II
for efficient bandwidth distribution to the spectrum shar-
ing network. Four-point binary crossover, Laplace crossover,
and non-uniform mutation were used as NSGA-II genetic
operators. The proposed algorithm was compared with the
weighted sum approach (WSA) and parallel cell coordinate
system adaptive multi-objective PSO (pccsAMOPSO) using
different SA cases where NSGA-II outperformed all the com-
parative algorithms.

Cao et al. [60] suggested NSGA-II for the spatial opti-
mization problem of optimal land-use allocation. The single
parent crossover and two mutation operators, mutation of
patch cells, and mutation by constraint steering were used as
genetic operators of NSGA-II.

Goyal et al. [61] proposed a two-phase decision framework
for optimal configuration selection for the reconfigurable
manufacturing system (RMS). In the first phase, NSGA-II
was used with a two-point crossover (TPX) to obtain the
Pareto optimal solutions, and in the second phase, the entropy
weight method and TOPSIS were used to rank the Pareto
optimal solutions. The apparent trade-off obtained using the
above procedure helped in enhancing the decision quality in
the RMS.

Azadeh et al. [47] used NSGA-II and MOPSO to solve a
newly proposed model for cell formation and worker assign-
ment problem in the field of dynamic cellular manufacturing
systems. Test problems were randomly generated for the val-
idation and verification of the proposed model and solution
methods. The performance metrics such as the quantity of
non-dominated points, CPU time, spacing& diversity metrics
were used to compare the algorithms. Based on the compari-
son results, the authors claimed to use NSGA-II to provide
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TABLE 7. (Continued.) Summary of reviewed papers using modified NSGA-II for MOCOPs.
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a better quality of non-dominated solutions for large-sized
problems.

In [46], an integer enhanced NSGA-II was proposed
to solve the newly formulated multi-objective generalized
assignment problem (GAP) with the additional objective of
equilibrium. The proposed algorithm outperformed NSGA-II
on six instances of the OR-Library. In [52], the authors uti-
lized NSGA-II to solve the platform-assignment problem.

b: ALLOCATION PROBLEM
Song & Chen [89] developed a modified NSGA-II for the
multi-objective land allocation problem. NSGA-II was mod-
ified with knowledge-informed initial population, crossover,
and mutation operators and compared with classical
NSGA-II. The results claimed that the knowledge-
informed NSGA-II produced better solutions than conven-
tional NSGA-II in terms of proximity to the Pareto front and
computational time.

Sun et al. [76] implemented a modified NSGA-II on the
ReAP in a multi-state series-parallel system under epistemic
uncertainty to maximize the extremum of system availability
under cost constraint. A repair operator was used in the
crossover operation, and a local search operator was used in
the mutation operation. The proposed algorithm was com-
pared to the standard NSGA-II for the established benchmark
instances and exceeded it in terms of performance measures.
Ghorabee et al. [85] considered a bi-objective ReAP with
k-out-of-n systems and solved it using NSGA-II based algo-
rithm. Based on modifications related to diversity preserva-
tion and constraint handling, four methods were developed,
and among them, the algorithms with modified crowding
distance and modified constraint handling methods provided
the best results. In [74], Alikar et al. proposed a new inventory
ReAP with two objectives, i.e., minimizing overall costs and
maximizing overall system reliability. Three multi-objective
algorithms, NSGA-II, MOPSO, and MOHS, were used to
solve the above-mentioned problem. Since there are no
benchmarks available in the literature, comparisons between
algorithms were made on randomly generated numerical
examples, and NSGA-II was found to be better than the
other algorithms. Madjid et al. [81] developed customized
NSGA-II for a newly proposed multi-objective model on
repairable multi-state ReAPs. The constraints are handled
using a combination of modification strategy and penalty
strategy. The proposed approachwas comparedwith the ECM
using 30 RMMRAP test instances of three different sizes,
small, medium, and large. NSGA-II outperformed ECM for
all the instances, and the results of ECM for large-sized
instances were not even acceptable. Ardakan et al. [77] used
NSGA-II to address the bi-objective ReAP with a new mixed
redundancy strategy. Here, the TPX and amodified version of
the max-min crossover and max-min mutation were used as
genetic operators for the proposed algorithm. Safari et al. [79]
introduced NSGA-II to solve the multi-objective ReAP. The
proposed approach was compared with GA on a numerical
example taken from literature. The uniform crossover (UX),

modifiedUX, andmax-minmutationwere used for NSGA-II.
The robustness of the proposed algorithm was evaluated
using the ANOM technique. Solutions obtained using the
proposed algorithm dominates the solution obtained by GA.
Kayedpour et al. [84] applied NSGA-II to the multi-objective
ReAP considering designing systems. The SPX and TPX
were used as crossover operators, and bit-inversion, bit-
reversal and random permutation mutation operators were
used as mutation operators. Wang et al. [82] proposed
NSGA-II for a multi-objective ReAP in Parallel-series sys-
tems. The SPX and bitwise mutation operators were used
as genetic operators for NSGA-II. The proposed approach
performed better than the two single-objective algorithms,
K-Y and R-M algorithms, on the parallel-series system’
benchmark problems. In [78], NSGA-II was developed to
solve the ReAP with non-homogeneous components. The
TPX and max-min crossover were used randomly for the
selected parents, and then the general mutation and max-min
mutation were also randomized. Here, all the best solutions
found in previous studies are dominated by the solutions
obtained using NSGA-II. In [75], a ReAP was addressed in
which NSGA-II was implemented along with the k-means
clustering algorithm to prune the size of the Pareto optimal
solutions to ease the decision-making process.

Tian et al. [67] suggested a multi-objective terminal area
RAP and optimized it using NSGA-II. Linear recombination
crossover operator and stochastic mutation operator were
used in the proposed algorithm. In order to handle the com-
plexities of RAP, Datta et al. [66] proposed a problem inde-
pendent NSGA-II–RAP algorithm similar to the conventional
NSGA-II. They implemented it to real instances of IIT Kan-
pur class timetabling and land uses allocation in the land-
scape, located in Baixo Alentejo, Portugal. NSGA-II-RAP
algorithm has a block-based crossover operator and PLM as
genetic operators. The authors claimed that the developed
algorithm has a tendency of multiple allocations to some
resources in both instances. Afrin et al. [68] addressed the
multi-objective RAP for robotic workflow in a smart fac-
tory. Here, NSGA-II was modified in terms of the initial
population, chromosome representation, and mutation oper-
ator. The proposed algorithm outperformed the benchmark
NSGA-II, MOPSO, SPEA-II and PAES by at least 18 %
in optimizing the objective functions of various synthetic
and real-world scenarios. In [69], NSGA-II was used to
solve the multi-objective RAP in multiple input multiple
output orthogonal frequency division multiple access sys-
tems. The SPX and bitwise mutation operators were used
as genetic operators for NSGA-II. Zheng et al. [71] imple-
mented NSGA-II to solve energy-aware RAPs in a cloud
manufacturing environment. The best optimal solution was
then achieved using TOPSIS. The TPX operator and muta-
tion operator based on the concepts of simple mutation and
uniform mutation were used as genetic operators. The effec-
tiveness of the proposed approach was validated using a case
study of supply chain service of a high-speed train in cloud
manufacturing.
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To optimize cloud resource usages, Tan et al. [70] devel-
oped genetic operators for NSGA-II to solve web service
RAP in the cloud environment. The suggested approach
did not include any crossover operator. The results of the
proposed algorithm outperformed the results obtained from
different variants of the algorithm.

In [86], the authors formulated a reliability-redundancy
allocation problem with a cold-standby strategy and solved it
using NSGA-II with modified genetic operators and penalty
function method for constraint handling. The solution obtain-
ing using the proposedmethod outperformed the best solution
available in the literature.

Ji [93] modified the elite preservation strategy of NSGA-II
and designed an archive for bias search in the direction of
a feasible solution to solve the continuous berth allocation
problem. The proposed algorithm outperformed NSGA-II,
NSGA-III, GA with the suitability of feasibility (GA-SF),
GA with penalty functions (GA-PF), adaptive large neigh-
bourhood search (ALNS), and Branch and Bound on both
randomly generated instances and instances taken from
literature.

In [207], the nursing home location and allocation problem
was explored using NSGA-II with designed crossover and
mutation operators. The proposed NSGA-II was compared to
an enhanced and designed SPEA-II algorithm. The findings
of a case study based on two data sets showed that for small-
scale problems, ECM was superior, but for large-scale prob-
lems, NSGA-II better approximate Pareto optimal solutions
than SPEA-II.

