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ABSTRACT In this paper, an integration approach (IA) and parametric approach (PA) fusion-based
pedestrian dead reckoning (PDR) using low-cost inertial sensors is proposed to improve the indoor position
estimation. When moving indoors using a smartphone, various poses such as texting and putting a pocket
are possible. In the existing PA-based positioning algorithms, it can be used only when the pedestrian’s
walking direction and the device’s direction coincide. In order to solve the problem, this paper proposes
an algorithm that constructs state variables based on the IA and uses the position vector from the PA as a
measurement. If the walking direction and the device heading do not match based on the poses, the position is
updated according to the direction calculated using principal component analysis (PCA) and the step length
obtained from the PA. Through experiments considering various operating conditions and paths, it shows
that the proposed method stably estimates the position and improves performance even in various indoor
environments with the accuracy of 2.13m for Xsens MTw 2.49m for Smartphone.

INDEX TERMS Indoor navigation, pedestrian dead reckoning (PDR), extended Kalman filter (EKF),
integration approach (IA), parametric approach (PA), fusion method.

I. INTRODUCTION
Indoor navigation has been actively studied as the grow-
ing number of people desires to locate themselves through
smart devices. Unlike outdoor navigation, a global posi-
tioning system (GPS) is not available in an indoor envi-
ronment due to inadequate coverage of the satellite signal
and multi-path errors, various alternatives are presented with
additional sensors or methods [1]–[4]. A direct sensing-based
localization tracks the position of a pedestrian by the sensing
of identifiers or tags installed in the environment before
experiments [5]. These include radio-frequency identifica-
tion (RFID), infrared (IR), Ultrasound, and Bluetooth. With
regard to pattern-recognition-based localization, well-known
examples are WLAN and magnetic map-based fingerprint-
ing [5], [6]. Dead reckoning (DR)-based localization, one of
the alternatives, uses sensors attached to the users to estimate
relative positions based on the previous or known position [7].
A benefit of the DR approach is low installation cost and does

The associate editor coordinating the review of this manuscript and

approving it for publication was Halil Ersin Soken .

not require any additional sensors, but accumulated position
errors are a significant problem of this technique [8].

Localization using DR is primarily categorized as an inte-
gration approach (IA) and a parametric approach (PA). For
the tracking with shoe-mounted inertial sensors, the IA-based
system that estimates the current position by integrating
acceleration is applicable. It is because one of the strong
pseudo-measurements, zero velocity update (ZUPT), allow
estimating those inertial sensor errors under the assumption
that the velocity of a foot being zero during the stance
phase [9]–[12]. When the sensor is held on hand such as
smartphones, on the other hand, the PA system that estimates
position by step detection, step length estimation, and head-
ing estimation is applied instead of the IA [13]. To estimate
the heading of a device is an essential part of the PA, and
the attitude estimation using the angular rate from the gyro-
scope, the specific force from the accelerometer, magnetic
field from the magnetometer are called attitude heading ref-
erence system (AHRS). Using the characteristics that gyro
measure has a low-frequency component, and accelerome-
ter and magnetometer have high-frequency one, the AHRS
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combines those sensors with filtering methods such as com-
plementary filter and Kalman filter. However, its perfor-
mance degrades, especially when the sensor is moving fast
or exposed to a magnetic disturbance.

The framework of combining PA and IA is discussed
in [14]–[16]. In order to overcome the poor quality of built-in
inertial sensors in commercial smartphones, pseudo velocity
measurements during steps are used in [14], [15]. Similarly,
pseudo velocity and position measurements are selectively
used according to the holding mode in [16]. These papers
show the effectiveness of combining PA and IA in the various
aspects, but the heading mismatch during poses other than
text pose depends only on the position from the naviga-
tion which is erroneous in many cases without measurement
updates.

In this paper, in order to overcome the limitations of
conventional PA-based pedestrian dead reckoning (PDR) in
the smartphone, the integration of IA and PA is proposed.
Specifically, navigation error states of the IA are estimated
using the attitude and step length from the PA. With the
help of the estimated device attitude and poses, it is possible
to recognize the device heading and the walking direction
mismatch situations. Then, the walking direction acquired
from the principal component analysis (PCA) of tangential
acceleration data is used to update the IA states. The proposed
algorithm is operated even in various poses that occur when
a pedestrian moves with a smartphone indoors. The contribu-
tion of this study can be summarized as follows:

• IA and PA-based PDR algorithm for position estimation
using the extended Kalman filter (EKF) is designed.
The states of IA are estimated using measurements from
ZUPT, AHRS, PA, and PCA. The PCA of tangential
acceleration during a stride is performed when the walk-
ing direction and device attitude do not coincide to find
the walking direction.

