
Received March 15, 2021, accepted March 30, 2021, date of publication April 2, 2021, date of current version April 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3070575

SDTR: Soft Decision Tree Regressor for Tabular
Data
HAORAN LUO , FAN CHENG , (Member, IEEE),
HENG YU , (Graduate Student Member, IEEE), AND YUQI YI , (Student Member, IEEE)
MoE Key Laboratory of Artificial Intelligence, Department of Computer Science and Engineering, AI Institute, Shanghai Jiao Tong University, Shanghai 200240,
China

Corresponding author: Fan Cheng (chengfan@sjtu.edu.cn)

This work was supported in part by NSFC under Project 61701304, in part by the Shanghai Sailing Program under Grant 17YF1410100,
and in part by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

ABSTRACT Deep neural networks have been proved a success in multiple fields. However, researchers still
favor traditional approaches to obtain more interpretable models, such as Bayesian methods and decision
trees when processing heterogeneous tabular data. Such models are hard to differentiate, thus inconvenient
to be integrated into end-to-end settings. On the other hand, traditional neural networks are differentiable
but perform poorly on tabular data. We propose a hierarchical differentiable neural regression model, Soft
Decision Tree Regressor (SDTR). SDTR imitates a binary decision tree by a differentiable neural network
and is plausible for ensemble schemes like bagging and boosting. The SDTR method was evaluated on
multiple tabular-based regression tasks (YearPredictionMSD, MSLR-Web10K, Yahoo LETOR, SARCOS
andWine quality). Its performance is comparable with non-differentiable models (gradient boosting decision
trees) and better than uninterpretable models (regular FCNN). On top of that, it can produce fair results with a
restricted number of parameters, only using a small forest or even a single tree. We also propose an ‘‘average
entropy’’ metric to evaluate the level of interpretability of a trained, soft decision tree neural network. This
metric also helps to select proper structure and hyperparameters for such networks.

INDEX TERMS Decision trees, neural networks, machine learning algorithms.

I. INTRODUCTION
Regression refers to a category of supervised learning, whose
output is continuous other than a limited set of values. In
the past decades, many algorithms were proposed to perform
regression tasks. Roughly speaking, we can divide them into
two categories, and each category has its pros and cons.
• Parametric models. This category ranges from the
simplest Linear Regression models [26] to the most
complicated deep neural networks. Most of them can be
optimized via backpropagation, thus can be easily inte-
grated as a component in complex, end-to-end pipelines,
and applicable for a wide field of problems. However,
there is an implicit tradeoff between the model’s accu-
racy and the ease of interpretation. A simple function,
for example, linear regression or the Cox model [42]
for survival analysis, is easy to be interpreted; while in
real-world settings, a proper approximation function can

The associate editor coordinating the review of this manuscript and

approving it for publication was F. K. Wang .

be hard to find. In most cases, such a function might
not exist in solution spaces of linear regressors or other
straight-forward models. When dealing with a large
dataset, as in many real-world regression tasks, a com-
plicated neural network can be trained to obtain a close
approximation of the ground-truth results [39]. How-
ever, it can hardly be interpreted due to its multi-layer
nature and complex connections.

• Non-parametric models. This type of regression model
tries to make assumptions about target distribution given
the patterns observed from input samples, other than
making assumptions beforehand. Kernel regression [27]
and gradient boosting tree-based methods (which are
quite popular these years) are members of this category.
It is relatively easier to interpret non-parametric models:
such a model generally tends to ‘‘group’’ similar exam-
ples into the same cluster or assign them the same branch
on a tree node. This behavior naturally reveals how the
model works. However, such non-parametric models are
harder to combine with other gradient-based methods.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 55999

https://orcid.org/0000-0002-1951-6678
https://orcid.org/0000-0002-4307-6334
https://orcid.org/0000-0002-2158-862X
https://orcid.org/0000-0001-6799-5071
https://orcid.org/0000-0003-4563-945X

H. Luo et al.: SDTR for Tabular Data

As is proposed by Frosst and Hinton [13], using deep
neural nets to mimic the branching structure of decision trees
helps us to explain the neural network model better, thus
inheriting the merits of both parametric and non-parametric
models. The proposed Soft Decision Tree (SDT) model per-
forms slightly worse than traditional convolutional neural
networks in MNIST hand-written digits classification [22]
task. However, the model itself shows a clear relationship
among different classes in a hierarchical fashion. It automat-
ically groups some similar classes (such as digits 5 and 6) by
assigning a common parent for those classes without explicit
supervision to force the model to do so.

However, the potential of SDT on heterogeneous tabular
data and regression tasks was left unnoticed, as [13] only
examines the performance of SDT on homogeneous image
classification datasets (e.g., MNIST). We adopted this idea
and developed the Soft Decision Tree Regressor (SDTR) for
regression tasks and heterogeneous tabular data.

In this paper, we enumerate our main contributions as the
following:

• We proposed SDTR, a lightweight differentiable soft
decision-tree based neural regression model.

• Based on observations of single-tree settings of SDTR,
we developed several techniques for improving the accu-
racy of soft decision trees.

• We tested the performance of SDTR on different scales,
including single-tree and ensembles on both bagging
and boosting. We compared its performance against
traditional FCNN, state-of-the-art decision tree-based
NN methods NODE [34], non-hierarchical NN TabNet
[2] and several non-differentiable gradient decision tree
methods (XGBoost [9] and DeepForest [49]). Among
those models, SDTR is competitive for regression tasks
on tabular data, and it achieves comparable performance
with NODE and TabNet using fewer parameters.

• We proposed the exponentially decaying L1 regular-
ization to encourage the sparsity of weight matrix in
SDT and SDTR, making its interpretability level closer
to GBDT. We also introduced the ‘‘average entropy’’
metric to evaluate the interpretability of SDTR and other
soft decision tree models. This metric can be used to
select proper structure and hyperparameters.

II. RELATED WORK
A. DECISION TREES
Decision Trees have been a common approach to regression
problems. As proposed in [6], if one defines a node’s predict-
ing value as the constant prediction and the node’s impurity
as the sum of squared deviations about its samples’ mean,
the decision tree will become a regression model.

In the past decades, this field’s primary research focus was
based on the gradient boosting decision tree method (GBDT)
proposed in [12]. There are multiple open-source packages
that implement the GBDT algorithm (for both classification
tasks and regression tasks), for example scikit-learn [33], gbm

[36], XGBoost [9] LightGBM [19] and CatBoost [50]. While
the core idea was left unchanged, these packages mainly
focused on speed up, parallelization, large-scale datasets han-
dling, and robust training.

B. SOFT DECISION TREES
Recently, Deep Neural Networks (DNNs) achieved great suc-
cess in fields like Computer Graphics [16], Natural Language
Processing [44], speech recognition [15], and reinforcement
learning [25]. However, DNNs have met obstacles in pro-
cessing heterogeneous tabular data, unable to outperform
prevailing traditional models consistently.