Habib et al. [73] proposed design optimization of
repairable k-out-of-n subsystems using NSGA-II with two
different constrained handling techniques, penalty method
and constraint domination principle (CDP). These two
approaches were compared with the SPEA-II algorithm, and
also the full enumeration method (FEM) was used for obtain-
ing the true Pareto front. The simulation results showed that
NSGA-II had all the exact non-dominated solutions for small
and moderate instances. However, for large-sized instances,
NSGA-II with penalty function provided better quality solu-
tions in less computational time, and NSGA-II with CDP
provided better uniform spread in comparison to SPEA-II

In [91], NSGA-II was used for multi-objective channel
allocation problem to mobile hosts in a mobile computing
network. The SPX and bitwise mutation operators were used
as genetic operators for NSGA-II. Based on the results,
NSGA-II provided better objective-values than the two exist-
ing models, the FTCA model, and the reliability model.

Shahryari et al. [90] suggested NSGA-II for allocat-
ing D-STATCOM in distribution systems and used fuzzy
decision-making to obtain the best compromise solution.
Here, arithmetic crossover and uniform mutation were used
as genetic operators for the proposed algorithm.

c: VEHICLE ROUTING PROBLEM
Shamshirband et al. [123] proposed a new multi-objective
VRP model with contradictory goals of reducing travel costs

and optimizing demand coverage. Two approaches based
on NSGA-II were developed using two different neighbour-
hood structures for mutation operators. In the first method,
the 2-Opt structure was used as a mutation operator, and
in the second method, three neighbourhood structures of
2-Opt, 2-Opt∗, and Or-Opt∗ were used as a mutation oper-
ator. The second method was dominant over the first method
(in terms of spread and set coverage metrics) on typically
created examples. Xu et al. [124] established a two-layered
model for the VRP in which the first layer is a multi-objective
model, which was handled using fast NSGA-II with a TPX
and swap mutation operator.

Li et al. [113] presented NSGA-II for multi-objective ship
weather routing problem to obtain Pareto optimal routes
sets. The arithmetic crossover and mixed mutation com-
bining the uniform mutation and Gaussian mutation were
used as genetic operators for NSGA-II. The demonstration
of the proposed algorithm was conducted using simulation
experiments.

The VRP with demand responsive transport (VRPDRT)
was proposed in [116], which was solved using NSGA-II and
SPEA-II algorithms. Here, the TPX and 2-shuffle mutation
were used as genetic operators for NSGA-II. The use of
hypervolume performance measure and the statistical test
showed that NSGA-II has greater convergence as compared
to SPEA-II.Mendes et al. [117] addressedVRPDRT systems.
Initially, they transformed the five-objective optimization
problem into a three-objective optimization problem using
objective functions aggregation. The random method and
NSGA-II were then compared to solve the above three objec-
tive optimization problems using the set coverage metric.
The results showed that the proposed NSGA-II exceeded the
randommethod in obtaining a set of non-dominated solutions
to the given problem.

Shukla et al. [112] used NSGA-II to solve a fuzzy pollution
routing problem with high order uncertainty. Here, the par-
tially mapped crossover (PMX) and swapmutation were used
as genetic operators for NSGA-II. Simulation experiments
were conducted in which type-2 fuzzy set based NSGA-II
was more efficient than the crisp and type-1 fuzzy set
based NSGA-II.

Liu et al. [115] proposed a four-objective dynamic routing
planning problem in which a novel objective was considered
for simpler routing and better user experience. NSGA-II was
designed and used a node-based crossover operator to solve
the proposed model to obtain a trade-off among the four
objectives.

Miguel et al. [114] addressed a multi-depot time-
dependent capacitated VRP with time windows problem
in urban freight transport planning. A hybrid variant of
NSGA-II was developed that incorporated the knowl-
edge information of the problem in the chromosomes and
used a newly designed ERX-MD recombination operator.
A g-dominance strategy was also used to introduce the
preference of the decision-makers. This proposed vari-
ant was compared with NSGA-II and SPEA-II using the
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hypervolume measure on real-world problem instances. The
results claimed that the proposed algorithm outperformed the
other algorithms.

d: TRAVELLING SALESMAN PROBLEM
Shuai et al. [106] proposed an NSGA-II based algorithm
for multi-objective multiple TSP (MTSP) in which a novel
crossover operator, called combined HGA and two mutation
operators were designed to improve the global and local
search capability of the algorithm. In addition, to demonstrate
the effectiveness of the proposed algorithm, benchmark
instances are used to compare it with five state-of-the-
art algorithms from the literature. The proposed modified
NSGA-II performed better than those five algorithms, out
of which four algorithms are based on ant colony optimiza-
tion (ACO), i.e., MoACO/D-ACS, MACS, g-MinMaxACS,
and MoACO/D-ACS, and one algorithm is CPLEX MinMax
SD-MTSP from CPLEX solver.

e: SCHEDULING PROBLEM
Lu et al. [150] proposed chaotic NSGA-II (CNGA) for auto-
matic test task scheduling problem (TTSP) to improve the
quality of solutions and also to avoid the problem of falling in
local optima. Because chaotic maps were embedded as num-
ber generators instead of random number generators, chaotic
variables were used instead of random variables. The pro-
posed algorithmwas tested on a real-world TTSP Experiment
& a TTSP for two units under test. The proposed CNSGA
algorithm has better local search capability than NSGA-II
due to the ergodicity and pseudo-randomness of chaos.
Salimi et al. [151] used fuzzy adaptive operators in NSGA-II
to solve the task scheduling problem in computational grids.
Classical NSGA-II and NSPSO algorithms were used for
comparison with the proposed NSGA-II, and the results
showed that the proposed approach outperformed the other
algorithms in terms of convergences speed and quality
of Pareto optimal solutions. Shukla et al. [149] imple-
mented NSGA-II for the energy-efficient multi-objective task
scheduling of the industrial system. The PMX and swap
mutation were used as genetic operators for NSGA-II.

Vanucci et al. [144] studied multi-mode RCPSP
(MRCPSP) and found its solutions using the modified
NSGA-II. NSGA-II was modified using a problem-specific
crossover and mutation operator and well as an encoding/
decoding scheme used for problem representation.

Laszczyk & Myszkowski [141] proposed three modifi-
cations in the NSGA-II selection method for optimizing
multi-objective multi-skilled RCPSP (MS-RCSP). Firstly,
they increased the population size for tournament selec-
tion and eliminated the non-dominated sorting procedure;
Secondly, they use a clone prevention method to replace
the crowded distance operator to monitor the population
for clones; and thirdly, they use a rank comparison oper-
ator. The proposed algorithm was compared to multiple
runs of single-objective hybrid differential evolution with the
greedy algorithm (DEGR) and proved useful for MS-RCSP.

Wang et al. [143] suggested NSGA-II for RCPSP with mul-
tiple activity performance modes that were tested using an
agricultural example. Damak et al. [145] designed NSGA-II
to solve bi-objective multi-mode RCPSP with two objectives
of minimizing makespan and non-renewable resource cost.

Habibi et al. [139] used arithmetic crossover and Gaussian
mutation for population generation in NSGA-II to handle
the integrated framework of project scheduling and material
ordering problems with sustainability considerations. The
modified NSGA-II was compared with the second version
of the augmented ECM (AUGMECON2) for small problems
and the modified MOPSO algorithm for large problems. The
authors’ results stated that the proposed NSGA-II outper-
formed the MOPSO algorithm in most performance metrics
for all problem sizes.

Chang et al. [136] integrated NSGA-II with an artifi-
cial chromosome generation method to solve the multi-
objective FSP. The proposed approach has better convergence
and solution quality as compared to the classical NSGA-II.

In [127], the researchers solved a multi-objective flex-
ible JSSP for random machine breakdown. NSGA-II and
non-dominated ranking genetic algorithm (NRGA) were
compared to solve the problem in which NRGA was better
in terms of diversity metric and time, and NSGA-II was
better in terms of spacing metric, MMID, and the number of
Pareto optimal solutions. The genetic operators selected for
this study are precedence preserving order-based crossover,
modified position-based mutation, and machine-based muta-
tion. According to Li et al. [160], NSGA-II was found
better than the multi-objective GA (MOGA) and PSO for
energy-conscious production in flexible machining job shops
considering dynamic job arrivals and machine breakdowns.
The operation-based order crossover (OX), job positionmuta-
tion, and process plan mutation were used as genetic opera-
tors for the proposed NSGA-II.

