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ABSTRACT Environmental issues can cause changes in source water availability in water distribution
networks (WDNs). Thus, an efficient connection between the source and consumers is important for securing
water serviceability, which can generally be achieved by minimizing energy losses. In this study, a novel
two-phase design (TPD) model is proposed to design an energy-efficient WDN by maximizing a hydraulic
geodesic index (HGI), which is the weighted shortest path from the source to the demand node. Before
applying the TPD model for WDN design, a correlation analysis between the system HGI, hydraulic
performance, and graph theory indices is conducted using 33 J-City networks to verify the proposed HGI.
Next, the TPD model is used to determine the optimal layout of the grid network (Phase I). Based on this
layout, the optimal diameter set is identified in Phase II. The TPD is thereafter compared with the traditional
single-phase design (SPD) model, which determines the optimal layout and diameter simultaneously, and
a least-cost model for each phase in the grid network layout and pipe-sizing problem. The correlation
analysis clearly indicates that the system HGI with the weighted graph theory successfully determines the
hydraulic performance without any hydraulic analysis. Furthermore, TPD is advantageous for designing
energy-efficient, hydraulically and structurally sustainable, and resilient networks, as compared to SPD and
the least-cost model. The TPDmodel is expected to provide a better opportunity to prepare for extreme water
availability changes by enhancing the hydraulic performance and efficiency through a better connection
between the source and nodes.

INDEX TERMS Connectivity, energy efficiency, graph theory, resilience, sustainable development.

I. INTRODUCTION
A water distribution network (WDN) requires pipes, valves,
and pumps to connect consumers with distant water sources.
Fresh water is essential for humans; therefore, the connection
should be maintained through proper WDN management.
However, emerging environmental issues, such as climate
change and extreme drought, may cause significant changes
in the availability of water fromwater sources. This decreases
the available volume and total head of water in the sources
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(generally the point with the maximum potential energy);
thus, the resultant potential energy used to deliver according
to customer demands may be less than that under normal
conditions [1]. Under these circumstances, an efficient con-
nection between the source and consumers is important to
secure the serviceability of a WDN, which can generally
be achieved by minimizing energy losses [1]–[3]. However,
the determination of such a connection is challenging because
of the complexity of the network connection and locations
of assets (e.g., pipes, pumps, and valves) and the source
(e.g., reservoir) [4]–[6]. Furthermore, as the WDN perfor-
mance significantly depends on the network topology [4], [7],
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such topological complexity and dependence highlight the
necessity of an innovative approach to system design and
analysis [8].

The WDN topology can be simply regarded as a large pla-
nar graph [9], [10]; accordingly, graph theory (GT) has been
introduced into WDN topology analysis [5]. GT explores the
relationship between the structural properties and the eigen-
values and eigenvectors of the corresponding matrices [11].
GT has been widely applied in various areas, including data
analysis [11]–[13], communication [14], [15], traffic net-
works [16], [17], and energy networks [18], [19]. Typically,
GT represents a network in amathematical graph as G=G(V,
E), where V denotes vertices (e.g., demand nodes, reservoirs,
and tanks in a WDN) with n elements, and E represents
edges (e.g., pipes, pumps, and valves in a WDN) with m
elements [5]. Each edge has a pair of vertices (i, j), where
i 6= j; i, j ∈ V; and i and j are neighbors [9].

In the early phase of application, the GT has been utilized
as a surrogate measure of WDN connectivity and reliabil-
ity for network design [6]. Kessler et al. [20] introduced
a GT-based algorithm for WDN design in their pioneer-
ing study in 1990. Following their work, many GT-based
investigations have been conducted, including studies that
focused on WDN design [6], [21]–[24], critical WDN com-
ponent identification [9], [25], [26], and WDN partitioning
[27]–[30]. Some studies have also focused on the funda-
mental interrelation among GT indices (GTIs) relative to
hydraulic performance [25], [26], [31]–[33] or network char-
acteristics (e.g., network size) [34], [35].

In GT, classifications can be made based on whether
the edges are directed and/or the edges and vertices are
weighted [3], [10], [36]. In previous studies, undirected and
unweighted graphs were commonly applied. However, a few
researchers have argued that a directed and weighted graph is
more suitable for representing the WDN behavior according
to the flow rate and direction of pipes as well as the elevation
and demand of nodes [3], [10], [32], [36]. For example, if a
network experiences extreme water availability changes due
to a severe drought in the upstream of a service area (e.g., a
50% decrease in water volume delivered and stored in two
reservoirs that supply the network), the hydraulic conditions
within the network will change significantly. Changes in the
distribution and direction of pipe flow rates affect the head
losses and nodal pressures. Such transitions cannot be cap-
tured with undirected and unweighted graphs; thus, a directed
and weighted graph should be adopted to reflect the changes
and take into account accurate network connectivity. Such
limitations of unweighted and undirected GTIs have been
recognized by Jung andKim [24], especially forWDNdesign
problems.

