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ABSTRACT An accurate and efficient path loss modeling method for millimeter wave communications
plays a significant role in the large-scale deployment of a fifth-generation (5G) mobile communication
system. Conventional path loss modeling methods such as deterministic methods, empirical methods, and
machine learning-based methods, in practice, cannot achieve the desired level of performance in terms
of accuracy. This paper proposes a novel path loss model for 5G communications in suburban scenarios
using deep learning with dilated convolution and attention. Dilated convolution is used to alleviate the
locality of feature extraction and capture the global information on input images. Attention rendered by
global context blocks helps the attention-enhanced convolutional neural network (AE-CNN) model utilize
the global information on inputs to extract essential features of propagation environments. A distance-
embedded local area multi-scanning algorithm which generates input images that can improve learning the
latent features with dependency on distance is proposed. The experimental results indicate that the AE-CNN
model can outperform state-of-the-art deterministic and empirical methods in terms of root mean square

error in test scenarios.

INDEX TERMS Deep learning, 5G mmWave, path loss modeling, dilated convolution, attention.

I. INTRODUCTION

Millimeter wave (mmWave) communication is one of the top-
priority candidate radio technologies for the 5G mobile sys-
tems [1]. Due to large bandwidth and high carrier frequency,
mmWave communications are characterized by smaller scat-
tering effect and more significant blocking effect of non-line-
of-sight (NLoS) paths [2]. Path loss modeling of mmWave
communications is challenging due to increased sensitivity
to propagation environments. Therefore, path loss modeling
for mmWave propagation plays a vital role in designing
and analyzing 5G communication systems. Three types of
conventional path loss modeling methods have been investi-
gated in previous studies, namely empirical methods [3]-[7],
deterministic methods [8], [9], and machine learning-based
(ML-based) methods [10]-[18].
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Empirical methods predict the path loss by calculating
the parameters of fixed equations based on the statistical
characteristics of data, such as carrier frequency and TR-
separation, namely the distance between a transmitter (Tx)
and a receiver (Rx). These equations are variations of the
Friis free-space path loss model, and a few parameters are
required [19]. Empirical methods such as the close-in free
space reference distance (CI) model and alpha-beta-gamma
(ABG) model [4] are relatively easy to handle when the mea-
surement data are given. However, the parameters of empiri-
cal models should be determined based on the measurement
data collected in a specific scenario and thus their prediction
accuracy may decrease when they are applied to a scenario
that differs considerably from the measured scenario.

Deterministic methods, such as the three-dimensional (3D)
ray-tracing method [20], are based on physical optics simu-
lation. They require detailed site-specific information, such
as the configuration of a Tx and an Rx and the dielectric
properties of the materials of building structures. This lowers
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the prediction accuracy of the 3D ray-tracing methods in
a large-scale deployment scenario since such information
is rarely available in practice. Moreover, it suffers from a
tremendous degree of computational complexity.

The path loss modeling can also be handled by data-driven
approaches such as the ML-based methods as a regression
problem, where the salient features calculated based on the
locations of measurement and propagation environment data
are used as inputs, and measured path loss values are used
as desired outputs in training. ML-based path loss models
trained for a small number of representative propagation
environments can generalize to predict the path loss values
in previously unseen sites. They can usually achieve better
performance than empirical models, thanks to their ability to
learn the underlying relationship between inputs and outputs.
However, the input preprocessing, including feature selection
and extraction, which requires domain expertise and an enor-
mous amount of computation, has significant influences on
the performance of prediction.

The unsatisfactory performance of conventional path loss
modeling methods and their low efficiency in practice have
prompted researchers to find an alternative path loss model-
ing method such as deep learning methods [21]-[23]. Deep
learning is a subset of machine learning algorithms that use
multiple processing layers to learn representations of data
with multiple levels of autonomous feature abstraction [24].