However, traditional models are generally not differ-
entiable, thus unable to be integrated as components in
pipelines. Arik and Pfister (2019) [2] proposed a new canoni-
cal DNN architecture TabNet, which outperforms or is on par
with traditional tabular learning models.

Another line of research tries to imitate the traditional
learners by neural networks. Inspired by decision trees,
which are proved to be capable of processing heteroge-
neous data, researchers have developed various sorts of dif-
ferentiable, or ‘‘soft’’ decision trees/forests. Soft decision
trees were first introduced by Suarez and Lutsko [40]. They
performed a ‘‘fuzzification’’ process over a trained CART
decision tree skeleton, replacing the hard threshold at each
non-leaf node with sigmoid functions. The fuzzy model was
treated as a feed-forward network and thus can be trained via
backpropagation.

In recent years, soft decision trees (SDT) have been an
active field of research again. Léon and Denoyer [23] pro-
posed a computationally efficient backpropagation scheme to
directly optimize the hard partitioning function at each node.
Frosst and Hinton [13] proposed a regularization method to
encourage a balanced split at each internal node, improving
the robustness of SDT.

While traditional SDT uses a single feedforward layer with
sigmoidal activation function as their decision function, mod-
ern SDTs may choose various decision functions to resolve
different problems. Bulo and Kontschieder [37] proposed
a tree-shaped neural network with randomized MLP deci-
sion function to solve semantic image labelling, and ensem-
bled multiple such networks to make a ‘‘decision forest’’.
Yang et al. [47] took soft binning function into account, using
a neural network to faithfully imitate the ‘‘splitting’’ choice
made at each node split. Popov et al. [34] uses a similar
technique, but instead of a full binary tree, they tried to imple-
ment an oblivious decision tree for faster training/inference.
Tanno et al. [41] took a more adaptive approach. In their
work, each edge of the tree would further stand for a trans-
formation function (often residual).

C. ENSEMBLE LEARNING AND TREE ENSEMBLE
In real tasks where the features are highly entangled, the per-
formance of a single tree is limited. The conclusion holds
for both traditional decision trees and their soft counterparts.
A widely accepted workaround is to use more trees, then

56000 VOLUME 9, 2021

H. Luo et al.: SDTR for Tabular Data

aggregate the results together. This method falls into the
ensemble learning category.

Ensemble learning is a well-developed direction of
machine learning research. It has been utilized in various
fields and applications, e.g. stock returns prediction [43],
credit scoring [1], sentiment analysis [31] and text classifi-
cation [30]. In these works, decision tree often serves as a
base learner, and its result is often aggregated with other base
learners such as Naïve Bayes, nearest neighbor classifiers
[29] and support vector machines.

Modern decision trees also use ensemble methods to
increase the model’s capacity. In this scope, all base learn-
ers are decision trees. Different decision trees would deal
with different inputs or in charge of different positions in
a pipeline. Breiman [5] proposed the random forest algo-
rithm, organizing decision trees by bagging on random sub-
sets of examples and features. Friedman [12] proposed the
gradient-boosted trees (GBT) method which yielded state-
of-the-art performance in many fields including research
institutions ranking [38], recommender systems [46], bioin-
formatics [8] and medical applications [21]. Zhou and Feng
(2017) [49] proposed the Deep Forest approach to generate
a cascade ensemble of forests, which outperforms traditional
tree ensembles in various domains.

Soft decision trees can also be ensembled via a similar
scheme. Kumar et al. [20] proposed an ensemble of soft
decision trees for robust classification; Yıldız et al. [48]
tested the bagged soft decision trees on two-class classi-
fication datasets and regression datasets. Some previously
mentioned neural SDTs also utilized ensemble learning.
Tanno et al. [41] trained multiple models and took the aver-
age of outputs as the final result, and observed a performance
gain; Popov et al. [34] stacked the oblivious trees, feeding the
output of previous trees into following ones, and improved the
performance at the cost of training time.

III. METHODOLOGY
In this section, we describe the algorithm and techniques used
in SDTR.

A. THE HIERARCHICAL MIXTURE OF CONSTANT
PREDICTIONS
The main idea of SDTR follows the ‘‘hierarchical mix-
ture of bigots’’ setting proposed by Léon et al. [23] and
Frosst et al. [13]. Unlike [47] and [34], each bigot draws
its conclusion on all feature vectors through the decision
function of its own, rather than selecting a splitting point for
a particular feature.

In the binary decision tree model, decisions are made by
a series of hierarchical nodes. Each node can be viewed as
a binary classifier: for an incoming sample, the node would
decide which branch should further handle the sample.

Similarly, the SDTR structure is a full binary tree. Each
node i in this tree represents a binary classifier, with learn-
able parameters wi, bi. Given a certain input, the classifier’s

output is calculated by a sigmoid function representing the
probability of choosing the left branch:

pi(x) = σ (wix+ bi). (1)

To prevent too soft decisions, we multiply a βi on the term
wix + bi, before calculate the sigmoid. Each βi is initialized
as a hyperparameter (in all our experiments, we choose 1.5),
and different βis are independently trainable. Thus the output
would be soft again at some nodes when needed.

Note that the choice function pi(x) is not necessarily a
linear function wix + bi. Any function can be used to make
the decision, as long as its output scope is [0,1], and thus
we can interpret the result as ‘‘probability’’. Multi-layered
networks or convolutional networks (for image processing)
are also feasible choices. Given the probability of choosing
the left branch, the probability of choosing the right branch
should be 1− pi(x).
All nodes naturally form a hierarchical mixture of experts

(HME) [18]. Each leaf node corresponds to a scalar R`,
which serves as the model’s prediction. The label y is nor-
malized by y = y′−ȳ′

σ
, where y′ is the original label and (ȳ′, σ)

are the mean and standard error of y′ in the training set. R` is
initialized via sampling from a standard normal distribution.
Consider each leaf, the probability of choosing the leaf equals
the multiplication of probabilities of a series of nodes that lie
along the path from the root to leaf:

P`(x) =
∏

i∈Path(`)

pi(x)li (1− pi(x))1−li , (2)

where li stands for the routing (whether the next node is the
left child of i) on Path(`).
Unlike traditional neural networks where the output of

previous layer serves as the input into following layer, all
nodes in SDTR use the same input x from dataset. This
structure itself mitigates vanishing gradient problem, making
it possible to stack multiple sigmoid functions sequentially
while preserving the strength of gradient descent.

We illustrate a 2-layer SDTR tree in figure 1.
The objective function seeks to minimize the MSE (mean

squared error) between each leaf’s prediction R` and the
target ground-truth value y, or to minimize other reasonable
differentiable objective functions. Take MSE as an example.
The objective function at each leaf is weighted by its path
probability:

LMSE (x) =
∑

`∈LeafNodes

P`(x)(R` − y)2. (3)

There are twoways to interpret themodel’s output to obtain
the prediction ŷ.

• Take the value on the leaf with the largest probability as
the prediction.