A few examples of directed and weighted graphs have been
introduced. Yazdani and Jeffrey [37], for example, adapted
a directed weighted graph to be used for a WDN or to be
applied to vulnerability analysis using the demand-adjusted
degree of entropy. The water-flow closeness and K-shortest
path introduced by Herrera et al. [32] are other examples of

weighted graphs. These indices determine whether the con-
nection of the demand node from the source is appropriate.
Lee and Jung [3] proposed the concept of the source-to-node
shortest path (SNSP) as an alternative measure to deter-
mine connectivity. In contrast to other measures, the SNSP
approach deals with direct connections between the source
and demand nodes and considers the efficiency of each con-
nection.

Generally, WDN design studies focus on economic solu-
tions while meeting additional criteria (e.g., minimum pres-
sure, water quality, resilience, robustness, energy efficiency,
etc.) [38]–[42]. However, most of the WDN design stud-
ies assumed that the layout of the WDN was fixed (or
known) and determined the diameter of each pipe in the
network. This assumption may provide a feasible solution
but may fail to find better options by limiting the search
space [43]. A few studies have focused on the WDN lay-
out [44] or layout and diameter simultaneously [45]–[47].
However, these studies considered the WDN layout as an
additional factor; therefore, they determined the layout and
diameter simultaneously. Moreover, the effectiveness of the
design has not been explored thoroughly, particularly from
the perspective of energy efficiency. In addition, to the
best of the authors’ knowledge, the feasibility of weighted
GTI to WDN layout and diameter design has not yet been
discussed.

Therefore, this study introduces a two-phase design (TPD)
model for WDNs using a hydraulic geodesic index (HGI),
which was developed to minimize energy dissipation and to
prepare for extreme water availability changes. The HGI is
a new weighted GTI, which is the shortest weighted path
from the source to the demand node. In other words, HGI
can be used for WDS designing problem by overcoming
the limitations of the unweighted GTI, as recognized by
Jung and Kim [24]. The optimal layout is determined through
Phase I of the TPD model using the system HGI (SHGI),
while the model used in Phase II identifies the optimal diam-
eter set for the optimized layout. The proposed model is first
validated by conducting a correlation analysis between the
proposed HGI, the hydraulic performance index (HPI), and
the GTI using 33 real WDNs with varying characteristics in
J-City, South Korea. The proposed TPD model demonstrates
the optimal layout and diameter design of the grid network
in B-City, South Korea. To identify the benefit of using the
proposed TPD model for a WDN layout design, the optimal
layout results of the model are compared with those of the
layouts obtained using a least-cost model; thus, the total con-
struction cost (TC) is minimized. In addition, the least-cost
objective single-phase design (SPD)model, which simultane-
ously determines the optimal layout and diameter, is applied
to the same grid network to investigate the performance of the
proposed TPD model.

II. TERMINOLOGY
Several indices were considered in this study. To avoid confu-
sion, the indices and their hierarchical relationships are sum-
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FIGURE 1. Summary of indices used in this study and their relationship.

marized and described in Fig. 1. A GTI indicates a network’s
topological characteristics but does not consider hydraulic
performance or other factors. It includes algebraic connec-
tivity (AC), average node degree (AND), average path length
(APL), link density (LD), meshedness coefficient (MC), and
spectral gap (SG) [48]. In contrast, an HPI is quantified as a
result of hydraulic analysis and includes indexes determining
system resilience, such as the resilience index (RI) [49], net-
work resilience index (NRI) [50], modified resilience index
(MRI) [51], and energy efficiency (EE) [2]. The details of
each indicator are described in the following sections. The
proposed HGI, associated with the intersection between the
GTI and HPI, applies the aspects of both indicators (Fig. 1).
This indicates that HGI can take advantage of both indicators,
specifically, the simplicity of calculation of GTI and the
prediction of system hydraulics of HPI.

In GT, the term ‘‘geodesic’’ indicates the shortest path and
is commonly employed to quantify GTIs, such as the network
diameter or radius [33], [34]. The term ‘‘hydraulic geodesic’’
(HG) does not indicate the shortest physical Euclidian path,
but uses the geodesic concept to represent the shortest
hydraulic path (i.e., degree of energy dissipation between two
nodes).

FIGURE 2. Proposed hydraulic geodesic index and two-phase model with
model application workflow.

III. METHODOLOGY
In this study, a TPD model for a WDN layout and diameter
optimization was developed by introducing a new GT-based
HGI (Fig. 2). Details of the HGI and design model, as well as
the background of the HPI and GTI applied in the present
study are also described. For all optimizations, a revised
harmony search (ReHS) was applied [52].

A. HYDRAULIC GEODESIC INDEX
When analyzing a WDN as a planar graph, it is important to
focus on the connections between the sources and demand
nodes rather than on the connectivity between any two arbi-
trary nodes [5], [53]. In this paper, the HG is proposed to
consider the strength of the hydraulic connection when calcu-
lating the shortest pathway between the sources and demand
nodes. Here, the hydraulic connection strength indicates a
lower head loss (or energy loss) between the source and
demand nodes. Although the head loss in a pipe is propor-
tional to the physical Euclidean distance (i.e., pipe length),
a longer water path length should be assigned to a node for
which the upstream pipes have high head losses due to aging.
To consider the hydraulic factors in determining the shortest
path length, the weighted pipe length (w) for each pipe is
first calculated from the Hazen–Williams head loss equation.
However, because the HG does not involve hydraulic analysis
(i.e., the flow rate is unknown), only the resistance coefficient
of the head loss equation is considered as the weight, which
is the product of the normalized roughness coefficient, nor-
malized pipe diameter, and normalized pipe length.

wi = 4.727 � (norm Ci)−1.852 � (norm Di)−4.871 � norm Li,

(1)

where norms Ci, Di, and Li are the normalized Hazen–
Williams roughness coefficient (C factor), the normalized
diameter, and the normalized length of the ith pipe, respec-
tively. The maximum value of each parameter was used to
normalize the weight between 0 and 1. NormCi is normalized
by the maximum C factor of a pipe, whereas norms Di and Li
are normalized based on network-wide maximum values.