In [23], for instance, it is shown that CNNs can be trained
to predict path loss values based on the input images that are
expected to encode the structural information of a local map
for each pair of Tx and Rx locations. However, it is not clear
whether the CNNs are trained to model the underlying path
loss functions based on all the latent features which may not
even be extracted as expected. Although the global features,
such as the distance between a Tx and an Rx, LoS/NLoS,
and the existence of large buildings and streets, are known
to have a large impact on the path loss, a close inspection on
the predicted values of the CNNs reveals they may have not
been extracted or used successfully. This may be caused by
the locality of feature extraction by the CNNs. Specifically,
the locality is caused by the kernels in the convolutional
layers of CNNs as the receptive field of a neuron in the
kernels cannot cover the entire input image. The utilization
of global information in path loss modeling means that the
CNN model can extract or select features based on the over-
all information on the inputs or the information on an area
as large as possible. Attention mechanism can increase the
expressive ability of extracted features for CNN by empha-
sizing important parts and suppressing unnecessary fea-
tures [25]-[30]. Dilated convolution supports an exponential
expansion of the receptive field without loss of resolution or
coverage [31].

This paper proposes a novel deep learning path loss model
called the attention-enhanced convolutional neural network
(AE-CNN) model for 28 GHz mmWaves in suburban sce-
narios. Dilated convolution is used to alleviate the locality
of feature extraction and capture the global information on
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input images. Global context (GC) blocks [32] are used to
utilize the global information on inputs to extract essential
features of propagation environments. A distance-embedded
local area multi-scanning (DE-LAMS) algorithm is proposed
to generate input images to improve learning the latent fea-
tures with dependency on distance. The proposed model
achieves a satisfactory level of performance on path loss
predictions in test scenarios. The proposed AE-CNN path loss
model outperforms conventional empirical and deterministic
methods, as demonstrated by experimental results.

The rest of this paper is organized as follows. Section II
presents related works on ML-based path loss modeling
methods, CNN-based path loss models, attention, and dilated
convolution. Details of the proposed AE-CNN path loss
model are described in Section III, including the illustration
of input preprocessing, the DE-LAMS algorithm, and the
AE-CNN model description. The experimental results are
presented and discussed in Section VII. Finally, Section V
presents the main conclusions drawn from this study.

Il. RELATED WORKS

A. ML-BASED PATH LOSS MODELING METHODS
ML-based methods can learn features from statistical infor-
mation of measurement data (as well as empirical models) or
from preprocessed inputs based on knowledge of the radio
propagation field to predict the path loss values. There is
a tremendous amount of research on path loss modeling
with ML-based methods, including neural networks, support
vector regression, and decision tree-based methods [10]-[18].
The ability to model complex relationships between inputs
and outputs makes ML-based methods suitable for path loss
modeling.

Yang and Lee present a neural network-based path loss
model with a series of feature extraction algorithms [14].
Their algorithms can extract features from digital eleva-
tion map (DEM) data as inputs of neural network models.
ML-based methods can achieve good performance using the
useful features extracted based on radio propagation knowl-
edge in specific scenarios. However, 3D map data of studied
areas such as the DEM data is required to extract useful fea-
tures but rarely available in practice. Extensive computation
of feature extraction is inevitable, and high computational
resources are usually essential for input preprocessing of
ML-based path loss modeling methods. These limitations
motivate researchers to find better methods to extract features
for ML-based path loss modeling methods. Hybrid-empirical
path loss models that use ML methods to minimize the errors
between the predicted path loss using empirical methods and
measured path loss have been proposed in [10]-[12]. The
ML methods in these hybrid-empirical models can be used
to select or predict the parameters of empirical models. The
inputs of these models usually include the inputs of conven-
tional path loss modeling methods, such as TR-separation,
the transmission power of Tx, and carrier frequency. The
performance of hybrid-empirical models is usually better
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than that of an empirical model but similar or slightly worse
than that of ML-based methods because feature extraction is
usually not used in hybrid-empirical models. Ensuring that
the inputs provided contain enough appropriate information
on the propagation environment for learning plays a decisive
role in the performance of ML-based path loss modeling
methods.