`∗ = argmax
l
P`(x)

ŷ = R∗`

VOLUME 9, 2021 56001

H. Luo et al.: SDTR for Tabular Data

FIGURE 1. A shallow SDTR with depth d = 2. x stands for the normalized input feature all nodes use the same x from data),
and we use a linear function followed by a sigmoid to generate the decision on each non-leaf node. Note that at each
decisional node, we can use an arbitrarily differentiable function, as long as the output vector sums up to 1.

• Sum up the predictions on all leaves and weight them by
corresponding path probabilities.

ŷ =
∑

`∈LeafNodes

P`(x)R`

In our experiments, the second interpretation performs bet-
ter in most settings, which means the conclusion of [13] still
holds for regression tasks. In the experiment section, we only
use the second interpretation.

B. REGULARIZATION
As in [13], we used a ‘‘path penalty’’ term that encourages
a balanced tree classifier. This penalty causes each internal
node to equally use both left and right sub-trees, thus avoiding
getting stuck on too biased weights (the case that classifier
assigns most examples to one leaf node).

We compute the penalty term for each node. Mathemati-
cally speaking, this penalty term is the cross-entropy between
the ideal ‘‘balanced’’ distribution [0.5,0.5] and the actual
distribution. The latter is sampled per mini-batch.

The actual distribution [αi, 1−αi] for node i is defined by:

αi =

∑
x P

i(x)pi(x)∑
x P

i(x)
(4)

where Pi(x) is the accumulated path probability of feature
vector x from root to node i. Then, we compute a weighted
sum of the cross entropy obtained from each non-leaf node
(inner node) to get the final path penalty term:

Lpp = −
∑

i∈InnerNodes

2−di [
1
2
log(αi)+

1
2
log(1− αi)] (5)

d denotes the depth of node i. As mentioned in [13],
a deeper node is more possible to handle a non-equal split.
Its weight in Lpp should be decayed; otherwise, such path
penalty can be harmful to the model’s accuracy. In our early
experiments, we also observed that exponentially decaying
the weight according to the node’s depth d achieved better
results.

Besides that, we also regularize each node’s weight matrix
by L1 loss. On the one hand, this loss binds the output in the
sigmoid function’s near-center region, thus helping gradient
flow. On the other hand, this regularization term helps the
model generate more interpretable results.

Intuitively, a decision tree’s interpretability relies on two
facts: it uses hierarchical structure, and the decision function
at each node is a threshold function on a particular feature.
The ensembles of decision trees (both bagging and boost-
ing) are typically regarded as black-box models. However,
their interpretability is still better than that of regular deep
neural networks. For example, it is possible to compute a
feature importance ranking in a trained GBDT. Friedman
[12] proposed a feature importance measure based on the
relative influence of individual input feature. The importance
of feature j on tree T can be approximated by the resulting
improvement in squared error loss ˆ̀, summed up for each
inner node t:

Î2j (T) =
∑

t∈InnerNodes

ˆ̀2
t 1(vt = j) (6)

1(vt = j) denotes whether the node’s splitting feature is
feature j.
It is theoretically possible to implement the same approach

in SDTR, making its interpretability better than traditional
NNs. However, the ‘‘split gain’’(`t) at each node t is hard to
compute. By GBDT’s greedy splitting policy, we can reach
an intuitive conclusion that the splitting feature used at the
root or top levels of the tree is more important than those used
at the bottom, near-leaf levels. Since we have utilized the path
penalty term to balance the distribution at each tree classifier,
we assume that the near-root nodes, and their corresponding
decision functions, are more important in the overall decision
process.

Another difficulty lies in the decision function. As we
have replaced the hard threshold functionwith linear sigmoid,
we cannot directly use the term 1(vt = j). However, we still
hope our decision functions to be sparse; thus, the most
important feature(s) at a certain node would be clearer.

56002 VOLUME 9, 2021

H. Luo et al.: SDTR for Tabular Data

By introducing the L1 regularization loss, we encourage the
sparsity at each decisional node. Based on previous observa-
tions on Lpp and Î2j (T), we have chosen that the weight of
L1 loss at node t should be reweighted in an exponentially
decaying fashion, according to the node’s depth dt . Let w(t)

be our 1× K weight matrix associated with an inner node t ,
the final expression of our regularization loss Lreg is:

Lreg =
∑

t∈InnerNodes

2−dt
K∑
k=0

|w(t)
k | (7)

By reweighting the L1 loss, we keep the sum of Lreg of each
layer at the same magnitude. This regularization approach
also controls each decision node’s input norm (sigmoid func-
tion), keeping the function value near zero, where the gra-
dient descent is effective. Like Batch Normalization [17],
this approach helps to effectively prevent the occurrence of
over-saturated decision nodes, and avoid the risk of gradient
vanishing. Our experiments show that this regularization term
brings notable performance gain.

Both path penalty term and the L1 regularization loss are
integrated in the MSE loss function. Our final optimization
target is the sum over these three expressions:

L = LMSE + λ1Lpp + λ2Lreg (8)

The strength of Lpp and Lreg are controlled by two hyper-
parameters λ1 and λ2.

C. IMPROVING SDTR: SINGLE TREE
A single regression tree is weak. In a single-tree setting, since
our predictions can only be made by R` at each leaf node,
the number of leaf nodes will influence the minimum MSE
(Mean Squared Error) that we can obtain.

In order to achieve a better result in the single-tree setting,
our tree needs to go deeper. However, merely increasing the
depth of the tree leads to a less robust model, and such model
requires more steps to converge.

We observed that main obstacle in training deeper SDTR
lies in the gradient of the leaf nodes’ weights. Consider updat-
ing a single leaf node `’s response R`, by taking derivatives
on (3), we can obtain:

∂LMSE
∂R`

= 2(R` − y)P`(x) (9)

Since
∑
` P` = 1, as the model’s depth increases, the gra-

dient’s norm on each leaf node’s weight shrinks exponen-
tially, thus causes slow convergence in the training phase.
We attempted to resolve this problem by re-weighting the
learning rate of R`.

We manually multiply the learning rate of R` by the total
number of leaf nodes (2d−1). Note that directly increasing the
overall learning rate only results in a failing model: previous
decision nodes would become unstable. So we only adjust the
learning rate associated with each R`.

Besides toggling the learning rate, we tried to use hidden
layers (fully connected layer with ReLU [28] activation) to

enhance a single tree’s expressive power. Before feeding
input features into each decisional node, we first transform
them by a fully-connected layer. All decisional nodes share
the same FC layer. However, such a method introduces extra
parameters, and we have not seen apparent improvement in
our experiments. One possible reason is that the hierarchi-
cal structure itself is sufficient for representing higher-order
logic, making the preceding FC layer unnecessary.

D. IMPROVING SDTR: ENSEMBLE
To resolve the limited accuracy of a single tree, Friedman
et al. [12] and many following papers used the ‘‘ensemble’’
technique. Generally speaking, there are two ways to ensem-
ble models: one is to take the average output of multiple
different models, or the so-called ‘‘voting’’ mechanic; the
other is called ‘‘boosting’’. The ‘‘boosting tree’’ structure
refers to a sequence of decision trees. The first tree aims to
optimize the target value directly; the following trees aim to
compensate for the accumulated error made by all previous
trees.