The C factor can be considered as a static parameter [54]
unless maintenance activities are employed to restore it.
Estimating the C factor usually requires a large amount of
data [54], [55], and an empirical equation based on only
a few parameters is often useful for estimating the C fac-
tor [38], [51], [56]. In terms of practical applications, this
simplification plays a major role in engineering judgment.
The following empirical equation was used in this study [57]:

Ci = 18.0− 37.2log
(
e0 + at
Di

)
, (2)

where e0 is the initial roughness (mm); a is the roughness
growth rate (mm/year); and t is the number of years after
installation; thus, C is maximum when t = 0. The pipe
roughness varies over time at a rate that depends on the
pipe materials, water quality, and pipe linings [57], [58].
In this study, e0 and a are set to 0.18 mm and 0.4 mm/year,
respectively [38]. The C factor calculated by the empirical
equation generally provides a reliable estimation and supports
the decision for engineering judgment; therefore, it can be
used for SHGI calculation.

Among the multiple pathways from the source to each
node, HG is the pathway with the least weight summation
(from (1)). It is calculated using Dijkstra’s algorithm, which
determines the shortest path between two nodes [59]. One of
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the two nodes is usually the source of the HG calculation.
Although the HG can exceed 1, a higher value represents
a weak connection (i.e., higher energy dissipation) with the
source. Thus, the shortest pathway determined using Dijk-
stra’s algorithm was the preferred pathway. For better intu-
itiveness (a higher value indicates a better result), the inverse
of HG is proposed and defined as the HGI as follows:

HGI k =
1

(HGk/minHG)
, (3)

where HGI k is the HGI of the kth node; HGk is the HG of
the kth node; and min HG is the minimum HG throughout
the network. Here, min HG is applied to normalize all the
values of HGI k between 0 and 1. It should be noted that
HG is independently determined for an individual node; thus,
the shortest paths are not necessarily identical if the nodes
are adjacent to multiple shortest paths in the area. As the
HGI is normalized using min HG, a higher HGI indicates a
better connection from the source in terms of energy dissipa-
tion, and therefore a higher possibility of enduring extreme
changes in the source. Finally, the average HGI k is defined
as the system HGI (SHGI).

SHGI = Avg(HGI k ), (4)

where Avg(·) is the average value. An energy-efficient net-
work design can be obtained by maximizing the SHGI, as a
higher SHGI implies that a system has a better connection
(i.e., lower energy dissipation).

B. HGI-BASED TWO-PHASE DESIGN MODEL
In this study, a TPD model was developed considering the
SHGI. The TPD model for Phase I (Phase I model) deter-
mines the optimal network layout of theWDNbymaximizing
SHGI (F1). The objective function and constraints for opti-
mization are as follows:

Maximize F1 = (SHGI |LOa) , (5a)

Subject to Pmin ≤ Pk , k = 1, · · · , n, (5b)

where LOa is the network layout condition when all pipes
are installed at all candidate locations; Pmin is the minimum
pressure requirement; and Pk is the pressure at the kth node.
Note that candidate locations indicate all possible locations
where pipes can be buried based on the locations of the
demand node and their adjunct demand nodes.

The decision variable for the Phase I model is the pipe
status, that is, closed or open, and the hydraulic constraints
(Pmin) of the determined layout (based on pipe status) were
checked through the hydraulic analysis program EPANET
2.0 [60]. Therefore, the Phase I model determines the status of
all possible connections based on the location of each node in
the WDN. From a practical standpoint, the closed pipe status
indicates no pipe installation at the location.

The TPD model for Phase II (Phase II model) is a TC-
constrained pipe-sizingmodel that seeks the optimal diameter
set to maximize the SHGI (F2), given the optimal layout

derived from Phase 1 ( LO1). Pareto optimal solutions were
obtained by independently utilizing the proposed model for
different TC values. Note that such a TC can be considered
a limited budget for the design. The TC is calculated using
a pipe cost model [61] that utilizes the parameter values
determined by Jung et al. [62]. The objective function and
constraint are expressed as follows:

Maximize F2 = (SHGI |LO1) , (6a)

Subject to Min (TC)× α ≤ TCx , (6b)

Pmin ≤ Pk , k = 1, · · · , n, (6c)

where Min(TC) is the minimum cost of the optimal layout
determined from Phase I (LO1); α is the cost multiplier;
and TCx is the total cost of the set x of decision variables.
Min(TC) is obtained through the pre-optimization of the pipe
diameter of LO1 with the objective of minimizing TC, and
the model is defined as the least-cost pipe-sizing model.
Thereafter,Min(TC) is utilized as the baseline for the Phase II
model in maximizing the SHGI with a limited budget, which
varies based on α.