• The classified four poses (text, shirt pocket, trouser
pocket, and swing) allow finding the three measurement
updating modes: transition, match, and mismatch.

• The proposed algorithms can be applied in various fields
such as smartphone users in the buildings, first respon-
ders, virtual and augmented reality.

The remaining paper consists of the following: The state-
of-art works of the conventional approaches are introduced in
Section 2. In Section 3, the IA and PA-based PDR system is
described. Section 4 presents the specific logic of the IA and
PA fusion PDR system. The experimental results discussed
are presented in Section 5, and the conclusion is described in
Section 6.

II. RELATED WORKS
Pedestrian navigation using inertial sensors has been used in
a wide range of fields, including ambulatory human motion
analysis. Micromachined gyroscopes and accelerometers are
used in many applications such as monitoring daily living
activities [17]–[19], evaluating internal mechanical work-
load in ergonomic studies [20]–[23], measuring nervous

system disorders [24]–[27], and mixed and augmented
reality [28]–[30]. This section of related works focuses
on position estimation under multiple poses of the smart-
phone. It is important to estimate walking directions of
the multi-action correctly because handheld smartphones are
usually unrestricted and often have device heading changes
that do not match the direction of walking. In the PA-based
PDR system, the small heading difference leads to a large
position error. In order to remove the heading offset between
them, some researchers have attempted to solve this prob-
lem [31]–[39]. In [31], the various PCA-based walking
direction estimation methods are compared with broad exper-
imental study in case of pocket. To be specific, the PCA2D
(2D acceleration projected on the global horizontal place),
PCA2Df (same as PCA2D but lowpass filtered data with
5Hz before PCA), PCA3Df (PCA to 3D acceleration axes
with the 3rd eigenvector for walking direction), and gyroPCA
(PCA to the 3D rotational vector axes). The reference [32]
uses thresholds and a rotating axis for swing, call, trouser
pocket poses to find out the offset angle in the smartphone.
In [33], the author proposes adaptive offset compensation
under the swing, holding, and trouser pocket modes. The
heading offset for eachmode is compensated by remembering
the heading in a straight holding condition. The PCA-global
acceleration (GA) method is proposed for heading estimation
during amismatch condition in [34] by assuming that the least
varying acceleration axis during a stride is perpendicular to
the walking direction. In addition, heading estimation using
PCA is proposed in [35], [36] by introducing several coor-
dinate systems: user, device, reference which is an initially
aligned plane, and global.

In case of finding out the heading mismatch condition,
machine learning technique such as decision tree (DT), sup-
port vector machine (SVM), or finite state machine (FSM)
is commonly used. Also, a learning-based localization algo-
rithm is proposed by determining step length and walk-
ing direction using an online sequential extreme learning
machine (OS-ELM) [37]. The walking direction calculated
from frequency-domain features of projected acceleration is
also proposed [38]. In addition in [39], the gradient descent
algorithm (GDA) is proposed for heading estimation of the
smartphone in the trouser pocket.

In the above conventional PDR systems for multiple poses
of the smartphone, fixed or only PCA angles are used to elim-
inate the heading difference. The fixed offset angle causes a
large error when the pose does not last equally for each step.
In addition, when walking indoors, there are errors that occur
when switching motions and rotating at the corner. In order
to solve such erroneous situations, the IA, PA, and PCA are
fused by means of filters to obtain better position results in
this paper.

III. IA AND PA BASED PDR SYSTEM
PDR is a dead reckoning system that makes the assumption
that the position of a pedestrian is changed by steps. Based
on this, the PDR estimates the location of the pedestrian by
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observing the movement of steps. Depending on the position
of the installed sensor, the PDR system can be classified into
the IA and PA. The following subsections explain those in
detail.