The output of SDTR is a weighted average of all leaf nodes.
If we view each leaf node as a base learner (which returns
a constant), then a single SDTR tree is already a bagging
model. Each base learner would deal with a specific division
of data; the path probabilities would determine the division,
and the division itself is updated through backpropagation.
However, this bagging scheme is limited by the single tree
structure. To alleviate the problem, we initialized a forest of
trees differently, then average their outputs. Such a forest can
produce a prediction directly or serves as a ‘‘layer’’ in our
boosting scheme.

Despite being successful, the boosting method is harder
to implement in an end-to-end training environment. This
technique implies that some part of the whole network will
be repeatedly trained while the other parts are frozen, intro-
ducing considerable overheads. Popov et al. [34] proposed
a workaround for end-to-end setting: each tree would have
multi-dimensional outputs (rather than a scalar), a tree located
at successor layers can treat outputs of all its previous trees
as additional input features. The final output is then given
by averaging across the first dimension of all tree’s outputs.
Themethod improves accuracy but significantly increases the
number of model parameters and time consumption: for trees
in successor layers, the dimension of input features increases
by O(l2), thus prohibiting the model from getting deeper.
To alleviate the problem, we made a single tree more

expressive than the oblivious decision trees implemented in
[34]. We will further justify this in the experiment section.
As the complexity of a single tree increases, we can achieve
comparable results by lesser boosting layers or using fewer
trees in each layer.

IV. EXPERIMENTS
In this section, we compare the result among our approach,
FCNN, state-of-the-art neural decision tree method NODE
[34], state-of-the-art neural network for tabular data TabNet

VOLUME 9, 2021 56003

H. Luo et al.: SDTR for Tabular Data

[2], and leading GBDT packages including XGBoost [9],
LightGBM [19], CatBoost, and DeepForest [49]. For SDTR,
we provide results on shallow models (SDTR forest without
boosting) and ‘‘deeper’’ ones.

A. OVERVIEW
We built the SDTRmodel via PyTorch python package [32].1

All experiments were performed on a single GTX 1080Ti.We
test the performance of SDTR on each dataset under three
different conditions.
• Single-tree mode: In this mode, only one tree was used.
We compare it against a fully connected neural net-
work (FCNN) and a small ensemble of oblivious trees
(NODE) [34]. The aim of this part is to show that a
single SDTR model has comparable expressive power
as FCNN and slightly stronger than its oblivious coun-
terparts. We keep the search space of hyperparameters
of SDTR identical across all experiments.

• Single-layer mode: In this mode, we constructed multi-
ple trees and integrated them as a forest. We averaged
all trees’ output as the model’s output and used it for
both the training and inference phases. The single-layer
approach is suitable for parallelization, thus would be a
useful metric in practice. The number of trees across all
five datasets are n = 256.

• Multi-layer boosting mode: In this mode, we arrange
multiple trees in ‘‘layers’’ as previously described in
section III-D. One layer consists of an SDTR forest,
and the output of such forest serves as additional input
features for its following layers. This approach tests
the best possible performance of a certain model on
tabular data. We compare the performance of SDTR
with other state-of-the-art models (XGBoost, Light-
GBM, CatBoost, NODE, TabNet and DeepForest).

Since our regularization term is computed per-batch, some
may argue that a bigger batch size would help train a more
balanced SDTR tree. We provide ablation results in section V
on batch size for single-tree and single-layer setups, keeping
all the other hyperparameters fixed; based on the observation,
for multi-layer boosting mode, we keep the batch size as
1024.

In all our experiments with SDTR, we stopped training
when the validation MSE does not improve for 1000 consec-
utive batches.

Other models. We also provide results of FCNN,
XGBoost [9], LightGBM [19], CatBoost [50], NODE [34],
DeepForest [49] and TabNet [2], trained with the same
dataset. For FCNN and NODE, we provide the results of
both shallow and deep variations. We used the ‘‘Dense-
LeakyReLU-Dropout’’ structure as the basic building block
of FCNN. The shallow version consists of 2 layers, while
the deep version consists of 7. We keep the search space
of hyperparameters the same in the same experiment group
(Small, Shallow, and Deep). The shallow NODE is built as a

1Source code will be available on GitHub soon.

forest of n = 2048 oblivious trees, while the deep counterpart
used the previously mentioned ‘‘boosting’’ technique to stack
forests together. As the number of trainable parameters in one
single tree of NODE is approximately one magnitude smaller
than in SDTR, we also provide a smaller single-layer version
of NODE (NODE-small) with the same hyperparameters as
NODE-shallow but consists of n = 10 trees.

B. DATASETS
To evaluate the performance of proposed SDTR model,
we performed regression tasks on five open-source regression
datasets: YearPredictionMSD [11], MSLR-WEB10K [35],
Yahoo LETOR [7], SARCOS [45] and WINE quality [10].
For the first three datasets, we used the same train-val split
for all experiments on different hyperparameters and models,
the same as what NODE [34] used in their paper. For SAR-
COS, we used 20% samples from the train split as a validation
set and used the provided test split. For WINE, which did not
provide a test split, wemanually split the dataset by 8:1:1. The
val split is used for hyperparameter tuning and early stopping.
Then, we evaluate each derivedmodel on the test split defined
by dataset providers (if available). The train/val/test split is
fixed for different models.

Here we provide a brief description for each dataset.
YearPredictionMSD (Year): A dataset derived from Mil-

lionSong dataset [4]. The features are extracted from the
‘‘timbre’’ features generated by the EchoNest API. The target
is the release year of a certain song, an integer ranging from
1922 to 2011.

MSLR-WEB10K (MSLR): Microsoft Learning-to-rank
dataset (MSLR) consists of 136-dimensional feature vectors
extracted from query-url pairs, and its label take 5 values from
0 (irrelevant) to 4 (perfectly relevant).

Yahoo LETOR (Yahoo): Similar to MSLR-WEB10K,
Yahoo LETOR is a learning-to-rank dataset with query-URL
pairs, labeled by integers from 0 to 4. We treat both ranking
datasets as regression tasks, using feature vectors to predict
the (real-valued) label directly.

SARCOS: The regression task is to solve an inverse
dynamics problem for a SARCOS anthropomorphic robot
arm. We map the 21 input variables to the first of seven joint
torques, transforming themulti-regression problem in [2] into
a single one.

WINE quality (WINE): The dataset aims to model
red wine quality based on physicochemical tests. Each
instance corresponds to a red Vinho Verde wine sample.
Input variables are physicochemical properties, for exam-
ple, density, pH, and fixed acidity. Instances are labelled
by a ‘‘quality score’’ (between 0 and 10) based on sensory
data.

Table 1 shows details of datasets. They differ in both scales
and the number of input features. For the last two datasets,
it is more likely to overfit in our training process. The results
on SARCOS and WINE can be used to test the models’
robustness.

56004 VOLUME 9, 2021

H. Luo et al.: SDTR for Tabular Data

TABLE 1. Details of 3 tabular datasets involved in experiment.