C. HYDRAULIC PERFORMANCE INDICES
AGT analysis generally does not require a hydraulic analysis;
this is particularly advantageous when a complex hydraulic
analysis is involved. However, this also produces ambigu-
ity in the hydraulic performance of a WDN and increases
problems regarding possible unsatisfactory hydraulic require-
ments (e.g., minimum pressure and velocity) [24]. To explore
the relationship between the proposed HGI and hydraulic
performance, four indices (three hydraulic-analysis-based
resilience indices, RI, and two other modified versions,
i.e., the NRI, MRI, and EE) were applied. These HPIs are
selected as they all consider the energy of the network while
involving the concept of resilience. The resilience of WDNs
has received considerable attention owing to uncertainties in
disturbances and stochastic failures following such distur-
bances [63]. Therefore, improving resilience improves the
preparedness of the network toward various disturbances.
The RI is a fraction of the available energy surplus at

the nodes over the maximum energy surplus in the network,
which is internally dissipated to satisfy the demand and
head required at the nodes. Prasad and Park [50] revised
the RI to be used as a system NRI by adding a uniformity
parameter to represent the loop system reliability. Jayaram
and Srinivasan [51] also proposed an MRI based on Todini’s
50 RI to extend its applicability to a WDN with multiple
sources. Finally, the EE is calculated from the ratio of the
energy delivered at the nodes to the energy supplied from the
sources [2]. The EE is selected because it is based on the law
of conservation of energy and is an indirect measure of the
dissipated energy [2]. Therefore, when the energy dissipation
between the source and nodes is low, a high EE value is
obtained. The aforementioned four indices were utilized to
evaluate the effectiveness of the proposed HGI in predicting
changes in hydraulic performance.
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D. GRAPH THEORY INDICES
Numerous GTIs have been used to measure the topolog-
ical characteristics of WDNs. The GTI used for a WDN
can be classified as either statistical or spectral. Statistical
measures quantify the organizational properties of a network
based on the most frequent motifs and structural patterns and
relate them to network robustness [10]. The spectral measures
derived from the spectrum of the network adjacency matrix
quantify the network invariants. These invariants, when con-
sidered along with the described statistical measurements,
reveal useful information regarding the quality of connect-
edness, connectivity strength, and failure tolerance of the
network (link and node connectivities) [10].

Six unweighted GTIs were selected to investigate the nov-
elty of the proposed HGI: AC, AND, APL, LD, MC, and
SG. AC represents the strength among the connections in the
network, and a larger AC implies a stronger connection. AND
quantifies the average number of connections per node and
provides immediate information regarding network organiza-
tion; a larger AND implies a more organized network. APL
is similar to HG but differs by considering possible network
pathways among all nodes rather than from the source to
nodes; a smaller APL usually indicates a more robust net-
work. LD provides information regarding the general con-
nection among graph nodes in terms of ‘‘inclusivity’’ [36];
a larger LD is preferable [9]. The MC evaluates the AC
in measuring the fraction between the actual and maximum
possible numbers of network loops. A larger MC indicates
that there are more loops in a network, which is interpreted
as beingmore redundant [5]. SGmeasures the strength of net-
work connectivity and provides valuable information regard-
ing bottlenecks, articulation points, or bridges; a larger SG
indicates a more robust network [64]. The general trends of
each GTI are utilized to investigate how the HGI develops
the topological characteristics of a WDN when employed in
design.

E. REVISED HARMONY SEARCH
For all optimizations, the ReHS was applied [52]. ReHS is
different from the original HS [65] because of changes in
the harmony memory considering rate (HMCR) and pitch
adjusting rate (PAR) across the iterations used to dynamically
balance between exploration and exploitation, and changes to
the number of solutions in the harmony memory (HM) to be
replaced by the HMCR and PAR values. During the earlier
iterations, high HMCR and low PAR values increase the
search speed in finding the global optimum. As the iterations
progress, the HMCR decreases, whereas the PAR increases,
avoiding local optima and more quickly finding the global
optimum. The HMCR and PAR for each iteration are updated
as follows:

HMCRiter =HMCRmax−(HMCRmax−HMCRmin)

×
iter − 1

itermax − 1
, (7)

PARiter =PARmin+(PARmax−PARmin)
iter − 1

itermax − 1
, (8)

where HMCRiter is the HMCR at iterations; HMCRmax and
HMCRmin are the maximum and minimum HMCR; itermax
is the maximum number of iterations; PARiter is the PAR
at iterations; and PARmax and PARmin are the maximum and
minimum PAR, respectively.

For each iteration, the amount of HM replaced by the
HMCR and PAR can be calculated as follows:

NHMCR,iter = HMS × (1.0− HMCRiter ), (9)

NPAR,iter = HMS × PARiter , (10)

where NHMCR,iter is the number of new HMs in which
the HMCR will apply; NPAR,iter is the number of new
HMs in which the PAR will apply; and HMS is the size
of the HM. In this study, an HM of 100, HMCRmax and
HMCRmin of 0.95 and 0.3, respectively, and PARmax and
PARmin of 0.03 and 0.3, respectively, are considered for all
optimizations.