A. PA-BASED PDR
The PA-based PDR is a pedestrian-dependent method and
estimates its position with heading and distance between
steps. In general, the algorithm is composed of a step detec-
tion, a step length estimation, and a heading estimation [13],
[40]. Each component of the PA-based PDR is described as
follows.

1) STEP DETECTION ALGORITHM
The first step in PA-based PDR is to identify steps. Step
detection is usually an easy problem, but if there are have
false or miss detections, or if the smartphone’s action varies,
there are significant errors when estimating overall walking
distance. Therefore, accurate step detection is the basis on
which an accurate estimation of the position can be made in
the PDR method.

When it comes to navigating with a smartphone or tablet,
placements of the device should be considered for step detec-
tion. According to the [41], [42], the possible placements for
unconstrained smartphones include handheld, texting, call-
ing, trouser back and front pocket, handbag, backpack, and
shirt pocket, and those are usually classified through machine
learning techniques.

In this paper, the norm of a 3-axis acceleration is used for
the step detection algorithm as (1) [34], [43]. It is because it
is not affected by the sensor attitude that could be changed
following pose changes.

fnorm =
√
f 2x + f 2y + f 2z (1)

where fnorm is the acceleration norm, and fx , fy, and fz denote
the output of 3-axis accelerometer in x, y, and z-axis, respec-
tively. Then, the sliding window sum of the norm data is used
to reduce noise in step detection as follows.

SWS(k) =
k∑

t=k−N+1

fnorm(t) (2)

where SWS and N represent the sliding window sum and
the window size set as 15 for this paper. The window size
is usually set smaller than the duration of the detected phase.

Then, the peak of the SWS can be recognized as a step.
The peak detection method detects the heel-strike which is
the moment the foot touches the ground, allowing to find
a step periodically. In this paper, considering the advantage
of accurate heel strike detection, a peak detection method
using acceleration is used. The acceleration data is low-pass
filtered with a cutoff frequency set to 5 Hz and windowed to
prevent noise effects. In the case of peak detection-based step
detection, the position is estimated at every step. Due to the
characteristics of the poses, especially in the trouser pocket
and swing, a position error occurs when estimating position

in every step. Therefore, the position is estimated based on
two steps, that is, one stride in this paper.

2) STEP LENGTH ESTIMATION ALGORITHM
Step length estimation can be divided into two main classes:
direct and indirect methods [44]. The direct methods estimate
the stride length directly through integration. On the other
hand, the indirect methods estimate step length using amodel.
These methods are also divided into geometric and statistical
models. The first uses the biomechanical characteristics of the
human body. This includes the inverted pendulum model and
empirical model. In case of the statistical regression method
commonly used for a smartphone, variables such as walking
frequency (WF) and acceleration variance (AV ) are usually
used, and the relationships among variables are estimated
through parametric or non-parametric techniques. A linear
regression model is one of the representative methods in the
PA [42], [45]–[48].

There are many features other than the walking frequency,
but it is advantageous for the independence of the mounting
position as long as the step is accurately detected. The fol-
lowing (3) is the step length formula applied.

SL = α ·WF + β (3)

where WF is walking frequency and α, β are pre-learned
parameters according to the pre-calibration.

3) HEADING ESTIMATION
Estimating the orientation of the device is an essential part
of the PA, and the AHRS estimates the attitude using the
angular rate from the gyroscope, the specific force from
the accelerometer, magnetic field from the magnetometer.
As long as there is no acceleration and magnetic disturbance,
roll and pitch of the accelerometer and yaw of the magne-
tometer can be calculated.

In case of additional acceleration or magnetic disturbance,
it is essential to deal with the acceleration or residual mag-
netic field. Therefore, an adaptive algorithm using the ellip-
soid method for residuals was proposed in a previous study
[49]. Specifically, the algorithm adjusts the measurement
covariances taking into account the direction of these residu-
als.

Given two ellipsoids E1 and E2, one is the measurement
covariance without acceleration and the other is the one with
acceleration. The goal is to find the third ellipsoid E contain-
ing both ellipsoids using the ellipsoidal method [49], [50].
Assume that the ellipsoid (E1) is defined as (4) with the set
of all p on ellipsoid (E1) centered around the mean (m1) and
covariance (R1).