C. TRAINING
Here we describe our training routine.

Data Preprocessing: Each input feature is transformed
into a normal distribution using quantile transform. Specif-
ically, we use the scikit-learn implementation [33]. This step
is critical for fast and robust training. The integer labels are
normalized by the mean/standard error on train split. We per-
formed quantile transform for all models in our experiments
(SDTR, FCNN, NODE, XGBoost, TabNet, and DeepForest).

Training: SDTR is trained end-to-end via SGD-based opti-
mizer. We only used MSE as the objective function in the
experiments, but any differentiable objective function can fit
into the SDTR model. As in [34], we use Quasi-Hyperbolic
Adam (QHAdam) [24] as our optimizer.

The w and b for each node is initialized via Xavier’s
uniform [14]. R`s are initialized by a standard normal dis-
tribution.

Hyperparameter Tuning: For single and shallow settings,
we performed a grid search for depth, λ1 and λ2. The depth is
selected from {4, 5, 6, 7, 8}, and both λ1 and λ2 are selected
from {0.1, 0.05, 0.01, 0.005, 0.001}.

The group of hyperparameters that yields the best test MSE
in SDTR-Single was used as hyperparameters in the SDTR-
Shallow setting. The number of trees across all datasets is
n = 256.
For deep settings, we performed a mixture of grid and

random search on the hyperparameters of the model via
Hyperopt [3]. The tuned hyperparameters include depth of a
single tree, output dimensions of each tree, number of trees in
one ‘‘boosting’’ layer, number of layers, learning rate, λ1 and
λ2. Only the last two parameters are searched continuously.

The hyperparameter choices of other benchmark models
are described in Appendix A.

D. RESULTS AND ANALYSIS
Weusemean squared error (MSE) as ourmetric across all five
datasets. As shown in table 2, SDTR performed well in ‘‘sin-
gle tree’’ and ‘‘shallow’’ settings while performed slightly
worse than NODE/XGBoost after being boosted. In small
datasets (SARCOS andWINE), SDTR showed better robust-
ness than other neural models (FCNN, NODE, and TabNet),
and is comparable with state-of-the-art undifferentiable mod-
els (XGBoost, LightGBM, CatBoost, and DeepForest).

It is worth noting that we use the same structure / hyperpa-
rameters for SDTR for all datasets in the same set of experi-
ments. For ‘‘shallow’’ setups, the hyperparameters, including
learning rate, tree depth, and λs, are identical to those in
the ‘‘single’’ setup. We found that the hyperparameter set-

TABLE 2. Experiment results.

ting which performed well in the ‘‘single tree’’ setup also
performed well after being ensembled. The consistent perfor-
mance of SDTR shows the robustness of our proposed model.
We can perform a low-cost hyperparameter search in the ‘‘sin-
gle tree’’ setup; the resulting optimal hyperparameters can be
used for the following ensemble phase. It might also explain
why the shallow SDTR models performed better than their
deeper counterparts in YAHOO and SARCOS. Theoretically,
shallow models have few advantages against deeper coun-
terparts: their solution space is a subset of deeper models;
however, deeper models naturally have more hyperparam-
eters, need more careful tuning, and have a higher risk of
overfitting. The boosted model for YAHOO showed signs of
overfitting in our training phase. The ‘‘boosting’’ process also
introduces significant structural change; we have found no
evidence showing that the optimal hyperparameters for ‘‘sin-
gle’’ and ‘‘shallow’’ setups are still optimal for the boosted
models. Furthermore, the boosting scheme significantly
increases the training time and memory consumption, while
the performance gain against the ‘‘shallow’’ scheme is only
trivial. Thus we do not recommend using the boosted version
of SDTR. If we would use the same number of trees in spe-
cific cases (for example, the memory is limited), placing all
trees in the same, ‘‘shallow’’ layer would be a better choice.

V. ABLATION STUDY
In this section, we compare the different hyperparameter
settings of our SDTRmodel. We also justify the effectiveness
of our proposed training techniques, i.e. exponentially decay-
ing L1 regularization and gradient re-weighting. Besides,
we proposed a new ‘‘average entropy’’ metric to evaluate the
model’s interpretability, finding that the new metric is con-
sistent with our optimization target (MSE) in tree regression
tasks, possibly explaining the effectiveness of tree-structured
model in this field.

A. ABLATION STUDY: BATCH SIZE AND GRADIENT
RE-WEIGHTING
In many cases, the size of each batch is critical in models
that use Batch Normalization layers [17]. Despite the fact

VOLUME 9, 2021 56005

H. Luo et al.: SDTR for Tabular Data

FIGURE 2. The ablation result on Microsoft-Web10K dataset. Each line denotes a different choice of
λ1.

TABLE 3. Ablation results on batch size and gradient re-weighting.

that our model did not use BN, the regression terms on each
inner node are still computed per-batch, which naturally led
to a guess that larger batch size results in a more precise
approximation, thus improving the model’s overall MSE.
We provide ablation results in table 3. We keep all hyperpa-
rameters (including random seeds) the same and coordinated
our early-stopping conditions to ensure that we stop training
after not observing improvement for exactly the same amount
of data. For each batch size setting, we provide two results
(with or without gradient re-weighting).

Although a larger batch size accelerated the overall training
process, we did not observe apparent improvements in the
model’s accuracy. On the other hand, a smaller batch size (and
more training batches) might benefit our QHAdam optimizer,
for the optimizer will update its momentumsmore frequently.
The consistent performance on different choices of batch size
makes SDTR capable of implementations in low-resource
settings.

Multiplying the learning rate related to ‘‘responses’’ R`
improved the performance by approximately 2%, which

proved the usefulness of the learning-rate re-weighting tech-
nique.

B. ABLATION STUDY: λ1 AND DEPTH FOR SINGLE-TREE
SETTING
To test the stability against different hyperparameters, we ran
ablation studies on the MSLR-Web10K dataset with different
λ1 and tree depth choices. We provide the results in figure 2.
To control the variables, we set λ2 = 0 in this set of experi-
ments. Because of the absence of exponentially decaying L1
regularization, the performance in this set of experiments is
slightly worse than our main result on MSLR.

To sum up, the value of λ1 is flexible and just slightly
affects the model’s performance, while a suitable depth of
tree will bring a significant boost. Based on our observations,
the optimal choice of depth depends on the dataset’s charac-
teristics.

C. ABLATION STUDY: SINGLE-LAYER ENSEMBLE
As shown in previous results, the model can achieve higher
precision when we integrate multiple trees in the same layer
and take the average of each tree as our final output. To inves-
tigate this method, we performed an ablation study on the
different number of trees and the depth of each tree on the
Microsoft-Web10K dataset. The results are provided in fig-
ure 3.

A straightforward conclusion is that the model’s accuracy
improves as the number of trees increases. Also, the accuracy
seems to be related to the accuracy of every single tree. The
hyperparameter choice, which performs well on its own (such
as depth = 5 in single-tree ablation), also yields the best
result when forming an ensemble. As mentioned before, this
characteristic of SDTR is friendly to hyperparameter tuning.