IV. STUDY NETWORK
The proposed TPD model was first applied to 33 WDNs in
J-City (J-City networks), South Korea, to validate the HGI
by conducting a correlation analysis between HGI and HPI
or GTI. Then, a TPD model was demonstrated with the
grid network in B-City, South Korea. Fig. 3 illustrates five
representative J-City networks and a grid network with all
possible connections. The TPDmodel was built on the Python
platform, the SciPy package was used to calculate the SHGI
and all other GTIs [66], and the HPI was evaluated based on
the EPANET simulation.

FIGURE 3. Schematic of (a) JK35, (b) CM73, (c) CM62, (d) CM61,
(e) IH51 J-City networks, and (f) grid network.

The following subsections describe the network details and
case studies.
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A. J-CITY NETWORKS
The TPD model was first applied to 33 J-City networks,
which have a near-grid structure (Fig. 3). The number of
nodes varied from 14 to 181, whereas the number of pipes was
between 12 and 124. The network length is approximately
8500 km on average, and the average network demand is
approximately 27.7 lps. All networks have a minimum pres-
sure head requirement of 15 m (= 21 psi), whereas a single
source supplies water to the network.

Pearson correlation analyses were conducted to check the
level of linear relationship between the proposed SHGI and
other indicators (Table 1), that is, between the SHGI and HPI
(PCC#1), between the HGI and node hydraulic parameters
(pressure or pressure head, PCC#2), between the SHGI and
GTI (PCC#3), and between the SHGI and network topolog-
ical characteristics (e.g., the number of links and nodes, and
the total length of links; PCC#4). The impact of pipe aging on
PCC#1 was investigated by increasing t from 0 to 50 years in
(2) and decreasing the C factor in (1), and PCC#1, PCC#3,
and PCC#4 were quantified under two different weighting
conditions (i.e., weighted with wi 6= 1 and unweighted with
wi = 1).

B. GRID NETWORK
The developed TPD model was demonstrated using a grid
network (Fig. 3(f)) [67]. The network comprises a maximum
of 61 pipes, (each 2000-m long) with a total of 36 nodes
and is gravity-fed from a single source with a total head
of 80 m. The demand nodes (all at the same elevation) are
located within a 6 × 6 grid topology, and each demand node
requests 94.7 lps, with a total network demand of 3409 lps.
The C factor was 120 for all pipes, and the minimum pressure
requirement was 28 m (= 40 psi).
First, the Phase I model was applied to identify the optimal

layout of the grid network, which was compared to the net-
work identified using the least-cost layout model. Although
the least-cost layout model was applied to minimize the TC,
the constraints and other optimization conditions were identi-
cal for bothmodels. A uniform pipe diameter of 2000mmwas
used to minimize the impact of hydraulic performance due to
a small diameter; accordingly, only the optimal pipe locations
were determined through Phase I optimizations. The resulting
layouts were then compared to their topologies, that is, the
SHGI, GTI, and performance HGI. A convergence test was
conducted to select a reasonable number of optimal layout
generations because slightly different layouts and indicator
values can be obtained from each phase I optimization run.
We confirmed that 1000 independent phase I optimizations
were required to provide a sufficiently converged indicator
value.

Next, the Phase II model determines the optimal diameter
set based on the layout determined from Phase I. The pro-
posed TPD model runs Phases I and II as a serial application.
Sixteen commercial pipe diameters (i.e., 50, 100, 200, 300,
400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800,

TABLE 1. Summary of correlation analysis scenarios.

and 2000 mm) were considered as candidates. Independent
Phase II optimizations were performed by varying the cost
multiplier, α [see (6b)] from 1.2 to 2.0 at 0.2 increments.
Again, these indicate the budget limit for WDN design and
help to identify the marginal cost of the WDN design. The
TPD model results were compared with those of the SPD
model, which simultaneously determined the layout and pipe
diameters in a single optimization run by minimizing the TC.
The SPD model represents the traditional approach for deter-
mining the optimal layout and diameter of the WDN. The
SPD model also uses ReHS for optimization, as described in
Section III. The resulting optimal design solutions were also
compared with respect to their hydraulic performance under
fire flow and different demand conditions. We assumed that
a fire flow of 63.09 lps (= 1000 gpm) occurs at a demand
node located in the northeast corner of the network [dashed
circled node in Fig. 3(f)]. Four different demand scenarios
were used for the fire flow test (uniform demand multipliers
were 1.0, 1.2, 1.5, and 1.8), and the minimum pressure head
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requirement of 14 m (= 20 psi) was applied in the result
analysis according to Utah Administrative Codes R309-510-
9 [68] and Utah Administrative Codes R309-105-9 [69]. The
advantage of applying the TPD model for a WDN layout and
diameter design was verified by examining the marginal cost
of the design, pipe diameter, and flow distribution.

TABLE 2. Summary of PCC#1 scenario results for single pipe failure
simulation.