E1 ≡
{
p| (p−m1)

T R−11 (p−m1) ≤ 1
}

(4)

The ellipsoid E2 and E are defined in the same way. The
correspondingmean and covariance of covering ellipsoids,E ,
can be calculated by means of E0, which is as follows:

m = m0 =
1
2
(m1 +m2) (5)
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R−1 = αR−10

= α

(
R1 + R2 +

1
4
bm1 −m2c bm1 −m2c

T
)−1

(6)

where R0, is a covariance of the ellipsoid, the corresponding
ellipsoid,E0, and a positive parameter α is the adjusting factor
for covariance.

The specific details about the adjusting covariances are
explained in [49].

B. IA-BASED PDR
The IA-based PDR is a system that tracks the position by
estimating the entire 3D trajectory of the sensor at a given
moment. It is a simplified version of the inertial navigation
system (INS) for the low-cost inertial sensors, so the basic
structure is the same. The system calculates the position by
integrating the acceleration and angular rate at given every
sample, and the process consists of five steps: bias compen-
sation, orientation updates, gravity removal, integration, and
correction [51].

In the bias compensation step, the estimated accelerometer
and gyro biases are subtracted in the raw sensor data as (7).{

ω̃b
k = ybg,k − ε̂bk−1

f̃bk = ybf ,k − Ôb
k−1

(7)

where ω̃b
k and f̃bk are compensated gyro and accelerometer in

body frame, respectively, and ybg,k and ybf ,k are raw inertial
sensor output in body frame, and ε̂bk−1 and Ô

b
k−1 are estimated

bias for gyro and accelerometer, respectively.
Next, attitude representing the relationship between body

(b, defined as Forward-Right-Down) and navigation (n,
defined as North-East-Down) frame is updated using the
angular rate in quaternion attitude representation as (8).

qk = (I+
1
2
W1t)qk

where

W =

[
0 −ω̃b

k

(ω̃b
k )
T

[
−ω̃b

k×

]] (8)

where
[
ω̃b
k×

]
is the skewsymmetric matrix, and qk

is a quaternion defined as qk =
[
q0,k Eqk

]T
=[

q0,k q1,k q2,k q3,k
]T .

In the third stage, gravitational component is removed from
the compensated accelerometer as (9).

f̄n = Cn
b,k f̃

b
k − gn (9)

where Cn
b,k is a direction cosine matrix (DCM) transformed

from the qk , and gn is gravity represented in n-frame.
In the fourth stage, velocity and position are calculated

through the integration as (10).{
vnk = vnk−1 + f̄nk ·1t
pnk = pnk−1 + vnk ·1t

(10)

where 1t , vnk , and pnk are sampling time, velocity, and
position, respectively. The velocity model is simplified as
above because the low-cost MEMS inertial measurement
unit (IMU) does not measure the earth rotation rate and
Coriolis effect.

The fifth stage is the correction from the EKF error states
using the measurements. The EKF is implemented to inte-
grate the IA and PA methods in this paper, and the correction
is made following the estimated errors, which is discussed
in the following subsections. In brief, the position, velocity,
attitude, and biases for accelerometer and gyro are corrected
with the EKF estimates.

IV. IA-PA FUSION ALGORITHM
In this section, a new approach for IA and PA-based PDR
using PCA is presented [52]. Handheld smartphones are
usually unrestricted and often have device heading changes
that do not match the direction of walking. In order to solve
the heading mismatch errors under multiple poses in PDR,
the proposed algorithm takes the advantages of both IA and
PA as in Fig. 1. The IA-based PDR calculates position, veloc-
ity, and attitude with acceleration and angular velocity by
using integration, so it is able to find out walking direction
in addition to the device heading. However, since PDR with
IA generates errors quickly when using a low-cost inertial
sensor, proper measurements are necessary to estimate the
state of velocity, position, etc. Therefore, the step length and
heading from the PA are used as measurements when the
directions match. If the device direction does not coincide
with the walking direction, the walking direction is calculated
using the PCA of the horizontal acceleration in the navigation
frame, and then the IA position is updated with PCA and step
length from the PA.

The assumption used in constructing the algorithm in this
paper is that in a walking scenario, the starting pose is always
text, and the user standstills for few seconds in the beginning.

A. SYSTEM MODEL
The built-in inertial sensors and magnetometer from the
smartphone are the input of the system, and 15 error states of
EKF are position of one stride, velocity, attitude, accelerom-
eter bias, and gyro bias as in (11).