56006 VOLUME 9, 2021

H. Luo et al.: SDTR for Tabular Data

FIGURE 3. The single-layer ensemble ablation result on the Microsoft-Web10K dataset. Each line
denotes a different choice of the number of trees for ensembling.

FIGURE 4. The visualization of table 4. For different settings of λ1, MSEs
and AEs are correlated.

D. ABLATION STUDY: L1 REGULARIZATION AND
INTERPRETABILITY ANALYSIS
As proposed in section III-B, a sparse weight matrix implies
better interpretability. To quantitatively evaluate an SDTR’s
interpretability, we propose an ‘‘average entropy’’ metric
suitable for our experimental setup.

For each non-leaf node in our tree, the 1× k input features
are multiplicated by a k × 1 weight matrix W to obtain a
scalar, which is fed into a sigmoid function. Note that all input
features are already normalized, so the scale of weights on
different features are roughly the same. Naturally, a larger
weight (absolute value) means the corresponding feature is
more effective; thus, we normalize W to get a new matrix
W ′:

W ′ =
|W | + ε∑
(|W | + ε)

(10)

ε is a small positive scalar to prevent the occurrence of
zeros. In all of our experiments we use ε = 10−3. The values
inside our new W ′ is between [0, 1] and sums up to 1. This
W ′ can be viewed as a multinoulli distribution, and thus we

TABLE 4. Ablation results on L1 regularization (MSLR).

can compute its entropy:

H (W ′) = −
∑
w′∈W ′

w′ log(w′) (11)

Intuitively, if we have one (or several) dominating fea-
ture(s), the entropy of conducted multinoulli will be small;
otherwise, if all features are of equal importance, the previous
expression will reach its maximum.

Again, we use the weighted sum of such entropy of all
nodes to get our final ‘‘average entropy’’ (AE) metric. Let
W ′(t) be the normalized weight matrix corresponding to an
inner node t , our metric is then given by:

AE =
∑

t∈InnerNodes

2−dtH (W ′(t)) (12)

We use this metric to evaluate the effectiveness of our
exponentially decaying L1 regularization. Table 4 shows the
relationship among λ2, MSE and AE. λ2 = 0 means we do
not use L1 regularization at all.
It can be shown that the existence of the L1 regularization

term improved themodel’s interpretability, and a proper value
of λ2 improved the model’s performance. An interesting
finding is that a model with a smaller MSE tends to have
a smaller AE. Figure 4 further illustrates this phenomenon.
This phenomenon also showed up in our experiments on the
other two datasets. Note that we do not use AE to optimize our
models: it did not show up in our loss function. Furthermore,

VOLUME 9, 2021 56007

H. Luo et al.: SDTR for Tabular Data

FIGURE 5. The visualization of an depth = 4 SDTR tree’s first three layers.

the early-stopping scheme relies solely on the MSE on the
validation set. This finding may imply that the tabular data
regression task favors sparse weight matrixs, at least on these
datasets.

We also provide a visualization of the first three layers
for a shallow SDTR single tree (depth = 4), trained on the
YearPredictionMSD dataset. The model reached 79.32 MSE.
Each sub-gram denotes the weights associated with each
node. Our L1 regularization efficiently encouraged sparsity
for d = 1 and d = 2 nodes; because of the exponentially
decaying weight, the regularization strength (and sparsity)
decreases in deeper layers. One can already conclude some
most important features (in this example, feature #0), and
exclude some unused features in following experiments.

It is worth noting that ensemble and boosting will harm the
interpretability of the base model. This observation also holds
for SDTR. In our ‘‘single layer ensemble’’ scheme, the final
output is an average of every tree regressor’s prediction.
Every tree’s contribution to the final output is associated
with the statistics of the tree’s path probabilities and leaf
predictions. We leave this direction for the future.

E. ABLATION STUDY: GRADIENT REWEIGHTING ON SDT
Theoretically, gradient vanishing at leaf nodes also exists
in the original SDT for classification tasks. To justify our
gradient reweighting technique, we performed an ablation
study on the original SDT model proposed by Frosst and
Hinton [13]. We used depth = 5 and learning rate 10−3 on
theMNIST classification task, using cross entropy as our loss
function, and the only difference between the two models is
whether the gradient reweighting technique is used.

Figure 6 showed our results on MNIST. The reweighting
method significantly accelerated our training process, reach-
ing a near-optimal result after a few hundred epochs. It is

FIGURE 6. The loss function (cross entropy) curve for original model and
reweighted model.

worth noting that directly increasing the learning rate by
2depth caused themodel to fail: the loss functions soon became
untractable (nan) after 100 epochs. The final accuracy on
the test set was 94.49% (reweight) versus 94.94% (original),
which implies that the gradient reweighting might introduce
trivial performance loss. Such loss can be easily covered by
tuning hyperparameters.

VI. CONCLUSION
In this paper, we integrated an existing model (Soft Decision
Tree) to handle heterogeneous tabular data regression, which
troubles DNNs for a long time. We proved by experiments
that despite our model performs slightly worse than NODE
and XGBoost under fine-tune settings, it exceeds the two
competitors in shallow settings and performs far better than
FCNN. The SDTR model performs best in extremely con-
strained low-memory, single tree setting.

The differentiable nature of SDTR makes it possible to
be incorporated into complex pipelines, and it can easily

56008 VOLUME 9, 2021

H. Luo et al.: SDTR for Tabular Data

fit into the back-propagation regime. As a regressor, it is
possible to use SDTR to extract valuable features from tabular
data or directly solve the regression problems with a low cost.

APPENDIX A
OPTIMIZATION OF HYPERPARAMETERS
For each model, we use a grid search on the group of param-
eters described below. All models are trained on the same
train/val/test split. Some models, e.g., XGBoost and SDTR,
require a validation set to perform early-stopping and prevent
overfitting. For those models, we trained them using the
train split, performed early-stopping according to the val,
and report the best result on the test split among choices of
different hyperparameters.

A. FCNN
As described above, the FCNN uses ‘‘Dense-LeakyReLU-
Dropout’’ structure as the basic building block. FCNN-
Shallow consists of 2 blocks, and FCNN-Deep consists of 7
blocks. The negative slope for LeakyReLU is 0.01. We use
Adam optimizer for back-propagation.

The number of neurons in hidden layers were set to be a
proportion of input feature size k .
• hidden_size: Uniform choice in {k/4, k/2, k, 2k}
(rounded down).