V. APPLICATION RESULTS
A. CORRELATION ANALYSIS
Table 2 summarizes several statistics (i.e., maximum, min-
imum, average, and standard deviations) of PCCs obtained
from 33 J-City networks (PCC#1). For the PCC calculation,
each pipe in each network was closed to simulate single-pipe
failure conditions, and the corresponding HPI and SHGI
results were collected. The HPI exhibits an average PCC
value of more than 0.9, and a minimum as low as 0.61 for the
MRI. In particular, it can be confirmed that the SHGI is signif-
icantly related to the EE. A comparison of the weighted SHGI
to the unweighted SHGI (values in parentheses in Table 2 )
showed that the weighted approach has an improved correla-
tion with other HPIs compared to the unweighted approach.

FIGURE 4. Box-and-whisker graphs of PCC#1 scenario results for new
and aged pipe scenarios; numbers 0 and 50 indicate pipe age (years) in
network.

Fig. 4 shows the box-and-whisker plots drawn using the
correlation analysis results of the network with new pipes
and 50-year-old pipes (identified by 0 and 50 in the figure,
respectively) to determine the impact of pipe aging (decreas-
ing C factor) on the PCC between the SHGI and HPI. As the
pipes age, the PCC variance increases, while the average PCC
decreases.

The correlation between the HGI and the two nodal
hydraulic parameters (i.e., pressure and total head) was iden-
tified using PCC#2. The correlation between the two param-
eters (PCC values of 0.08 and 0.35 for nodal pressure and
total head, respectively; not shown in the tables and figures)
was found to be low because the HGI was not quantified
based on hydraulic simulation; it was quantified according
to the topological connection and weight [see (1)] and did
not consider the weight based on the nodal element (e.g.,
elevation, demand, etc.). For a similar reason, a low PCC was
found in a network with a high spatial variation in the nodal
hydraulic characteristics in PCC#1.

TABLE 3. Summary of PCC#3 and PCC#4 scenario results.

Table 3 summarizes the correlation analysis results of
PCC#3 (between the SHGI and six GTIs) and PCC#4
(between the SHGI and eight network topological character-
istics). The PCC#3 results indicate that the weighted SHGI
has a low correlation with the GTI, whereas the unweighted
SHGI has a high correlation (either positive or negative)
with most of the GTIs. This is because the GTI is based
on an unweighted graph; thus, the similarity between the
unweighted SHGI and GTI was higher. For a similar reason,
the unweighted SHGI has a higher correlation with the net-
work topological characteristics than the weighted SHGI in
PCC#4. SHGI is a new indicator based on GT; these results
highlight the novelty of SHGI by exhibiting its differences
from other GTIs.

The multivariate linear regression model using topological
characteristics as independent variables and SHGI as a depen-
dent variable yielded an R2 value of 0.735 and a p-value less
than 0.05; the total length of the links, average diameter, and
average elevation were considered as the parameters.

The PCC results indicate that the proposed SHGI is more
similar to the HPI than to the GTI, although its calcula-
tion is considerably more similar to that of the latter than
that of the former (i.e., path length calculation based on
network connectivity), except when considering weight (1).
An energy-efficient and resilient network can be constructed
by maximizing the SHGI, which is highly correlated with
EE and system resilience. It is therefore concluded that the
proposed SHGI suitably reflects the hydraulic network per-
formance even without a time-consuming hydraulic analysis
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and may be useful in actual practice, particularly when the
network experiences extreme water availability changes.

B. PHASE 1: LAYOUT DESIGN
An optimal layout of a grid network was first identified using
the Phase I model, and then compared to the layouts obtained
using.

FIGURE 5. Optimal layouts of least-cost and Phase I models. (a) Minimum
SHGI layout from least-cost model (TC-minSHGI), (b) maximum SHGI
layout from least-cost model (TC-maxSHGI), (c) most frequent optimal
layout solution from Phase I model (SHGI-looped layout), and (d) pipe
number-constrained layout from Phase I model (SHGI-branched layout).

Figs. 5(a) and (b) show the layouts obtained from the
least-cost model with the minimum (TC-minSHGI) and max-
imum (TC-maxSHGI) SHGI values, respectively. The most
inexpensive solutions tend to minimize the number of pipes
and create a branched networkwith a single longwater supply
line. All 1000 least-cost layout solutions have 36 pipes (the
minimum number required to connect all demand nodes).
Thus, all the least-cost layout solutions have the same TC
regardless of the layout, while the SHGI value is different
for each solution, that is, a maximum of 0.21 [TC-maxSHGI,
Fig. 5(b)], a minimum of 0.13 [TC-minSHGI, Fig. 5(a)], and
an average of 0.17.

Fig. 5(c) shows a representative optimal layout (SHGI-
looped layout) determined using the Phase I model; the HPI,
and GTI are approximated averages, as listed in Table 4.
In contrast to the least-cost layout, the Phase Imodel produces
a looped network with 46.95 pipes on an average [minimum
and maximum of 40 and 55, respectively; 47 pipes are shown
in Fig. 5(c)]. The construction of a looped network has an
advantage over a branched network with respect to HGI and
SHGI. While a node-optimal short water supply path can be
developed in the former, few overlapping paths should be
shared between the upstream and downstream nodes in the
latter, which results in greater energy dissipation at higher
flow rates. The phase I model that is used to maximize the
SHGI therefore yields a dense looped layout with the highest

TABLE 4. Summary of average outcomes of indices for (a) Phase I model
(shgi-looped layout); (b) Phase I model with number of pipe constraints
(shgi-branched layout); (c) Least-cost model.

available SHGI (0.22) in the grid network. A branched net-
work (SHGI-branched) was obtained, as shown in Fig. 5(d)
through Phase Imodel optimization as well as by constraining
the number of pipes to the minimum possible value (i.e., 36).