Azadeh et al. [126] introduced a new bi-objective mixed-
integer open shop scheduling problem and solved it using
an extended NSGA-II in which the initial population was
generated differently to improve algorithm speed, simulated
annealing crossover operators, and variable neighbourhood
search (VNS) mutation operator were used. To validate
the proposed algorithm’s efficiency, small, moderate, and
large-sized instances were randomly generated, and aug-
mented ECM (AUGMECON) was used for the comparison.
The results showed that the proposed NSGA-II has high
efficiency. Sheikhalishahi et al. [125] suggested an open shop
scheduling problemmodel, considering human error and pre-
ventive maintenance that explicitly relates human error to
open shop scheduling. NSGA-II, MOPSO, and SPEA-II were
compared to solve themodel on large-sized test instances, and
the AUGMECONwas used for small instances to validate the
model. The genetic operators used for NSGA-II were SPX,
arithmetic crossover, and swap mutation. For large instances,
NSGA-II performed better than MOPSO and SPEA-II. Also,
a real case study was used to find the preferred set of
solutions.
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Bandyopadhyay & Bhattacharya [155] formulated a
three-objective parallel machine scheduling problem. and for
its solution, they introduced a new mutation algorithm in
NSGA-II, in which the mutation was applied to the entire
population. This modified NSGA-II was compared to con-
ventional NSGA-II and SPEA-II, and the results showed that
the proposed algorithm outperformed the other algorithms.
In [161], the authors investigated the conjecture that it could
be worthy of using geometric-based operators in NSGA-II
for solving scheduling problems in parallel machines (both
identical and parallel).

Dou et al. [193] used NSGA-II with SBX operator and
order mutation to solve a scheduling problem in RMS.

The researchers in [181] proposed a solution algorithm
enhancing NSGA-II to solve the multi-objective contraflow
scheduling problem. This solution algorithm incorporated
preliminary results as prior information and included a meta-
model as an alternative to objective evaluation through sim-
ulation. The proposed enhanced NSGA-II outperformed the
original NSGA-II both in terms of convergence and diversity
metrics.

Sun et al. [184] used NSGA-II with an improved crowding
distance operator for fog computing resource scheduling. The
proposed NSGA-II outperformed the random scheme and
fog-based IOT resource management model (FIRMM).

In [188], the controlled elitist NSGA-II improved the
multi-objective process planning and scheduling in manu-
facturing systems to consider the problem’s computational
intractability. The proposed algorithm was compared to the
controlled elitist NSGA-II and NSGA-II for test cases, and
the results indicated that the proposed algorithm provided
more optimal and robust solutions.

Ruiming [192] suggested an improved NSGA-II that
improves the solution diversity and convergence for
multi-objective dynamic scheduling problem in an integrated
energy system. An interactive strategy using an external
archive to update the solution helped prevent local optimiza-
tion. The authors used the traditional NSGA-II to compare
the non-dominated solutions with the proposed algorithm and
found that the improved NSGA-II has a better exploration
ability and uniform spread of solutions.

In [189], Xu et al. investigated cross-trained workers
scheduling problem for field service. An improved NSGA-II
with dynamic crowding distance, multiple sorting princi-
ples, and adaptive tournament selection proved better than
NSGA-II on an experimental test using performance met-
rics. In [147], a new multi-objective model was proposed
for cross-docking scheduling problems in the supply chain.
NSGA-II and MOPSO were implemented to solve the model
and compared using a numerical example. The authors
claimed that NSGA-II was found to be superior to the other
algorithm.

Ghoddousi et al. [176] introduced a multi-mode
resource-constrained discrete time cost resource optimization
model and used NSGA-II to obtain the Pareto optimal solu-
tions. The SPX crossover and a designed mutation operator

were used to deal with the problem. In [178], an integrated
framework of the MCDM methodology and multi-objective
approach was proposed to obtain a single Pareto optimal
solution for discrete-time-cost-quality trade-off problems
(DTCQTPs). The Pareto optimal solutions obtained from
NSGA-II were ranked using elective reasoning utilizing
the weights obtained by the entropy weight method. This
decision provided a better solution compared to the existing
result. Here, TPX and swapmutation were used as the genetic
operators for NSGA-II. A new multi-objective multi-mode
model for DTCQTPs was proposed in [177], and a dynamic
self-adaptive NSGA-II was implemented to solve the pro-
posed model compared to an efficient ECM.

Mohapatra et al. [187] dealt with the optimization of
adaptive setup plan in manufacturing system concerning the
makespan, machining cost, and utilization of the machine.
NSGA-II obtained the best compromise solution for the prob-
lem using SPX and bitwise mutation operators.

Niu et al. [164] suggested the NSGA-II algorithm for
satellite scheduling of large areal tasks. TPX and single-
point mutation operators were used as genetic operators.
The proposed NSGA-II outperformed the two state-of-the-art
approaches, the GA and the greedy algorithm, in finding the
best compromised optimal schedules.

Kaushik & Vidyarthi [180] proposed a multi-objective
resource allocation model for computational grid schedul-
ing using a dynamic resource allocation scheme. Further,
NSGA-II used to optimize this model proved better than GA
as it offered alternative trade-off solutions instead of a single
best compromise solution. Here, UX and random BFM were
used as the genetic operators for NSGA-II

Wang et al. [169] suggested a real-time energy efficiency
optimization method based on NSGA-II for energy-intensive
manufacturing enterprises. Here, a multi-point crossover
operator is used to schedule the production plans in an energy-
efficient manner to achieve real-time key performance indi-
cators relevant to enterprise information systems’ energy.

Wang et al. [159] proposed NSGA-II for optimal produc-
tion scheduling with designed initialization, crossover, and
three mutation operators. The proposed algorithm was com-
pared with AUGMECON for small-sized instances and with
the constructive heuristic method for medium and large-sized
instances. The conducted experiment showed that formedium
and large-sized instances, NSGA-II performed better than
the constructive heuristic method in terms of the number of
non-dominated solutions and DR metric.
Malik et al. [165] suggested NSGA-II having a multi-point

crossover operator for solving theMOOP of elective surgeries
scheduling of the operating room to minimize the number of
patients waiting for elective surgery and the associated costs.

Wu et al. [146] proposed a new multi-objective model
to re-synchronize the bus timetable for the bus transit com-
pany. A problem-designed NSGA-II was used to find the
Pareto optimal front and compared it with the classical FEM.
In terms of solution quality and convergence speed, the pro-
posed NSGA-II was found better than the FEM.
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The researchers in [170] used NSGA-II to schedule
short-term incentive-based demand resource programs in
retail electricity markets. Here, arithmetic crossover, Gaus-
sian mutation, and binary mutation were used as genetic
operators for NSGA-II.

In [191], a novel bi-objective optimization model was
proposed for workforce scheduling in the seru production
system (SPS). Here, improved ECM and NSGA-II were used
to provide Pareto optimal solutions for small-sized and large-
sized problem instances, respectively.

Souier et al. [183] developed a decision support system for
the best solution to the multi-objective problem of selecting
multiple routing for a flexible manufacturing system in an
uncertain environment. NSGA-II has better performance than
the GA in obtaining the trade-off solutions to the problem.

f: KNAPSACK PROBLEM
Zhang et al. [94] introduced a repair method based on
NSGA-II for requirements interaction management based
selection and optimization method. The proposed method
was compared with conventional NSGA-II and archive-based
NSGA-II on RALIC data sets and 27 combination random
data sets using convergence and diversity performance mea-
sures and Kruskal–Wallis test. The results demonstrated that
NSGA-II performed better than the other two methods.

Changdar et al. [104] proposed a modification in the
refinement operation of NSGA-II for a multi-objective
vegetable wholesaling problem. The authors claimed
that the proposed algorithm was better than WSM,
non-dominated sorting cuckoo search algorithm (NSCSA),
and non-dominated sorting hybrid cuckoo search algorithm
(NSHCSA) using benchmark instances.

In [103], the authors studied that the performance
of NSGA-II was better using the non-geometric binary
crossover with the geometric standard UX. The experiments
were performed on a bi-objective 500-item 0/1 knapsack
problem. Ishibuchi et al. [99] used the weighted sum fit-
ness functions for parent selection and generation update
of NSGA-II. The researchers investigated that the method
mentioned above helped introduce additional selection pres-
sure towards the Pareto front and improved the scalabil-
ity of NSGA-II for many-objective 0/1 knapsack problems.
Tanigaki et al. [102] used a preference-based mechanism
instead of crowding distance for selection and population
updates in NSGA-II. The modified NSGA-II experimented
with benchmarked instances for many-objective knapsack
problems and performed better than the traditional NSGA-II.

Murata & Taki [100] examined the effect of objec-
tive reduction technique using correlation-based WSM on
many-objective knapsack problems. The eight objectives
were divided into two groups, and the objectives of indi-
vidual groups were aggregated using the WSA, and then
NSGA-II was used to obtain the non-dominated solutions.
The NSGA-II results on the aggregated problem were com-
pared with its results on the problem with eight objectives

which showed that after aggregating the objectives into two
groups, the average value of objectives improved.

A newmulti-objective resource allocationmodel onmobile
cloud computing is presented in [95], including minimizing
task completion time and the energy consumption of all
participating mobile devices. A two-stage decision frame-
work was developed in which NSGA-II was implemented in
the first stage, and the second was based on TOPSIS, and
entropy weight. The UX operator and the PLM operator were
used as genetic operators for the proposed NSGA-II. The
reference Pareto optimal solutions obtained using branch and
bound algorithm were used to test the proposed algorithm’
efficiency.