B. CNN-BASED PATH LOSS MODEL

In [21], a method of assigning images to path loss measure-
ments is proposed to generate input images for a CNN model
to estimate path loss in urban areas. The CNN model used
has a simple structure with two convolutional layers and one
hidden fully connected (FC) layer. The images are generated
based on the height of buildings in the studied area and the
location of Tx and Rx. Each image is captured from a rectan-
gle area between Tx and Rx is resized to a square of prede-
fined dimensions. However, the resize of images can destroy
the original information on propagation environments, espe-
cially the distance information. The performance of CNN’s
prediction can be influenced as well. In [23], a CNN-based
path loss model is proposed for mmWave path loss modeling
in suburban environments. The CNN-based path loss model
has four subnetworks to predict the path loss values of the
four directional antennas of an Rx. Feature-sharing layers
are used to share common knowledge between subnetworks
and an additional distance neuron is used to provide explicit
distance information. The enhanced local area multi-scanning
(E-LAMS) algorithm extracts local area information on the
path loss environment between each pair of Tx and Rx loca-
tions from the processed Google map images where buildings
and streets are captured. The CNN model achieves better per-
formance than state-of-the-art empirical models. However,
close inspection shows that the prediction accuracy of the
CNN-based model is not stable even in the case of LoS sites.
We describe it in more detail in section III.

C. ATTENTION AND DILATED CONVOLUTION
Attention mechanisms can be adopted as an integral part
of CNNs to capture global dependencies [28], [33]-[35].
Reference [34] describes the squeeze-and-excitation (SE)
block, an architectural unit that can be plugged into CNNs to
improve the performance of CNN models with only a slightly
increased total number of parameters. SE blocks explicitly
model channel relationships and channel interdependencies
and include a form of self-attention on channels. In [35], the
potential of using multi-layered attention is demonstrated.
An attention module called convolutional block attention
module (CBAM) with spatial attention and channel attention
in image captioning tasks is proposed in [36]. The use of
CBAM highlights the broad applicability of the attention, par-
ticularly for image classification and object detection tasks.
A lightweight attention mechanism provided by GC blocks
is proposed in [32]. A GC block can calculate the posi-
tional relationship between the query position and other posi-
tions in input images. The GC block is designed to use a
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FIGURE 1. The structure of the GC block. C is the number of channels of
the input feature. H and W are the height and width of the input feature,
respectively. HW is a value of dimension that equals the product of H
and W. r is the reduction ratio, and C/r denotes the dimension of a
bottleneck.

query-independent attention map for all query positions with
a small computation cost. Fig. 1 shows the structure of the
GC block. Input features extracted by convolutional layers
can be reshaped as 3D or 2D tensors. The input feature with
the shape of C x H x W is used three times in the GC
block. First, the input features are converted asa 1 x H x W
tensor using 1-by-1 convolution. Then, it can be reshaped as
a HW x 1 x 1 tensor. The input features are also reshaped as a
tensor with the shape of C x HW; then, this tensor is used to
calculate the dot product using the Softmax of the HW x 1 x 1
tensor. The output of the dot productis a C x 1 x 1 tensor. The
first two steps can be called context modeling that determines
global information on the input features. The SoftMax of the
reshaped feature is performed to obtain attention. Second,
feature transformation is performed by a bottleneck trans-
form module that includes two 1-by-1 convolution proce-
dures to capture channel-wise dependencies. Third, broadcast
element-wise addition is applied to aggregate the extracted
global context features, i.e., the C x 1 x 1 tensor, to each
neuron of the original input features.

Dilated convolution has been proposed to improve the
performance of semantic segmentation as it supports an expo-
nential expansion of the receptive field without loss of reso-
lution or coverage [31]. Fig. 2 shows the general convolution
and dilated convolution. Fig. 2 (a) indicates a 5 x 5 input
is convolved with a 3 x 3 kernel with stride s = 2 and
padding p = 1 to produce an output of 3 x 3 by the general
convolution. Fig. 2 (b) shows a 7 x 7 input is convolved with
a3 x 3 kernel with s = 1 and p = 0 to produce an output of
3 x 3 by the dilated convolution. Fig. 2 indicates that dilated
convolution can increase the size of the receptive field with
the same kernel size, namely, the same number of trainable
parameters.