FIGURE 6. HGI difference between (a) SHGI-branched layout and
TC-minSHGI, and (b) SHGI-branched layout and TC-maxSHGI. Note that a
higher number indicates more benefits in terms of HGI.

For a fair comparison, the nodal HGI values in the SHGI-
branched with 36 pipes were compared with TC-minSHGI,
and TC-maxSHGI to calculate their differences (the for-
mer minus the latter), as shown in Figs. 6(a) and (b),
respectively. As expected, considerable differences between
SHGI-branched and TC-minSHGI were observed. Note
that discrepancies in the HGI between the SHGI-branched
and TC-maxSHGI [Fig. 6(b)] values only exist at the
nodes downstream of detour pipes (flow is supplied in an
energy-inefficient manner from the source-opposite to the
source-toward sides), as indicated by the dashed circle in
Fig. 5(b). This indicates that the Phase I model (i.e., SHGI-
based) creates a layout with a more efficient flow path than
the one from the least-cost objective by eliminating such
detours in the network. Based on the list in Table 4, it can be
confirmed that, on average, the Phase I model produces net-
works with higher HPIs and GTIs compared to the least-cost
model. Maximizing the SHGI increases these two indicators
and TC. The average TC of layouts (in the form of an SHGI-
looped) determined from the Phase I model is approximately
1.3 times higher than that of layouts from the least-cost model
because more pipes are installed (a uniform pipe size is used
in both models; see Table 4). Interestingly, the average TC
of the SHGI-branched is the same as that of the least-cost
model layouts because both have the same number of pipes.
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However, the SHGI of the SHGI-branched is higher than that
of the least-cost model layout, leading to higher HPI and GTI
values in similar ranges. The results of the SHGI-branched
summarized in Table 4 prove that the optimization of Phase I
with a cost constraint can result in maximum SHGI and HPI
values with a limited TC.

C. PHASE 2: PIPE SIZE DESIGN
The proposed TPD model was applied to determine the
optimal pipe diameter of the SHGI-looped [Fig. 5(c)] and
SHGI-branched [Fig. 5(d)] layouts using the Phase II model.
Before applying the Phase II model, the least-cost pipe-sizing
model was used for both layouts to identify the baseline cost
[Min(TC) using (6)] of the Phase II model. The baseline
costs for the SHGI-looped and SHGI-branched layouts were
US$ 50.40, and the distribution of the least-cost SHGI-looped
design was compared with that of the SPD model, which
determines both layout and diameter simultaneously with the
minimization of the TC as its single objective. The least-cost
SHGI-looped design produces a consistently higher pressure,
regardless of the demand scenarios considered, compared to
the SPD design.

FIGURE 7. SHGI results of parts of two-phase design model (Phase II
model) and single-phase design model corresponding to cost constraint.

Independent optimizations were conducted by varying α
in (6b), from which the Pareto fronts of the SHGI-looped and
SHGI-branched designs (using the TPD model) between the
TC and SHGI were derived and compared to those of the SPD
model (Fig. 7). The least-cost solutions of the TPD model
(Min(TC) design) are positioned in the lower-left corner of
Fig. 7. The SHGI-looped solutions clearly show that the
SHGI increases nonlinearly with the TC. The marginal cost
(i.e., TC required for an increase of 0.1 in the SHGI) varies
in the range of US$ 5.2–53.0 million from the least-cost
solution point of TC = US$ 50 million (lower left) to the
highest SHGI solution point of TC=US$ 100 million (upper
right), as shown in Fig. 7. In contrast, the Pareto front of
the SHGI-branched layout exhibits a weak nonlinearity; the
increase in α resulting from the SPD optimization does not
increase the SHGI, leading to a flat Pareto front. The maxi-
mum SHGI (0.368), which is considerably lower than that of
the SHGI-looped layout, was obtained by the SHGI-branched

layout at approximately α = 1.6. The SPD model did not
show any relationship between SHGI and TC and yielded the
lowest SHGI, regardless of the TC.

FIGURE 8. Phase II (a) diameter and (b) flow distribution results of
SHGI-looped (α = 1.2); (c) diameter and (d) flow distribution of
SHGI-branched layout (α = 1.2).

Fig. 8 shows the pipe diameter and flow results of the
SHGI-looped and SHGI-branched solutions when α = 1.2
and TC = US$ 60 million; these values return the best
marginal cost. The TPD model adopts two approaches to
maximize the SHGI: 1) installing a commercial pipe with a
maximum diameter (2000 mm) for the source; and 2) obtain-
ing the smallest possible HG value (shortest weighted path
length) at the nodes. The SHGI is the average value of the
nodal HGI, which is an inverse of the nodal HG divided by
min HG in the network. The min HG value is always calcu-
lated at the right downstream node of the source [Fig. 3(f)].
For the first approach, the length and roughness factor are
fixed [see (1)], and the diameter of the source pipe should
be maximized to reduce the minimum nodal HG. The maxi-
mum diameter in the TPD solutions increased from 1200 to
2000 mm as α increased from 1.0 to 2.0. For the second
approach, the pipe diameters were optimized to obtain the
smallest HG value possible at the downstream nodes in a
tree-like layout determined from Phase I [while satisfying the
pressure constraint in (6c)]. Therefore, the resulting design
exhibits a smooth decrease in pipe diameter from upstream
to downstream. Comparing the diameter distribution
[Figs. 8(a) and (c)] to the flow distribution [Figs. 8(b) and (d)],
we observe that a greater pipe flow is supplied through the
large pipes that pass through the middle of the upper and
lower parts of the network.