The researchers of [96] exploited NSGA-II to solve the
multi-objective resource management problem of a device to
device (D2D) multicasting, a knapsack problem concerned
with the channel/power allocation to D2D links in such a
way that the spectrum and energy efficiency are optimized.
The outer layer crossover and designed mutation were used
as genetic operators for NSGA-II. The simulation experiment
results in the superior performance of NSGA-II as compared
to other methods.

g: MISCELLANEOUS
Liu et al. [195] developed a new multi-objective resource
allocation and activity scheduling model for fourth-party
logistics. An improved NSGA-II developed using the
improved precedence operation and multi-point preservative
crossovers, and insertion and replace mutations were used to
solve the proposed model.

Rashidnejad et al. [203] proposed an integrated vehicle
routing and maintenance scheduling problem. The authors
suggested an advanced NSGA-II in which a heuristic was
used to produce the initial population, a novel route insertion
crossover operator and three new mutation operators (rows
swap, partially rows swap and exchange routing) were pro-
posed for the offspring generation. The proposed approach
was compared with ECM, and the results are admissible in
terms of convergence and diversity metrics.

In [202], NSGA-II and MOPSO were proposed to solve a
new bi-objectivemodel for location-routing-problem inwaste
collection management. These proposed algorithms were
compared using sample test problems in which NSGA-II
outperformed the MOPSO algorithm.

Ji et al. [205] proposed a new multi-objective lock and
water–land transshipment co-scheduling problem, which was
decomposed into two sub-problems, lock scheduling and
berth allocation. A hybrid heuristic method was proposed
in which the main problem was solved using modified
binary NSGA-II, and specific heuristics solved the two sub-
problems. The modified NSGA-II replaces the crossover and
mutation operators of binary NSGA-II with modified TPX
and swap mutation operators. The feasibility of the problem
model and hybrid heuristic superiority was demonstrated
using instances extracted from historical data.
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Li et al. [212] proposed PD-NSGA-II embeddedwith prop-
erties of non-dominated solutions provided by scheduling
experts to solve the multi-objective production-distribution
scheduling problem with a single machine for produc-
tion and multiple vehicles for the delivery of products.
The PD-NSGA-II outperformed the SPEA algorithm on var-
ious sized test problems.

The study in [200] proposed a new multi-objective
location-routing model for disaster relief distribution in post-
earthquake, including the location of distribution centres,
vehicle routing, and scheduling. NSGA-II proposed to solve
the problem has TPX and reverse sequence mutation in place
of standard genetic operators. Out of the two algorithms,
NSGA-II and Non-dominated sorting differential algorithm
(NSDE) algorithms used to solve this problem, NSGA-II
outperformed NSDE in most cases. In [198], a new trans-
portation location-routing problem was formulated, and the
methods named scatter tabu search procedure for non-linear
multi-objective optimization (SSPMO), NSGA-II,WSM, and
ECM were implemented to achieve a trade-off between the
two conflicting objectives, cost and route balance. Computa-
tional experiments on randomly generated instances showed
that NSGA-II provides efficient solutions for large instances
compared to other approaches.

Pilato et al. [209] proposed NSGA-II for high-level syn-
thesis (scheduling, resource allocation, and binding) of the
field-programmable gate array. Here, the authors used binary
crossover and unary mutation in the proposed algorithm.

Blank et al. [204] proposed NSGA-II for a complex bi-
objective travelling thief problem, a combination of a TSP
and a knapsack problem. The genetic operators used are
SPX and bit-flip mutation (BFM). The proposed NSGA-II
performed better than a greedy algorithm, an independent
sub-problem algorithm (ISA), and ISA-local on randomly
generated test instances.

In the field of system protection, Khanduzi et al. [206]
applied the NSGA-II and Weighted metric method to solve a
new integrated assignment allocation model with two objec-
tives that maximize the sum of the efficiency of DMUs and
minimize the total distance between customers and facilities.
The genetic operators used in NSGA-II are TPX, single and
inversion mutations. Both the above methods were compared
on 48 randomly generated test instances using two perfor-
mance measures, CPU time and dominance criteria, and as
a result, NSGA-II outperformed the exact method in terms of
computational time.

In [196], NSGA-II performed better than the improved
ECM on large-sized instances for the location-scheduling
problem in the perishable food supply chain. The proposed
NSGA-II has SPX and shift and exchange mutation for per-
forming genetic operations.

3) HYBRID NSGA-II FOR MOCOPS
NSGA-II is good at solving problemswith large search spaces
but traditionally requires substantial computational effort to
find the true Pareto front. Therefore, other search methods are

combined with conventional NSGA-II/ modified NSGA-II
to push the non-dominated solutions towards the real Pareto
optimal solutions with an acceptable computational cost. This
section presents a detailed study of hybrid NSGA-II imple-
mentations to solve MOCOPs. The summary of the related
literature is shown in Table 8.

a: ASSIGNMENT PROBLEM
In [48], Niakan et al. proposed a novel multi-objective
dynamic cell formation problem considering worker’s assign-
ment, social, economic, and environmental aspects. The
authors developed a hybrid algorithm combining NSGA-II
with MOSA involving the standard crossover and single,
multi, and inversion mutations and used randomly generated
test instances and performance metrics to compare it with
NSGA-II and MOSA. The obtained results showed the supe-
riority of the proposed approach over the other compared
algorithms.

In [59], Medaglia et al. developed a new facility location
problem model and proposed two multi-objective evolution-
ary algorithms to obtain the set of Pareto optimal solutions.
The first algorithm GA-GAH combines NSGA-II with a fast
greedy fitness assignment heuristic, and the second algorithm
GA-MIP combines it with a mixed-integer program (MIP)
heuristic. The authors tested these two approaches on data
from Boyacá’s hospital waste management network. The
GA-MIP was found better than GA-GAH in terms of the SSC
metric. The proposed GA-MIP again compares with the non-
inferior set estimation (NISE) method on publicly available
instances. The GA-MIP scaled better than the NISE method
on large instances and can also find non-supported solutions
along with supported solutions.

Cococcioni et al. [50] proposed a multi-objective model
for worker’s risk perception and caution to improve workers’
occupational safety at the workplace. They presented a modi-
fied version of NSGA-II based on mutation operator only and
used semi-supervised learning to generate initial populations.
After that, the best Pareto optimal solutionwas obtained using
the TOPSIS method. Finally, the validation of the proposed
methodology was carried out using data collected from small
manufacturing enterprises.

Segredo et al. [54] suggested ways to deal with the fre-
quency assignment problem (FAP) in designing a global
system for mobile communications networks, known as auto-
matic frequency planning and channel assignment prob-
lem. Several multi-objectivization methods integrated with
NSGA-II and a novel non-destructive crossover operator
(to avoid premature convergence) were proposed for the
mono-objective FAP and compared with the best up-to-date
sequential method on two US cities instances: Seattle and
Denver. The results indicate that the proposed method has
better quality and speed than other methods.

b: ALLOCATION PROBLEM
Guo et al. [88] merged NSGA-II with a tabu search based
local improvement procedure and a self-adaptive population

57772 VOLUME 9, 2021



S. Verma et al.: Comprehensive Review on NSGA-II for Multi-Objective COPS

size adjustment process to solve a multi-objective order allo-
cation problem. The modified mutation based on uniform
mutation and fitness-based scanning crossover were used as
genetic operators. The suggested approach performed better
than the conventional NSGA-II and the industrial method on
the performed experiment.

Su et al. [87] also integrated NSGA-II with tabu search
(TS-NSGA-II) for the buffer allocation problem of reman-
ufacturing systems. This TS-NSGA-II performed better than
the traditional NSGA-II.

Britto et al. [92] proposed a hybrid approach based on
NSGA-II and Mamdani fuzzy inference systems to address
a team allocation problem in an agile software development
project. The Mamdani fuzzy inference system was used to
estimate the developer productivity.

In [83], NSGA-II was hybridized with an adaptive
population-based simulated annealing (APBSA) to solve
a bi-objective ReAP for systems reliability. The proposed
approach was compared with three commonly known meth-
ods, MOGA, NRGA, and NSGA-II, on randomly generated
test instances using four performance measures, i.e., mean
ideal distance, spread, coverage metric, and data envel-
opment analysis. The developed hybrid algorithm outper-
formed the other algorithms for the last three performance
measures, but NSGA-II has the best mean ideal distance.
Zhang et al. [72] developed an NSGA-II-TRA algorithm in
which a novel heuristic was used for constraint handling in
NSGA-II to solve the optimal testing RAP. Also, the Z-score-
based Euclidean distance is adopted to estimate the difference
between solutions. The proposed algorithm was compared
with two existing MOEAs, i.e., multi-objective differential
evolution based on weighted normalized sum (WNSMODE)
and harmonic distance-based non-dominated sorting genetic
algorithm-II (HaD-MOEA), and was found better based on
capacity, coverage, and pure diversity values.

c: VEHICLE ROUTING PROBLEM
Rauniyar et al. [111] incorporated a new paradigm of
multi-factorial optimization into NSGA-II to handle the
multi-objective pollution routing problem. Experiments were
performed based on benchmark task sets. The proposed
algorithm was compared with SPEA-II and conventional
NSGA-II using performance measures to investigate the pro-
posed approach’ efficiency. Simulation results showed that
the proposed method was more efficient than the other meth-
ods with faster convergence.