• learning_rate: Log-uniform distribution [10−5, 10−2]
• dropout: Uniform distribution [0, 0.5]

B. XGBoost
The XGBoost-Default setting uses the default XGBRegres-
sor class with max_depth = 3, learning_rate = 0.1 and
n_estimators = 100.
To make the comparison fair, XGBoost-Tuned setting uses

the same search space as in [34]. We describe the hyperpa-
rameter choice below.
• η: Log-uniform distribution in [e−7, 1]
• max_depth: Discrete uniform distribution in [2, 10]
• subsample: Uniform distribution [0.5, 1]
• colsample_bytree: Uniform distribution [0.5, 1]
• colsample_bylevel: Uniform distribution [0.5, 1]
• min_child_weight: Log-uniform distribution [e16, e5]
• α: Uniform choice in {0, Log-uniform distribution
[e−16, e2]}

• λ: Uniform choice in {0, Log-uniform distribution
[e−16, e2]}

• γ : Uniform choice in {0, Log-uniform distribution
[e−16, e2]}

C. LightGBM
The hyperparameters of LightGBM are sampled by uniform
choice from below. The bold text stands for the default hyper-
parameters.
• num_leaves: {15, 31, 63, 127, 255}
• learning_rate: {0.1, 0.05, 0.01, 0.005}
• n_estimators: {100, 300, 500}

D. CatBoost
The hyperparameters of CatBoost are sampled by uniform
choice from below. The bold text stands for the default hyper-
parameters.
• num_trees: {500, 1000, 2000, 4000, 8000}
• tree_depth: {6, 7, 8, 9, 10}
• l2_leaf _reg: {0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0}

E. NODE
The hyperparameters of NODE-Small are sampled from
below.
• tree_depth: Uniform choice in {4, 5, 6, 7, 8}.
• tree_number : 10 (fixed)
• learning_rate: Log-Uniform distribution [10−4, 10−2]
NODE-Shallow inherits the best hyperparameters from

NODE-Small, while replacing the tree_number with 2048.
Based on our observations, the boosting process greatly

influences the model’s structure and logic. We use the same
search space as in [34]:
• num_layers: {2, 4, 8}
• total_tree_count: {1024, 2048}
• tree_depth: {6, 8}
• tree_output_dim: {2, 3}

F. SDTR
The hyperparameters of SDTR-Single and SDTR-Shallow
are described above. For SDTR-Deep setting, we performs
hyperparameter search in the following space:
• tree_depth: {6, 7, 8}
• num_layers: {2, 4, 8}
• total_tree_count: {1024, 2048}
• tree_output_dim: {2, 3}
• learning_rate: {10−2, 10−3, 10−4}
• λ1: Log-uniform distribution in [10−4, 10−2]
• λ2: Log-uniform distribution in [10−4, 10−2]

G. TabNet
We use the PyTorch implementation of TabNet.2 The hyper-
parameters are sampled by uniform choice from below. The
bold text stands for the default hyperparameters.
• nd and na: {4, 6, 8, 10} (nd = na in all experiments)
• n_steps: {3, 4, 5, 6}
• γ : {1.1, 1.2, 1.3, 1.4}
• λsparse: {0.1, 0.01, 0.001}

H. DeepForest
We use the CascadeForestRegressor in the Deep-Forest
library.3 The hyperparameters of CascadeForestRegressor are
sampled by uniform choice from below. The bold text stands
for the default hyperparameters.
• n_bins: {100, 200, 255}
• n_trees: {50, 100, 200}

2https://github.com/dreamquark-ai/tabnet
3https://github.com/LAMDA-NJU/Deep-Forest/

VOLUME 9, 2021 56009

H. Luo et al.: SDTR for Tabular Data

REFERENCES
[1] J. Abellán and C. J. Mantas, ‘‘Improving experimental studies about

ensembles of classifiers for bankruptcy prediction and credit scoring,’’
Expert Syst. Appl., vol. 41, no. 8, pp. 3825–3830, Jun. 2014.

[2] S. O. Arik and T. Pfister, ‘‘TabNet: Attentive interpretable
tabular learning,’’ 2019, arXiv:1908.07442. [Online]. Available:
http://arxiv.org/abs/1908.07442

[3] J. Bergstra, D. Yamins, and D. Cox, ‘‘Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision archi-
tectures,’’ in Proc. Int. Conf. Mach. Learn., 2013, pp. 115–123.

[4] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, ‘‘The million
song dataset,’’ in Proc. 12th Int. Conf. Music Inf. Retr. (ISMIR), 2011.

[5] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[6] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
Regression Trees. Boca Raton, FL, USA: CRC Press, 1984.

[7] O. Chapelle and Y. Chang, ‘‘Yahoo! learning to rank challenge overview,’’
in Proc. Learn. Rank Challenge, 2011, pp. 1–24.

[8] D. Che, Q. Liu, K. Rasheed, and X. Tao, ‘‘Decision tree and
ensemble learning algorithms with their applications in bioinformat-
ics,’’ in Software Tools and Algorithms for Biological Systems. New
York, NY, USA: Springer, 2011, pp. 191–199. [Online]. Available:
https://link.springer.com/content/pdf/10.1007/978-1-4419-7046-6.pdf

[9] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 785–794.

[10] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, ‘‘Modeling
wine preferences by data mining from physicochemical properties,’’Decis.
Support Syst., vol. 47, no. 4, pp. 547–553, Nov. 2009.

[11] D. Dua and C. Graff. (2017).UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

[12] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting
machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[13] N. Frosst and G. Hinton, ‘‘Distilling a neural network into a
soft decision tree,’’ 2017, arXiv:1711.09784. [Online]. Available:
http://arxiv.org/abs/1711.09784

[14] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[15] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep
recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645–6649.

[16] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[17] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[18] M. I. Jordan and R. A. Jacobs, ‘‘Hierarchical mixtures of experts and the
EM algorithm,’’ Neural Comput., vol. 6, no. 2, pp. 181–214, Mar. 1994.

[19] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
‘‘LightGBM: A highly efficient gradient boosting decision tree,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 3146–3154.

[20] G. K. Kumar, P. Viswanath, and A. A. Rao, ‘‘Ensemble of randomized soft
decision trees for robust classification,’’ Sādhanā, vol. 41, pp. 273–282,
Mar. 2016.

[21] A. Crimi, B. H. Menze, O. Maier, M. Reyes, S. Winzeck, and
H. Handels, Eds., ‘‘Brainlesion: Glioma, multiple sclerosis, stroke and
traumatic brain injuries,’’ in Proc. 2nd Int. Workshop, BrainLes, Chal-
lenges BRATS, ISLES mTOP, Held Conjunction (MICCAI), in Lecture
Notes in Computer Science, vol. 10154, Athens, Greece, Oct. 2016.

[22] Y. LeCun and C. Cortes. (2010). MNIST Handwritten Digit Database.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[23] A. Léon and L. Denoyer, ‘‘Policy-gradient methods for decision trees,’’ in
Proc. ESANN, 2016, pp. 1–6.

[24] R. Tanno, K. Arulkumaran, D. C. Alexander, A. Criminisi, and A. V. Nori,
‘‘Adaptive neural trees,’’ in Proc. 36th Int. Conf. Mach. Learn. (ICML), in
Proceedings of Machine Learning Research, vol. 97, K. Chaudhuri and R.
Salakhutdinov, Eds. Long Beach, CA, USA: PMLR, Jun. 2019, pp. 6166–
6175. [Online]. Available: http://proceedings.mlr.press/v97/tanno19a.html

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-
level control through deep reinforcement learning,’’ Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[26] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to
Linear Regression Analysis, vol. 821. Hoboken, NJ, USA: Wiley,
2012.