As expected, the least-cost SPD model tends to reduce
the number and diameter of pipes in the network. The
layouts obtained are similar to those of TC-minSHGI and
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FIGURE 9. Changes in HPIs of SHGI-looped layout. Note that the left
point is constrained at a ratio of 1.0; increment shifting to the right is 0.2.

TC-maxSHGI (Figs. 5(a) and (b), respectively), and no SHGI
increase can be observed in the SPD model solutions (Fig. 7)
when a considerable investment amount is available. More-
over, we found that the HPI of SPD solutions is similar to
that of SHGI-looped solutions with a low α. Fig. 9 illustrates
the changes in the HPI of an SHGI-looped layout in response
to different α values. Accordingly, it is demonstrated that
the TPD model is superior to the SPD model in generating
resilient and energy-efficient WDN designs to prepare for
extreme changes in water availability.

VI. CONCLUSION
In this study, we proposed a TPD model that employs the
HGI concept. The proposed model was first applied to J-City
networks to validate the HGI method, and a layout and pipe
diameter design for a grid network was demonstrated. The
average value of the HGI is defined as the SHGI, and the
TPD model considers maximizing the SHGI as an objective
function. The TPD model was equipped with ReHS as the
optimization technique, and the advantages of the proposed
model and SHGI were explored by comparing their responses
to the HPI and GTI, which reflect the hydraulic perfor-
mance, particularly network energy efficiency and resilience
to extreme changes in water availability.

The analysis results show that the SHGI has a higher
correlation with the HPI than the GTI, particularly with the
EE, despite the SHGI being a GT-based index. Moreover,
the SHGI weight can reflect the hydraulic performance with-
out the necessity of conducting a hydraulic analysis. The
correlation analysis indicates that the proposed SHGI can
be a useful measure of the HPI, leading to a more energy
efficient and resilient network while taking advantage of the
GTI, which does not require any hydraulic analysis.

The application of the TPD model to grid network design
results indicates that the TPD model can aid in enhancing
the EE and resilience of a network within a reasonable TC
range. In addition, unlike to other GTIs, such process does
not require additional hydraulic analysis as HGI is a weighted
GTI with pipe characteristics in consideration. Based on
the TPD design results, two recommendations can be pro-
vided to improve the SHGI. First, to create a higher SHGI
network layout, the creation of a loop and elimination of
detour flow pathways must be considered. Second, when

determining the diameter, locating a larger diameter near the
source and a smaller diameter at a distance from the source
will improve the SHGI. These recommendations can support
decision-making for WDN design to prepare for extreme
changes in water availability by enhancing hydraulic perfor-
mance and efficiency through a better connection between the
source and node.

In summary, the proposed TPD model and HGI showed a
clear benefit for energy-efficientWDNdesign. Although only
a design example is presented here, this design can be applied
to various academic and industrial purposes, especially for
the existing WDN, including but not limited to maintenance
prioritization, identification of critical pipes, and optimal
operation. Maintenance prioritization can be achieved by
comparing the SHGI improvement before and after the reha-
bilitation or replacement of each pipe. In contrast, the critical
pipe can be identified by comparing the SHGI before and
after pipe breakage (i.e., closing pipe), which creates a new
topology of the network. Lastly, from the perspective of opti-
mal operation, manipulating valves and pumps would render
a network topology with improved energy efficiency.

Although the novelty and usefulness of the TPDmodel and
HGI were considered in this study, there are some limitations
and gaps that need to be addressed in future studies. First,
the transition of the shortest paths and SHGI values can be
investigated under different conditions of water availability
and source head to identify the critical water level that triggers
severe water-distribution failure. This investigation can also
be conducted for a set of networks with different configura-
tions and characteristics. Second, additional weight factors
based on nodal parameters (node elevation and demand and
tank characteristics) can be considered to modify the pro-
posed index. As described earlier, the correlation between the
SHGI and other indices is low when the node characteristics
perform a critical function. The SHGI could better capture
the changing nodal and source conditions (e.g., decrease in
reservoir head due to drought) by incorporating node char-
acteristics into the index. Third, as nodal parameters and
dynamic operational components (pumps and valves) in a
WDN have yet to be considered using this method, the use
of the HGI should be extended under unsteady conditions
to account for such state changes. Furthermore, a rigorous
analysis should be implemented to guide the use of the HGI
for decision-making in engineering. Finally, networks with
varying configurations should be examined to confirm the
conclusions of this study, and the limitations described herein
should be overcome to increase the usability of both the TPD
model and the HGI.
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