In [118], a mathematical formulation is devised for multi-
objective VRP with the time windows model. Xu et al.
suggested a hybrid NSGA-II in which the Or-opt heuristic
was hybrid with NSGA-II to improve the quality of the
solutions. The above heuristic was used in the initialization
phase and also to generate mutants. This new hybrid algo-
rithm outperformed NSGA-II on both the 30-customer and
498-customer cases. Wang et al. [119] designed a collabora-
tivemulti-depot VRPwith timewindow assignment to reduce
the time uncertainty, which causes operation challenges and

extra cost to the logistics service provider. The authors pre-
sented a hybrid heuristic combining K-means clustering,
Clarke–Wright (CW) saving algorithm, and an extended
non-dominated sorting genetic algorithm-II (E-NSGA-II) for
solutions to the model. E-NSGA-II combined NSGA-II with
PMX, relocation, 2-opt∗ exchange, and swap mutation and
compared with NSGA-II and MOPSO for its validation in
which found superior to both approaches.

Wang et al. [120] introduced a new multi-objective model
for collaborative multiple centres VRP with simultaneous
delivery and pickup to minimize the operating costs and
the number of vehicles in the network. They proposed a
hybrid algorithm HNSGA-II combining NSGA-II with the
K-means algorithm and used PMX and swap mutation oper-
ators. According to experimented results, HNSGA-II outper-
formed NSGA-II by 5.5% and MOPSO by 11.9% in terms of
cost objective on modified Solomon benchmarks. HNSGA-II
also has a high performance on a real case study in Chongqing
city.

Mandal et al. [121] developed a memetic algorithm inte-
grating NSGA-II with a dominance-based local search pro-
cedure (DBLSP) and a clone management principle (CMP)
for a bi-objective mixed capacitated general routing prob-
lem (MCGRP). Also, three well-known crossover operators
(X-set), i.e., PMX, OX, and edge recombination crossover
(ERX), were used to explore the different parts of the search
space. The proposed approach outperformed

XNSGA-II (NSGA-II with only X-set and CMP) on the
experimental tests performed on standard MCGRP instances.

d: TRAVELLING SALESMAN PROBLEM
Chen et al. [110] suggested pNSGA-II, a hybrid NSGA-II,
to overcome the limitations of multi-objective optimization
algorithms based on GA, such as premature convergence
and non-uniformly distributed solutions for bi-objective TSP
(BTSP). In their work, NSGA-II was embedded with the
Physarum-inspired computational model (PCM) in the ini-
tialization phase and the hill-climbing method. The proposed
approach was compared with eight algorithms, including a
typical GA based method HYGA, the multiple ant colony
systems (MACS), Pareto ACO (PACO), three enhanced
algorithms of PACO, i.e., pPACO, pMACS, and pBIANT,
the bicriterion ant algorithm (BIANT) and NSGA-II. The
benchmark instances were constructed using two single
objective TSP instances available in the literature. The
proposed algorithm pNSGA-II was found superior to the
other algorithms using benchmark instances, performance
measures, and statistical analysis. In [45], Moraes et al.
proposed a subpopulation-based multi-objective approach
MOEA/NSM for BTSP. This method integrated NSGA-II,
SPEA-II, MOEA/D, and 2-opt local search technique was
compared with NSGA-II, SPEA-II, and MOEA/D on BTSP
datasets. The results showed that MOEA/NSM outperformed
the other algorithms.

Li et al. [108] performed a comparison among
NSGA-II, MOEA/D, and their variants NSGA-II-ACO and
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TABLE 8. Summary of reviewed papers using hybrid NSGA-II for MOCOPs.
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TABLE 8. (Continued.) Summary of reviewed papers using hybrid NSGA-II for MOCOPs.

MOEA/D-ACO for solving the multi-objective TSP using
a pheromone trail based probabilistic representation.
The benchmark instances were constructed using two
single-objective instances given in the literature. Results
showed that the proposed variants performed better than
corresponding traditional algorithms. However, NSGA-II
performed better than MOEA/D-ACO.

The researchers in [109] proposed a newmodel TSPmodel
that aims to extend and combine different TSP variants to gen-
erate vendor routes in a sales territory. The authors introduced
a new permutation representation and evaluated three differ-
ent algorithms, i.e., NSGA-II, SPEA-II, and IVF/NSGA-II,
on real scenarios. The results claimed that IVF/NSGA-II
outperformed the other algorithms in most cases. Also,
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the obtained solution routes reduce the route distance
by 35% and increase the overall performance by 60%.

Li et al. [107] proposed a hybrid algorithm HNSGA-II
to solve a target mission planning model of GEO satellites.
The suggested algorithm based on NSGA-II used a heuristic
during initialization and mutation, embedded with TSP opti-
mization, and performed better than NSGA-II on randomly
generated instances using the hypervolume measure. The
authors in [105] formulated a bi-objective selective pickup
and delivery problem. They proposed a memetic algorithm
based on NSGA-II along with a repair strategy for constraint
handling.

e: SCHEDULING PROBLEM
Abdi & Zarandi [148] proposed a task scheduling method
for the design optimization of heterogeneous multipro-
cessor embedded systems. In the optimization procedure,
the authors used NSGA-II as a powerful design exploration
engine. Half of the initial population was generated ran-
domly for diversity preservation. The remaining half of the
population was generated using a list scheduling-based
heuristic to find solutions relatively close to the optimal solu-
tions. Chitra et al. [152] also considered the multi-objective
task scheduling problem on heterogeneous systems. Here,
NSGA-II was hybridized with a local search method called
the simple neighbourhood search method. This proposed
algorithm provided better results than conventional NSGA-II,
conventional SPEA-II, and hybrid SPEA-II on random task
graphs. In [153], the authors presented a multi-objective
model for task scheduling in cloud computing with two
conflicting objectives makespan and energy consumption.
NSGA-II was implemented with ANN support and without
ANN support to obtain the Pareto optimal solutions. Accord-
ing to the authors, NSGA-II with ANN support provided bet-
ter solutions as compared to NSGA-II. Vilcot & Billaut [128]
considered a general JSSP with objectives to minimize the
makespan and the maximum lateness. The authors proposed
two methods based on the NSGA-II framework with differ-
ent initialization phases. One of the methods used randomly
generated initial population, and the other method used initial
population partially generated using tabu search. According
to the performance comparison results, NSGA-II with tabu
search performed better in terms of solution quality and
computational time.

In [131], NSGA-II was integrated with genetic pro-
gramming hyper-heuristic (GPHH) to handle multi-objective
dynamic flexible JSSP. The proposed algorithm performed
better than two methods, i.e., SPEA-II based GPHH and
WSM. Gong et al. [130] presented a multi-objective flexible
JSSP with worker flexibility. Here, NSGA-II was integrated
with a local search operator, a designed coding/encoding
method, and adaptive genetic operators. The proposed algo-
rithm was compared with NSGA-II, non-dominated neigh-
bour immune algorithm (NNIA), and NNIA + LOCAL on
instances constructed from traditional instances using conver-
gence and diversity measures. The simulation results showed

that the proposed memetic algorithm performed better than
the other compared algorithms. Autuori et al. [129] claimed
that for solving the flexible JSSP, the hybridization of the
mapping method with NSGA-II was more efficient than the
hybridization of simple hill-climbing local search method
with NSGA-II in terms of hypervolume and set coverage
metric.Wang et al. [132] proposed hybrid NSGA-II for multi-
objective fuzzy flexible JSSP. In the proposed NSGA-II,
the initial population was generated using machine assign-
ment and operation sequencing rules, and a well-designed
greedy chromosome algorithm was used along with two
effective genetic operators. Further, the non-dominated sort-
ing procedure was improved using a modified crowding
distance measure. Also, VNS was used as a local search
operator to enhance the exploitation ability of NSGA-II. The
performance of the proposed algorithm was validated using
benchmark instances available in the literature.