δx =
[
δpnstep δvn δϕ Ôb ε̂b

]T
(11)

where the ϕ is attitude represented in Euler angle. The corre-
sponding system matrix is in (12) following the relationship
among states.

8 =


I3×3 I3×31t 03×3 03×3 03×3
03×3 I3×3

[
f̃n×

]
1t Cn

b1t 03×3
03×3 03×3 I3×3 03×3 −Cn

b1t
03×3 03×3 03×3 I3×3 03×3
03×3 03×3 03×3 03×3 I3×3


(12)
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FIGURE 1. Overall IA-PA fusion PDR algorithm.

where I is the identity matrix and the numbers in subscript
show its dimension. The zero matrix fit to dimensions is
represented as 0 in the equation. In the proposed algo-
rithm, themeasurement updating processes are largely ZUPT,
AHRS, and two-dimensional position from the PA. The first
two processes are done in every sample, the other is every two
steps.

B. MEASUREMENT MODEL
In case of ZUPT in the smartphone, the zero velocity phase
rarely occurs, but it is performed in the initial alignment and
stationary condition. The phase is detected using the win-
dowed accelerometer z-axis variance, and the corresponding
measurement equation is in (13) and (14).

zZUPT = vn (13)

HZUPT =
[
03×3 I3×3 03×3 03×3 03×3

]T (14)

Using accelerometer and magnetic measurements, attitude
of the sensor is determined as follows.

zAHRS =
[
f̃b − C̃b

ng
n ybm − C̃b

nm
n
]T

(15)

HAHRS =

[
03×3 03×3 C̃b

n
[
g̃n×

]
I3×3 03×3

03×3 03×3 C̃b
n
[
m̃n
×
]

03×3 03×3

]
(16)

The covariance is adjusted following the residuals using
the ellipsoidal methods as described in section III-A3.

With the ZUPT and AHRS updates in the smartphone,
the IA position is rapidly diverging. The PA position, how-
ever, is bounded because the step length is estimated from the
parameters. Therefore, when the device heading and walking
direction correspond to Fig. 2a, the 2D position calculated
fromPA is used asmeasurements. In situations such as Fig. 2a
where the direction of walking matches the direction of the

FIGURE 2. Measurement update.

device, the PA position marked in orange can correct the IA
position with the accumulated error indicated in green.

As described in section III, the position from the PA-based
PDR system consists of three major components: step
detection, step length estimation, and heading estimation
between two consecutive steps. With the estimated compo-
nent, the position is calculated by (17).[

pnN ,k
pnE,k

]
=

[
pnN ,k−1 + SL · cos(ψ)
pnE,k−1 + SL · sin(ψ)

]
(17)

where k is k-th step, pnN ,k−1, p
n
E,k−1 is the previous position

in north and east, respectively, and ψ is device heading.
In short, the measurement updates for PA positions are

performed based on the heading match condition check. The
heading difference between the walking direction calculated
from two-step positions in IA and the device heading during
two steps, and the classified pose are used for measurement
mode decision. The reason for using a stride, two steps, is that
the walking direction is oscillating following the walking
characteristics of each user.

The walking direction and step length for IA are calculated
as (18) and (19).

WDIA = tan−1
1pnE
1pnN

(18)
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SLIA =
√
(1pnN )

2 + (1pnE )
2 (19)

where WD,1pn are walking direction and position between
two steps, respectively.

For handheld conditions where the walking direction and
device orientations match as shown in Fig. 2a, the heading
offset is assumed as zero, so the step length from the PA and
device heading are directly used to correct the IA states as in
(20) and (20). In addition, assuming that the height for one
stride are the same, the vertical position is also corrected.

zmatch =
[
WDIA − ψ SLIA − SLPA 1pnD

]T
H =

H11 H12 0 01×12
H21 H22 0 01×12
0 0 1 01×12

 (20)

where

H11 = −
1pnE,IA

(1pnN ,IA)
2 + (1pnE,IA)

2

H12 =
1pnN ,IA

(1pnN ,IA)
2 + (1pnE,IA)

2

H21 =
1pnN ,IA√

(1pnN ,IA)
2 + (1pnE,IA)

2

H22 =
1pnE,IA√

(1pnN ,IA)
2 + (1pnE,IA)

2
(21)

The first component in (20) uses the heading angle to cor-
rect the course angle error calculated from the position. They
have different stochastic characteristics, but the long-term
characteristics are sufficiently similar that the difference can
be neglected. Therefore, the above measurement can be used
as above, since the course angle can be assumed to be domi-
nated by the sensor heading error [53].