[27] E. A. Nadaraya, ‘‘On estimating regression,’’ Theory Probab. Appl., vol. 9,
no. 1, pp. 141–142, 1964.

[28] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted Boltz-
mann machines,’’ in Proc. ICML, 2010, pp. 1–8.

[29] A. Onan, ‘‘A fuzzy-rough nearest neighbor classifier combined with
consistency-based subset evaluation and instance selection for auto-
mated diagnosis of breast cancer,’’ Expert Syst. Appl., vol. 42, no. 20,
pp. 6844–6852, Nov. 2015.

[30] A. Onan, S. Korukoğlu, and H. Bulut, ‘‘Ensemble of keyword extraction
methods and classifiers in text classification,’’ Expert Syst. Appl., vol. 57,
pp. 232–247, Sep. 2016.

[31] A. Onan, S. Korukoğlu, and H. Bulut, ‘‘A multiobjective weighted vot-
ing ensemble classifier based on differential evolution algorithm for
text sentiment classification,’’ Expert Syst. Appl., vol. 62, pp. 1–16,
Nov. 2016.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala, ‘‘Pytorch: An imperative style, high-performance
deep learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. VanderPlas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, ‘‘Scikit-learn: Machine learning in Python,’’ J.
Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2078195

[35] T. Qin and T.-Y. Liu, ‘‘Introducing LETOR 4.0 datasets,’’ 2013,
arXiv:1306.2597. [Online]. Available: http://arxiv.org/abs/1306.2597

[36] G. Ridgeway, ‘‘Generalized boosted models: A guide to the GBM pack-
age,’’ Update, vol. 1, no. 1, p. 2007, 2007.

[37] S. Rota Bulo and P. Kontschieder, ‘‘Neural decision forests for semantic
image labelling,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 81–88.

[38] V. Sandulescu and M. Chiru, ‘‘Predicting the future relevance of
research institutions–the winning solution of the KDD cup 2016,’’
2016, arXiv:1609.02728. [Online]. Available: http://arxiv.org/abs/
1609.02728

[39] D. F. Specht, ‘‘A general regression neural network,’’ IEEE Trans. Neural
Netw., vol. 2, no. 6, pp. 568–576, Nov. 1991.

[40] A. Suarez and J. F. Lutsko, ‘‘Globally optimal fuzzy decision trees for
classification and regression,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 21, no. 12, pp. 1297–1311, Dec. 1999.

[41] R. Tanno, K. Arulkumaran, D. C. Alexander, A. Criminisi, and
A. V. Nori, ‘‘Adaptive neural trees,’’ in Proc. Mach. Learn. Res. (ICML),
vol. 97. PMLR, 2019, pp. 6166–6175.

[42] T. M. Therneau and P. M. Grambsch, ‘‘The Cox model,’’ in Modeling
Survival Data: Extending the Cox Model. Springer, 2000, pp. 39–77.

[43] C.-F. Tsai, Y.-C. Lin, D. C. Yen, and Y.-M. Chen, ‘‘Predicting stock
returns by classifier ensembles,’’ Appl. Soft Comput., vol. 11, no. 2,
pp. 2452–2459, Mar. 2011.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[45] S. Vijayakumar and S. Schaal, ‘‘Locally weighted projection regression:
An o(n) algorithm for incremental real time learning in high dimensional
space,’’ in Proc. 17th Int. Conf. Mach. Learn. (ICML), vol. 1, 2000,
pp. 288–293.

56010 VOLUME 9, 2021

H. Luo et al.: SDTR for Tabular Data

[46] M. Volkovs, G. W. Yu, and T. Poutanen, ‘‘Content-based neighbor models
for cold start in recommender systems,’’ in Proc. Recommender Syst.
Challenge, 2017, pp. 1–6.

[47] Y. Yang, I. Garcia Morillo, and T. M. Hospedales, ‘‘Deep neural
decision trees,’’ 2018, arXiv:1806.06988. [Online]. Available:
http://arxiv.org/abs/1806.06988

[48] O. T. Yíldíz, O. I. Rsoy, and E. Alpaydín, ‘‘Bagging soft decision trees,’’
in Proc. JMLR Workshop Conf. Brookline, MA, USA: PMLR, 2016,
pp. 25–36.

[49] Z.-H. Zhou and J. Feng, ‘‘Deep forest: Towards an alternative to deep
neural networks,’’ in Proc. 26th Int. Joint Conf. Artif. Intell., Aug. 2017,
pp. 3553–3559.

[50] L. O. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
‘‘CatBoost: Unbiased boosting with categorical features,’’ in Proc. Annu.
Conf. Neural Inf. Process. Syst. (NeurIPS), S. Bengio, H. M. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.
Montréal, QC, Canada, Dec. 2018, pp. 6639–6649. [Online]. Available:
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c
24863285549-Abstract.html

HAORAN LUO was born in Fujian, China,
in 1996. He received the B.S. degree from
Shanghai Jiao Tong University, Shanghai, China,
in 2018, where he is currently pursuing the M.S.
degree in computer science.

From 2018 to 2019, he was an Intern with
Bosch (China) Investment Company Ltd. From
2019 to 2020, he was an Intern with the Algo-
rithm Department, 360 Digitech Inc., Shanghai.
His research interests include machine learning,

ensemble learning, and generative models.

FAN CHENG (Member, IEEE) received the bach-
elor’s degree in computer science and engineer-
ing from Shanghai Jiao Tong University, in 2007,
and the Ph.D. degree in information engineering
from The Chinese University of Hong Kong, in
2012. From 2012 to 2014, he was a Postdoctoral
Fellow with the Institute of Network Coding, The
Chinese University of Hong Kong. Since 2015, he
has been a Research Fellow with the Department
of ECE, NUS, Singapore. He joined the faculty of

the Department of Computer Science and Engineering, Shanghai Jiao Tong
University, in 2016.

HENG YU (Graduate Student Member, IEEE)
was born in Anhui, China, in 1997. He received
the B.S. degree from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2018, where he is
currently pursuing the M.S. degree in computer
science.

He was an Algorithm Intern with the Artifi-
cial Intelligence Department, Xiaomi Corporation,
Beijing, in 2018. From 2019 to 2020, he was an
Intern with the Algorithm Department, 360 Dig-

itech Inc., Shanghai. His research interests include unsupervised learning,
natural language processing, and computational advertising theory.

YUQI YI (Student Member, IEEE) was born
in Hunan, China, in 1996. He received the
B.S. degree from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2019, where he is
currently pursuing the M.S. degree in computer
science.

He was an Algorithm Intern with the YouTu
Department, Tencent, Shenzhen, in 2018. He
was an Intern with the Anti-Fraud Department,
360 Digitech Inc., Shanghai. From 2020 to 2021,

he was an Intern with the Recommendation Department, Bytedance, Shang-
hai. His research interests include data mining, fraud detection, and recom-
mendation systems.

VOLUME 9, 2021 56011