In [179], NSGA-II was hybrid with a heuristic for pop-
ulation initialization and a heuristic crossover operator to
solve a new bi-objective production-distribution supply chain
scheduling model in a flowshop environment. Cai et al. [137]
proposed a novel mixed-integer linear programming model
for a distributed permutation FSP with transportation condi-
tions. NSGA-II was modified in terms of population initial-
ization, i.e., a heuristic was used to initialize the population
for each objective function. The improved NSGA-II outper-
formed the conventional NSGA-II and SPEA-II algorithms.
Zeng et al. [135] proposed a hybrid algorithm integrating
NSGA-II with tabu search and a job merging strategy for
a multi-objective flexible batch processing FSP in manu-
facturing industries. For multi-objective permutation FSP,
Chiang et al. [134] developed an efficient algorithm combin-
ing NSGA-II with a problem-specific local search procedure
NEH and several adaptations, including acceptance criterion
and ordering strategy. Wang et al. [133] proposed a memetic
algorithm based on NSGA-II to solve the multi-objective par-
allel FSP that includes an order encoding scheme, a heuristic
for population initialization, and an embedded local search
operator. Han et al. [138] improved NSGA-II to solve multi-
objective lot-streaming FSP. The traditional genetic operators
of NSGA-II were replaced by the estimation of distributed
algorithm (EDA) (crossover) and swap and insertion muta-
tions. Also, a restarting strategy was performed on the pop-
ulation when the population diversity was less than the
given threshold. The proposed modified NSGA-II outper-
formed NSGA-II, discrete harmony search (DHS) & thresh-
old accepting (TA) on a series of random experiments

Vidal et al. [156] suggested a neuro-evolutionary algorithm
integrating NSGA-II with a multi-layer perceptron neural
network (for processing time estimations) to solve a complex
machine scheduling problem in the custom furniture indus-
try. The proposed approach was compared with five state-
of-the-art algorithms on JSSP benchmark instances using
a set coverage metric. The authors conclude that the pro-
posed method was better than other methods in most of
the test instances. Also, the estimated time obtained through
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multi-layer perceptron has better accuracy than the other
regression techniques used for time estimations.

Liu et al. [157] studied machine scheduling under dis-
ruption to minimize weighted discounted total completion
time and deviation from the initial schedule. A quantum-
inspired hybrid algorithm was employed to solve the problem
in which NSGA-II was hybrid with quantum computing con-
sidering qubit representation. Here, the near-optimal sched-
ules obtained by the proposed algorithm were more effective
than the conventional NSGA-II. Ramacher & Mönch [158]
hybridized NSGA-II with a problem-specific heuristic to
solve a machine scheduling problem with interfering job sets.

Song et al. [162] proposed learning guided NSGA-II for
a multi-objective satellite range scheduling problem. The
algorithm contained NSGA-II and a learning mechanism to
speed up the convergence. Zhang et al. [163] presented a
multi-objective model for a large-scale satellite-data trans-
mission scheduling problem. NSGA-II integrated with sup-
port vector machine (SVM) classification was proposed and
compared with dominance-based NSGA-II, indicator-based
evolutionary algorithm (IBEA), decomposition-based evolu-
tionary algorithm (MOEA/D), and self-adaptive MOEA/D
(SaMOEA/D) for large scale problems. The results showed
that NSGA-II with SVM found more efficient solutions for
large-scale problems in a reasonable amount of time.

Zeng et al. [168] used NSGA-II with tabu search for
energy-efficiency scheduling in paper mills to save energy.
The proposed algorithm performed better than NSGA-II.
Huang et al. [172] merged NSGA-II with MOPSO for
joint voyage scheduling and economic dispatch for energy-
efficient scheduling in all-electric ships with virtual energy
storage.

Xiao et al. [142] proposed three hybrid algorithms for the
RCPSP, each combining the electromagnetism heuristic with
NSGA-II, MOEA/D, and SPEA-II, respectively. According
to this study, the integration of electromagnetism was best
suitable for NSGA-II. Tao & Dong [140] suggested inte-
grating NSGA-II with tabu search for a newly proposed
multi-mode RCPSP with alternative project structures.

Guo et al. [173] combined NSGA-II based multi-objective
framework with an effective production process simulator to
handle the order scheduling problems in production planning.
Here, NSGA-II was modified in terms of chromosome rep-
resentation, genetic operators and embedded with heuristic
pruning and decision-making method to find a single solution
from a set of Pareto optimal solutions.

In [182], the authors integrated NSGA-II with a decod-
ing heuristic and a non-dominated solution construction
method (NSCM) to obtain efficient Pareto optimal solutions
for multi-objective production scheduling with release time
in steel plants.

Wang et al. [175] solved an integrated problem of preven-
tive maintenance and rescheduling problem for the arrival
of a new job in a single machine layout using an improved
The traditional gene NSGA-II. The exploration and exploita-
tion of NSGA-II were balanced using the mutation operator

of differential evolution, high-quality initial solutions, and
approximation heuristic strategy (AHS).

Naik et al. [186] introduced the adaptive multi-objective
resource selection model for selecting the resources inside
the hybrid cloud environment. In this model, NSGA-II was
hybrid with gravitational search algorithm (GSA) to find the
near-optimal schedule for the cloud users.

Hu & Yan [213] proposed NSGA-II coupled with an
EPANET simulator to solve a new multi-objective model
for scheduling valves and hydrants to improve the response
of drinking water contamination event. The proposed model
and methodology were validated using two water distribution
networks and studied the impact of different parameters on
the proposed algorithm.

To solve the spatial combinatorial problem in forest plan-
ning, Fotakis et al. [167] introduced a spatial operator, a local
search operator, or the second kind of mutation in NSGA-II.

In [166], the authors proposed a five-objective mixed-
integer linear programming model for complex decision-
making regarding the planning and scheduling of operation
theatres in hospitals. The authors utilized NSGA-II with a
semi-random procedure for initialization to reduce compu-
tational time.

Guo et al. [190] proposed NSGA-II with a novel greedy
local search to accelerate its convergence speed to solve a
multi-dock cross-docking scheduling problem. The proposed
algorithm outperformed the greedy strategy and approxi-
mated the enumeration algorithm for a small-size problem.
For a large-size problem, the proposed algorithm was found
more efficient than the enumeration algorithm.

f: KNAPSACK PROBLEM
Sato et al. [98] proposed a distributed parallelized NSGA-II
with a migration method (e-DNSGA-II) for constrained
multi-objective knapsack problems. The proposed approach
was compared with conventional single CPU NSGA-II, par-
allel NSGA-II without migration method, and DNSGA-II
using two constrained test problems. Results showed
that e-DNSGA-II achieved higher hypervolume, enabled
high-speed operation, improved diversity, and has an
increased number of non-dominated solutions for both The
traditional gene problems.

Ishibuchi & Narukawa [101] proposed S-MOGLS,
the hybrid algorithm of NSGA-II with the local search
method, for many-objective knapsack problems. The authors
explained the framework of S-MOGLS and examined its
four variants based on genetic search and local search
method (Weighted scalar or Pareto ranking). These four ver-
sions of S-MOGLS performed better than SPEA, NSGA-II,
memetic Pareto archived evolution strategy (MPAES), and
the MOGLS algorithm on many-objective test problems,
especially in terms of D1R measure.

g: MISCELLANEOUS
Leesutthipornchai et al. [211] solved a routing and wave-
length assignment problem in wavelength division multiplex-
ing optical networks using a multi-objective evolutionary
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approach. The authors hybridized NSGA-II with an algo-
rithm named GA for routing allocation with minimum degree
first for wavelength assignment (GA-MDF) to obtain the
non-dominated solutions for the problem and compared it
withWSM. According to the authors, although NSGA-II was
computationally expensive, its solutions were more diverse
than WSM.

Rabbani et al. [210] studied waste management in the
industrial sector and extended a deterministic industrial waste
location-routing model capable of covering inventory deci-
sions in waste treatment, considered a multi-period plan-
ning horizon, and was a stochastic model. Along with
this novelty in the model, the authors integrated NSGA-II
and Monte-Carlo simulation, which provide high-quality
solutions in less computational time than the hybrid
simulation-analytical modeling approach on randomly gen-
erated problem instances.

Amini et al. [201] studied a location-arc routing problem,
a combination of location problem and arc routing problem.
A mathematical model was developed to minimize the two
objectives, makespan and total costs. Two metaheuristics:
NSGA-II and multi-objective late acceptance hill-climbing
(MOLAHC) algorithm, were considered. The hybridization
of NSGA-II and MOLAHC with local search (hybrid + LS)
and hybridization of NSGA-II with local search (NSGA-
II + LS) were found better when compared with the same
algorithms without using the local search. Out of these two
algorithms, NSGA-II+ LS was more efficient, and hybrid+
LS took less computational time.