The problem in the PA position is that it only considers
device heading not walking direction. If there are different
poses such as putting the phone in the shirt or trouser pocket,
the walking direction does not match with the device heading
as Fig. 2b. In this case, there is a heading offset between
walking direction and device heading. For the position from
conventional PA shown in orange, errors are continuously
generated because the position is estimated based on the
device heading. However, in a mismatch situation, you can
update the position of the IA in green through the position
calculated by the PCA of the acceleration vector, this position
marked blue in Fig. 2b.

As mentioned, for the mismatched heading case, the walk-
ing direction is calculated from the PCA. It is a technique that
finds new bases orthogonal to each other while preserving the
variance of data as much as possible and transforms samples
from high-dimensional spaces into low-dimensional spaces
without linear correlation [54], [55].

This approach takes advantage of the fact that the user’s
motion axis correlates with the largest variance axis in the
horizontal acceleration that can be determined by PCA [31],

[56]–[58]. The goal is to find the unit vector of walking
direction, u1, which is the largest variance in the horizontal
acceleration data fnm where m = 1, . . . ,M . Each data point
fnm is projected on to a scalar value uT1 f

n
m, and the mean

of the projected data is uT1 f̄
n where f̄n is sample set means

represented as follows.

f̄n =
1
M

M∑
m=1

fnm (22)

There are various PCA-based methods such as PCA2D and
PCA2Df to get the user’s motion axis [31]. PCA2D is a PCA
applied to the window on the 2D acceleration axis obtained
by projecting onto the horizontal plane. The first eigenvector,
which is the largest eigenvalue means a walking direction.
Next, PCA2Df is almost same as PCA2D, but before applying
PCA, the acceleration is low pass-filtered at 5 Hz to remove
noise. According to [31] the 5 Hz average filter basically
eliminates the body shaking noise, and it shows the best
results in a series of tests that maintained the acceleration
signal due to body movement. Since the PCA2Df is proved
to be the most accurate in [31], so the walking direction
is obtained from the PCA2Df in this paper. To address the
180-degree ambiguity inherent in the direction coming out
of the PCA above, we adjust it with the direction through
IA-based PDR.

Using the walking direction obtained from both IA and
PCA, the IA states are updated as in (23).

zmismatch =
[
WDIA −WDPCA SLIA − SLPA 1pnD

]T
(23)

V. EXPERIMENTAL RESULTS
A. PCA RESULTS
To check the performance of the walking direction calculated
by the PCA, the dataset is generated in which scenario is
a 25m round-trip linear trajectory, and the walking speed
is 80, 90, 95, 100, and 105 beats per minute (BPM). The
number of subjects participating in this experiment is 8 males
and 4 females, a total of 12 subjects. Subjects are from
23 to 40 years of age with no physical disability. The sensor
used is the Xsens MTw [59], [60]. Since this sensor can be
wirelessly attached to multiple locations on the body and get
synchronized data from all sensors. In this paper, the sensors
are attached to the shirt pocket, hand, trouser pocket, and
shoes as in Fig. 3. The sensor on the shoe is used to get an
accurate heel strike point.

When the heel strike point is extracted from the shoe,
the acceleration in the navigation frame during 1 stride, f̄n,
is calculated using the attitude provided by MTw. iRMPCA
and PCA results from 12 subjects are shown in the Table 1.
The results about 120 strides per person are checked, except
for errors due to body movement and errors in the starting,
ending, and in-situ rotation situations. Overall, the best results
are when the device is in the pants pocket. This is because in
the pocket, the sensor is fixed in the pocket and the output
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FIGURE 3. Target actions.

TABLE 1. Walking direction by PCA results.

is completely caused by the movement of the leg, so it can
indicate the direction of progress. On the other hand, the shirt
pocket is fixed inside the pocket, but it seems that an error
occurred because the upper body movement is relatively
small. In the case of swing, the result is that the volatility is
largely due to the movement of the hand having a large degree
of freedom. In short, the result of the experiment shows that
the walking direction from the PCA can be used as measure-
ments. To compare iRMPCA and IA-PA, PCA method used
in IA-PA is slightly more accurate, but the variance between
those are pretty similar because both of those are based on the
PCA methods.

B. IA-PA RESULTS
To compare and prove the performance of the IA and
PA-based PDR system, the three trajectories are tested as
Fig. 4. The first trajectory is a straight trajectory of 40m one
way to check the results of the PCA under mismatch case,
and the second trajectory is an L-shaped trajectory of 58m
round trip to check whether the proposed algorithm works
well even when rotation occurs in a pose other than text.
The third trajectory is a square one of 194.6m to confirm
if it is able to be operated for a long time. The Xsens
Mtw sensor is mainly used and Galaxy Note9 is addition-
ally used for trajectory 3. The sensor frame is defined the
same as the body frame, which is forward, right, and down.
The two conventional methods are used for the comparison.
The first one is only PA-based position with (17) which
uses the device heading. The other one is PCA-based posi-
tion proposed in [36]. This method introduces a reference
coordinate and performs PCA based on it, and it is called
improved rotation matrix and PCA (iRMPCA) in this paper.
There are other conventional methods, but those results using
threshold-based or learning-based algorithms vary depending
on the setting method, so it is excluded for the comparison.
The position errors are calculated according to the known

FIGURE 4. Trajectories (numbers in green represent way points in
navigation frame).

way points’ positions measured before the experiments, and
then those are averaged for each method as the final position
error.

Firstly, trajectory 1 is tested to check the feasibility of
the proposed algorithm. It is tested whether the walking
direction obtained by the PCA in the pose other than the
text is correct. The following Fig. 5 and Table 2 the results
of position estimation calculated for 10 subjects from the
proposed algorithm. In Fig. 5, red, blue, and black indicate
the proposed algorithm, iRMPCA, and PA-based algorithm,
respectively. When the poses changed, it is marked with
magenta, cyan, and gray, respectively. Through the proposed
method, the problems that occur when the existing PA-based
PDR estimation changes its poses can be solved. Compared to
the iRMPCA, the proposed method also shows better results.
In Table 2, the PA position results, in general, have large vari-
ances. It is because the results are dependent on the way how
each tester performs those poses. The proposed method and
the iRMPCA, on the other hand, calculate walking direction
on the navigation frame and defined reference frame, respec-
tively, so it is not less affected by the way how to do those
poses as long as the attitude is estimated correctly. In the case
of the iRMPCA, the defined reference frame is determined
at the beginning while the user standstills. This could lead
to the wrong estimation result when the reference frame is
not correctly calculated. In addition, walking directions from
iRMPCA vary following the way testers walk, especially in
the trouser pocket and swing as shown in Table 2. In general,
the proposed algorithm shows the most robust and accurate
results because its positions are updated correctly through PA
and PCA measurements.
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TABLE 2. Position results for trajectory #1.

Walking scenario 2 is a total of 58 meters of L-shaped
round-trip track. The representative position and attitude esti-
mation results for shirt poses are in Fig. 6. As seen from
the position results in Fig. 6a, in the beginning, the results
of PA and IA are the same during the text pose. The text
pose is a situation in which the direction of movement is
the same as the direction of the device, so the IA position is
updated by the PA position. Therefore, the walking direction
of IA calculated from the n-frame position and AHRS also
correspond as in Fig. 6b. When the device is put on the shirt
pocket, the position of PA is no longer corresponds to the
walking direction, so the mode is changed into transition
or mismatch in Fig. 6b. To explain each mode, mode 1 in
Fig. 6b means ZUPT status. Mode 2 means the condition
when walking direction and device attitude coincide, mode
3 means rotation or transition status, and mode 4 lastly means
mismatch condition. Under mode 3 with the transition of
poses or turning of the subject, and it shows a shorter step
length than the regular walk between steps in Fig. 6a.

After the transition phase, the tester walks straight with the
device put in the shirt, so the mode changes into the mis-
match one. In Fig. 6b, it is noticeable that the device heading
marked as WDPA does not match with the walking direction
represented asWDIA. The error states are estimated following
device attitude change in mode 4 through PCA-based mea-
surement updates. This allows estimating correct positions
of the proposed algorithm. When the device returns to the
match mode, the position of the proposed method follows
the characteristics of the PA. The iRMPCA is a step-based
attitude, so it has a limitation to represent it for every sample.
That is why it is omitted in Fig. 6b.