The researchers in [194] proposed a new mathematical
model integrating two problems: supply chain scheduling and
VRP to minimize the resources and energy consumption and
penalty for total tardiness. Here, NSGA-II integrated with
VNS outperformed NSGA-II in obtaining the Pareto optimal
solutions for the given problem

Doolun et al. [208] integrated NSGA-II with five differ-
ent variants of the differential evolution algorithm to solve
a multi-objective location-allocation problem in a multi-
echelon green supply chain network. The problemwas to find
the location of manufacturing plants and warehouses and then
allocating resources to the various stages of the supply chain.
The proposed algorithms (NSDEA) was compared with the
existing multi-objective hybrid PSO (MOHPSO) algorithm
and outperformed it in evaluating Pareto optimal solutions

B. PERFORMANCE ASSESSMENT
This section discusses the test instances, case studies, perfor-
mance measures, and statistical tests used by the researchers
to validate the effectiveness of the NSGA-II algorithms to
solve MOCOPs.

1) TEST INSTANCES
The researchers used test instances to validate their pro-
posed model and algorithms. Typically, the test instances
are of three sizes, small-sized, medium-sized, and large-
sized instances. The performances of NSGA-II based algo-
rithms for small-sized instances are mostly close to the

exact algorithms. However, for medium and large-sized
instances, exact algorithms generally fail to provide solutions
in a reasonable time because of the NP-hard nature of most
of the MOCOPs. Therefore, an intelligent algorithm like
NSGA-II is proposed to obtain near-optimal solutions to such
problems in less computational time.

The test instances are generally taken from standard bench-
marks/datasets available in the literature. However, for many
newly proposed models of MOCOP, benchmarks are not
available in the literature. The validation of such models is
done through randomly generated test instances. The test
instances used in the studied literature are given in Table 6–8.
Link sources for some of the test instances are provided in the
footnotes below the respective tables.

2) CASE STUDIES
The researchers performed case studies to demonstrate the
effectiveness of the NSGA-II based algorithms and their
application in practice. The conducted case studies in the
literature are given in Table 9.

3) PERFORMANCE MEASURES
In the studied literature, a comparison with other state-of-the-
art algorithms quantifies the proposed NSGA-II algorithms’
effectiveness. Single-objective optimization algorithms can
be easily compared using objective-values or computational
times. In multi-objective optimization algorithms also, if all
the objective-values of one algorithm are better than the
corresponding objective-values of the other, then they can
be compared using their objectives-values. However, it is
difficult to compare the non-dominated sets of near-optimal
solutions obtained using the multi-objective optimization
algorithms. Thus, many metrics have been developed to
evaluate the performance of such algorithms. They are
used to compare the sets of solutions obtained by the
algorithms in terms of convergence and diversity [214].
Researchers have used different performance metrics to
compare their proposed NSGA-II with exact methods, ran-
dom methods, single-objective and multi-objective optimiza-
tion algorithms, and many other methods, as illustrated
in Table 6-8.

The researchers also considered computational time
to compare the efficiency of two or more algorithms.
Therefore, in this study, the objective function values and
computational time are also treated as performance metrics.
The most used performance metrics in the studied literature
are given in Table 10. The other rarely used performance
metrics are maximum sum of the objective-values (Max-
Sum) [102], [99], maximum distance Dmax [175], [157],
epsilon indicator [45], [134], average quality [157], [175],
average hypervolume [105], [121], width measure (M2 met-
ric) [147], system performance [148], solution quality [54],
size of reference set [62], relative percentage difference
between objective-values [210], relative and absolute qual-
ity [59], overall non-dominated vector generation (ONVG)
[175], number of unscheduled tasks [163], number of gener-
ations [68], number of channel reuses, user level fairness, and
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TABLE 9. Case studies.

stability of the communication mode of the D2D users [96],
norm based pure diversity metric [72], modified mean ideal
distance measure [127], maximum Pareto front error [201],
M1,M2,M3 [110], k-distance [198], hole-relative size met-
ric, µ distance metric [73], error, ratio, distance based mea-
sure, fairness [158], empirical attainment function [45], data
envelopment analysis [83], data dependency threshold [68],
convex hull of the approximated efficient frontier [59], con-
vergent metric [140], capacity measure [72], average rank
index, average crowding distance and the mapping pattern
of solutions [89], convergent rate metric [85], infeasibility

metric [85], ratio of non-dominated solutions [138], rate of
achievement to two objectives simultaneously [190], and area
under linear regression curves [190].

4) STATISTICAL ANALYSIS
In some papers, to investigate the effectiveness of the pro-
posed optimization model, the researchers conducted a series
of experiments using available or randomly generated test
instances or datasets. They performed statistical tests on
the performance metrics values obtained from the com-
pared algorithms to show the statistical significance of the
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TABLE 10. Performance metrics.

experimental results. Therefore, similar to performance met-
rics, statistical analysis is also used to measure the algo-
rithms’ performance. The various statistical tests used in the
studied literature are given in Table 11.

C. POST-PARETO OPTIMALITY ANALYSIS
A population-based algorithm like NSGA-II provides a set of
compromised optimal solutions after solving a MOOP. The
choice of the best-compromised solution among the set of all
compromised solutions is made by decision-makers using the
preference information. Many techniques based on MCDM,
data clustering, fuzzy logic, and some other criteria that are
applied to find the best-compromised solution in the studied
literature is given in Table 12.

V. ANALYSIS OF MODIFICATIONS IN NSGA-II
Researchers modified NSGA-II mainly in terms of crossover
operator (113 papers), mutation operator (119 papers), initial-
ization procedure (27 papers), parent selection (17 papers),
and constraint handling technique (7 papers) to improve
its convergence and diversity. The other modifications
(24 papers) are related to crowding distance calculation,
external archive, non-dominated sorting algorithm, adaptive
parameter, correlation-based weighted-sum fitness, parallel
processing, refinement operation, elite preservation strategy,
controlled elitism, and dominance relation, as illustrated
in Table 13.

The authors mostly modified crossover and mutation oper-
ators because these operators depend on the type of COP.
In other words, the selection or design of these operators

TABLE 11. Statistical tests.

depends on the chromosome representation of the problem.
The chromosome representation is used to represent the
potential solution to a problem. The common chromosome
representations for GA are binary coding (e.g., 1101101),
integer coding (e.g., 1,2,5,7,8), real coding (e.g., 0.235,
0.43, 0.53, 8.5) and permutation representation (e.g.., (1
2 3), (1 3 2)). The chromosome representation is selected
according to the nature of the problem. The conventional
NSGA-II crossover and mutation cannot be applied to all
types of COPs. Also, the inappropriate representation may
result in poor performance of the algorithm. Therefore, other
crossover operators, such as TPX, UX (binary coding), arith-
metic crossover (real coding), PMX, OX (integer coding),
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FIGURE 4. Crossover and mutation operators.

TABLE 12. Post-Pareto optimality techniques.

and mutation operators such as bit-wise mutation, bit-flip
mutation (binary coding), Gaussian mutation (real coding)
and inversion mutation (integer coding) are used according
to the chromosome representation. The most used crossover
and mutation operators are shown in Fig. 4.

The modifications in the parent selection mechanism are
done to improve the convergence rate of the algorithm. The
modifications are related to the increase in tournament size
or using the other techniques. Roulette wheel selection is the
most used (5 out of 17 papers) technique among all the parent
selection modifications. In this selection, a wheel is rotated,
and the fixed point on the wheel’s circumference chooses a
parent among all individuals, and the individual with a greater
pie has a greater probability of becoming a parent, as shown
in Fig. 5.

Further, in conventional NSGA-II, the initial population is
randomly generated. The researchers modified this procedure
by generating the initial population using heuristic or problem
information for rapid convergence and high-quality solutions.

The researchers used CDP (used in conventional
NSGA-II), penalty function strategy, and repair method for
handling constraints. In the penalty function method, infeasi-
ble solutions’ fitness is reduced in proportion to the number
of violated constraints. On the other hand, the repair mech-
anism modifies the infeasible solutions so that the violated
constraints get satisfied.

FIGURE 5. Roulette wheel selection.

Further, researchers also hybrid other local search methods
with NSGA-II to explore the solutions in a solution’ neigh-
bourhood. These local search methods include methods such
as machine learning techniques, heuristics, and other meta-
heuristics. The hybrid methods used in the studied literature
are given in Table 8. These methods are embedded mainly
in the initialization procedure and before parent selection to
improve the local search or exploitation ability of NSGA-II.

VI. BIBLIOMETRIC ANALYSIS
The scheduling problem (42%) is themost exploitedMOCOP
using NSGA-II, followed by allocation problem (17%), mis-
cellaneous (11%), assignment problem (11%), VRP (8%),
knapsack problem (7%), and TSP (4%) as shown in Fig. 6.
The modified NSGA-II algorithms (58%) are the most
applied algorithms, followed by hybrid NSGA-II (34%) and
conventional NSGA-II (8%), as shown in Fig. 7.

Fig. 8 shows the distribution of papers based on the number
of objective functions. Bi-objective problems, the most con-
sidered problems in the studied literature, comprise 72% of
the total papers reviewed, followed by tri-objective problems
(21%) and many-objective problems (6%).

Further, the authors in [98] consider both bi-objective and
tri-objective problems, and the authors in [117] reduced a
5-objective problem to a 3-objective problem.

The benchmarking of an algorithm (using different test
instances) studies the best practices of its implementation to
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TABLE 13. Modifications in NSGA-II.

FIGURE 6. Problem-based distribution of the reviewed papers.

a specific problem rather than using them as an optimization
tool. The number of papers that performed benchmarking is
shown in Fig. 9. Around 79% of papers in the studied litera-
ture performed benchmarking. Further, 9/14 (i.e., 9 out of 14),
71/97, and 53/58 papers are from conventional NSGA-II,

FIGURE 7. Algorithm-based distribution of the reviewed papers based on
statistical tests.

modified NSGA-II, and hybrid NSGA-II algorithms,
respectively.

The researchers compared NSGA-II with algorithms based
on NSGA-II, SPEA-II, MOPSO, MOEA/D, GA, WSM,
ECM, ACO, AUGMECON, and others. It can be seen from
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FIGURE 8. Distribution of the reviewed papers based on the number of
objectives.

FIGURE 9. Distribution of the reviewed papers based on benchmarking.

FIGURE 10. Distribution of the reviewed papers based on compared
algorithms.

Fig. 10 that NSGA-II based algorithms (62 papers) are mostly
considered for comparison, followed by SPEA-II based algo-
rithms (17 papers) andMOPSO based algorithms (15 papers).

Fig. 11 shows the performance metrics used in the
papers studied. The objective function values (50 papers)
and time (36 papers) are the most used criteria by
the researchers for comparing NSGA-II with other algo-
rithms. The other commonly used performance metrics are
NPS (30 papers), hypervolume (27 papers), set coverage

FIGURE 11. Distribution of the reviewed papers based on performance
metrics.

FIGURE 12. Distribution of the reviewed papers based on statistical tests.

FIGURE 13. Performance assessment analysis of the reviewed papers.

(24 papers), IGD (22 papers), spacing (20 papers), RNI
(17 papers), GD (16 papers), spread (15 papers), maximum
spread (9 papers) and rest are rarely used performancemetrics
(discussed in not more than 6 papers).

The details about the usage of statistical tests for compar-
ing the algorithms are shown in Fig. 12, from where it can be
observed that the three tests most frequently applied tests for
statistical analysis of NSGA-II based algorithms are ANOVA,
t-test, and Wilcoxon sign rank test.

The performance assessment has been done inmany papers
to validate the efficiency of the algorithm. Out of total studies
done for this article, 77% of studies performed benchmark-
ing and used performance metrics. Contrary to that, only
23% of studies considered a case study to demonstrate the
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FIGURE 14. Statistics based on differential publishers.

FIGURE 15. Distribution of the reviewed papers based on journals index.

FIGURE 16. Quantitative analysis of JCR Quartile Ranking of reviewed
papers.

effectiveness of the developed model or the effectiveness of
NSGA-II for solving real-world problems, and 18% used
statistical tests for comparing NSGA-II or its variant with
other algorithms, as shown in Fig. 13.

The methods used for post-Pareto optimality analysis are
shown in Table 10. Approximately 10% of the total papers
used decision-making methods for selecting a solution from
a set of Pareto optimal solutions. TOPSIS is the most applied
method, followed by fuzzy-based mechanism and entropy
weight technique.

The number of papers based on different publishing houses
is shown in Fig. 14. The maximum number of papers are from
Elsevier, whereas the least are from Wiley Online Library.

FIGURE 17. Distribution of the reviewed papers based on journals.

FIGURE 18. Year-wise distribution of the reviewed papers.

FIGURE 19. Visualization map for the origin of researchers.

Out of the total reviewed papers, 135 are journal
papers (131 from SCIE and four from ESCI indexed
journals, respectively), and the rest 34 are conference papers,
as shown in Fig. 15.

The distribution of journal papers indexed in SCIE based
on JCR ranking is shown in Fig. 16. The ranking of
papers is categorized as per their quartile score using Incites
(https://incites.clarivate.com/). The maximum number of
papers (88 papers, more than 50 % of total papers) are of
Q1 ranking.

The distribution of published papers based on journals is
shown in Fig. 17. The maximum number of research articles
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(9 papers) are from two journals: applied soft computing
and computer & industrial engineering. There are another
50 journals with one paper only are included in the other
category. The top six journals are in the Q1 category.

The year-wise distribution of reviewed papers is shown
in Fig. 18. It can be seen from the figure that in the last five-six
years, the interest in solving MOCOPs using NSGA-II is
continuously growing among researchers.

The Bubble chart in Fig. 19 shows the origin of the
researchers of the reviewed papers (origin of first authors).
The maximum number of researchers are from China, fol-
lowed by Iran and India.

VII. CONCLUSION AND FUTURE SCOPE
This article presented an extensive review of the implemen-
tation of NSGA-II to MOCOPs, such as assignment problem,
allocation problem, scheduling problem, TSP, VRP, knap-
sack problem, and their combinations. The primary aspect
considered in the evaluation of each paper is the
implementation of NSGA-II to MOCOPs. Based on these
implementations, three categories of algorithms are identi-
fied: conventional NSGA-II, modified NSGA-II, and hybrid
NSGA-II. The analysis of the modifications related to the
initialization, genetic operators, constraint handling tech-
niques, etc., is done to study the development of NSGA-II for
MOCOPs. The other aspects, such as the use of various test
problems, algorithms used for comparison with NSGA-II,
performance measures and statistical tests for performance
assessment, number of objective functions, and post-Pareto
optimality techniques, are also analyzed.

The study can be concluded with the following points-

� The practice of using NSGA-II for solving MOCOPs is
increasing, especially over the last five-six years.

� Most of the studied papers are based on scheduling prob-
lems. In other words, scheduling problems are the most
popular MOCOPs among the selected problems solved
using NSGA-II algorithms.

� Most of the studied MOCOPs are bi-objective optimiza-
tion problems.

� Among the three categories of NSGA-II, the modified
NSGA-II is the most applied algorithm on selected
MOCOPs.

� The tabu search is the most frequently used algorithm to
be hybridized with NSGA-II.

� Most researchers performed benchmarking and mea-
sured the efficiency of their NSGA-II based algorithm
using various performance metrics.

� Only a few studies performed case studies, statistical
analysis, and post-Pareto optimality analysis.

� The modified and hybrid NSGA-II algorithms discussed
in this paper can be treated as a benchmark as these
algorithms have already been compared with NSGA-II
and other algorithms. This can be beneficial for the
researchers to initiate their work in this area as they will
have an initial idea about the working and performance
of different algorithms. Moreover, the efficiency of these

algorithms can further be analyzed by comparing them
with recent algorithms.

� The bibliometric analysis provided in the paper can help
the authors in identifying the areas that need attention.
It can also help the authors in identifying the relevant
journals and publications.

Future directions-

� Besides GA, there are several other metaheuristics
like PSO, DE, ACO, ABC, etc., for which the multi-
objective variants have been developed and tested.
For example: MOPSO [215], MODE [216], [217],
MOACO [218] and MOABC [219], MOGWO [220],
MOEA\D [221]. A study highlighting the features of
different multi-objective algorithms is likely to be quite
interesting.

� Besides the six MOCOPs discussed in the paper, there
are other areas as well that can be considered for
a detailed study, for example, network design prob-
lem [222], subset sum problem [223], and constraint
satisfaction problem [224].

� Metaheuristics like GA are parallel in nature; therefore,
more focus can be laid on developing the parallel variants
of NSGA-II as in [68] to improve their efficiency in
solving different MOCOPs.

� In literature, very few studies have used statistical tests.
However, it is essential to ensure that the improvements
in an algorithm’s results are not due to stochastic dif-
ferences in runs during algorithms’ comparison. The
researchers working in this area are suggested to com-
pare the results statistically; it will clarify the statistical
significance of the performance gaps found among the
compared algorithms.

� More research is needed to include decision-makers
(human experts)’ preference in the multi-objective opti-
mization process to produce the most suitable solution
from the set of Pareto optimal solutions.

� At present, the scalable test instances for most of the
MOCOPs are not available. Therefore, it is not easy to
compare the performances of the algorithms. A detailed
study of the methods to generate the test instances will
help explore the new problems in this area.

� Use dynamic parameters to develop more robust
NSGA-II based algorithms.

� NSGA-II based algorithms can be used in the follow-
ing area, such as complex scheduling environment of
hybrid FSP, other realistic situations modelled as parallel
scheduling problem (such as non-identical machines,
sequence and machine-dependent setup times, and
job-dependent energy consumption), and pollution rout-
ing problem with real-time transportation information
(such as road condition and parking space’ availability).

The authors would finish the paper with the remark that
though they have tried to include all the relevant references,
there is a possibility that an important reference has been
missed for which the authors express their apology.
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