As seen from the results, the proposed algorithm is able to
detect the device condition and estimate position by consid-
ering the heading difference between walking direction and
heading. It is also noticeable that position errors are reduced
using the proposed algorithm when the tester is rotating in
place.

Similarly, when the device is placed in the trouser pocket
or swing, the heading mismatch also occurs. When the sensor
is placed in the trouser pocket, there are large attitude changes
due to the repetitive legmovements. Aswe are using themean
heading of two consecutive steps, the swaying heading angle
from the leg does not affect the position results.

Lastly, the trajectory with the only handheld case is tested
as in Fig. 7. The iRMPCA with text poses show the same
results, so it is not represented in the figure. As seen from the
figure, the proposed algorithm is also advantageous even in
the handheld case during rotating in place. The conventional
PA algorithm calculates the step length only based on the

FIGURE 5. Estimated position.

walking frequency, so errors occur in sections with short
strides, such as rotating in place. The proposed algorithm
detects the turning phase and calculates the step length from
the IA, which is more accurate than the PA method.

The position results in Fig. 7, however, could lead to one of
the limitations of the proposed algorithm that the IA results
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FIGURE 6. Position and attitude results for shirt pocket pose.

FIGURE 7. Position result for text only pose.

follow the PA features. To be specific, the step length and
heading of the device are incorrect; the measurement updates
of those lead to position errors. Therefore, the correct step
length and device attitude estimation of PA is the prerequi-
sites of the proposed algorithm.

TABLE 3. Position results for trajectory #2.

FIGURE 8. Position result for trajectory #3.

The position results of trajectory 2 are in Table 3. The
above results show that the algorithm can be applied in other
situations wherever there is a heading mismatch.

Trajectory 3 is performed to see that the proposed algo-
rithm works well even on the long trajectory, and the trajec-
tory is a rectangular-shape of 194.6m performed at Building
39 in Seoul National University, Republic of Korea. The
result of the proposed algorithm is shown in Fig. 8. In the
case of position error, it is calculated based on four waypoints
in every corner and the returned position, and the proposed
algorithm has a position error of 2.13m, PA of 20.01m, and
iRMPCA of 10.48m for the XsensMTw sensor, and averaged
error in 5 repeated times of 2.49m, 23.14m, and 12.35m
respectively for Galaxy Note9 device. This shows that even
after walking for a long time, the proposed algorithm yields
good results.

We would like to mention that the proposed algorithm has
some limitations to be improved. The proposed IA-PA PDR
fusion algorithm is dependent on the step length estimation
performance of the PA. In the proposed algorithm, the step
length from the PA is assumed to be accurate, so the position
of the IA is limited to the accuracy of the PA position.
If there is a small angle difference between walking direction
and device heading during text message pose, the proposed
algorithm just follows the attitude of the device. In addition,
it is reasonable to use the walking direction obtained from
the PCA as a measurement, but it is better to further adjust
the heading using other information such as the dominant
direction and multiple virtual tracks. This helps in updating
the wrong measurements due to errors in the PCA. In addi-
tion, external location information such as Wi-Fi and map
information can be used to adjust for accumulated location
errors. As mentioned earlier, the accuracy of the proposed
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algorithm is limited to one of the PA-based step lengths.
This means that accumulated step length errors are inevitable.
Therefore, the external position source helps in scaling the
step length parameters.

VI. CONCLUSION
In this paper, we propose the PDR system with the fusion of
the IA and PA for robust smartphone position estimation. The
algorithm is proposed in order to avoid severe position errors
from the difference between the walking direction and the
device heading. The fusion algorithm estimates the position
from the IA-based PDR system, with themeasurement of step
length from the PA and device heading under the correspon-
dence mode. If the walking direction and the device heading
do not match during the pose other than text, the position
is updated in consideration of the direction calculated using
PCA and the step length obtained through the PA. The pro-
posed algorithm shows its effectiveness in the experiments
that position is correctly estimated under shirt pocket, text,
swinging, and trouser pocket poses.
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