With GC blocks and dilated convolutional layers, CNNs
can utilize global information on the extracted features or
inputs and focus on useful features at the cost of small
increase in the number of parameters for calculation of
attention.

IIl. AE-CNN PATH LOSS MODEL
Close inspection in the contribution of input values to the
predicted path loss values of the CNN model obtained in [23]
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FIGURE 2. General convolution (a) and dilated convolution (b). Blue
squares are inputs, and cyan squares are outputs. The interconnected
neurons in each step are marked in a darker color.

has suggested CNNs may not have been completely success-
ful in approximating the underlying path loss model. The
first observation made is that it is difficult to find a corre-
lation between the path loss predictions and TR-separation,
as shown in Fig. 3 (b), where the path loss values are not
only similar regardless of the TR-separation values but the
predictions of two legs are asymmetrical as well. This implies
the CNN-based model trained with the TR-separation values
fails to learn the dependency of path loss values on them.

(a) (b) (©)

FIGURE 3. Measurement data (a), predicted values of the CNN-based
model trained with E-LAMS images and distance neurons (b), and
predicted values of the proposed AE-CNN model trained with DE-LAMS
images (c) in S7. The green point indicates the Tx location, and the points
with distinct colors show the path loss values in the measured locations
of Rx, as shown in the color bar on the left.

The second issue is that the parameter values of the trained
CNNs do not conform very well to the basic principles of
mmWave path loss models as visualized by the heatmap val-
ues of extracted features (Fig. 4). In what follows, we address
these two issues in more detail and propose new approaches
to CNN-based path loss modeling of mmWave.

A. DE-LAMS ALGORITHM FOR INPUT IMAGE
GENERATION

In theory, the amount of path loss values of the signal from
a Tx to an Rx is given by P = 10nlog,od + C, where P is
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FIGURE 4. An E-LAMS image (a) and its overlapped heatmap (b) of a CNN
model. The green and red points show the locations of Tx and Rx in (a).
The color of the heatmap overlapped on the buildings and streets in the
E-LAMS image indicates the importance of the extracted features by the
CNN model. Specifically, the red color of the heatmap indicates that the
covered area contains crucial features, whereas the blue color indicates
that the covered area contains unimportant features.

the path loss in dB, n is the path loss exponent (PLE), d is
TR-separation in meters, and C is a variable that accounts for
system losses. This implies the parameters associated with
the distance neuron are not updated thoroughly enough to
influence the path loss prediction significantly.

Algorithm 1 DE-LAMS Algorithm
Input:
GPS locations of Tx and Rx
Size of a DE-LAMS image: (w, [)
Processed Google map image matrix Mg
Output:
A DE-LAMS image
. Calculate the value of background pixels, pys
. Determine an extended local area Ag on Mg
.fori=1toldo
Determine the equation and location of the iy, scan line
onAg
Select w pixels on the iy, scan line
Copy w selected pixels from Mg as an array s;
. end for
. Integrate [ arrays from s to s; as a matrix M;
. Set values of background pixels in M; as py
10. Save Mj as a DE-LAMS image

Ea i S e

O 00O\

In order to address this issue, we propose to include the
distance information in the training input images for a CNN
to take the distance into account more efficiently. As pre-
sented in Algorithm 1, the distance-embedded local area
multi-scanning (DE-LAMS) algorithm generates CNN input
images with the distance information embedded. The local
area is a squared area that takes the straight line between Tx
and Rx as the central axis with an extension of 10% margin
beyond the Rx. The extended area is included to allow for
the influence of objects around the Rx with respect to the
reflection in propagation environments. The main buildings
and streets are kept in the input images. Each image generated
by this algorithm can be regarded as an encoded image with
respect to a pair of Tx and Rx. Multiple scan lines parallel to
the Tx—Rx line are determined. The scan lines should be able
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to slice the local area into multiple pieces having the same
length and width. The values of pixels on each scan line at
a predefined interval can be selected and copied to form a
vector. These vectors of all scan lines can be integrated to
form a matrix. Before saving the matrix as an input image,
the pixel values of the background pixels, i.e., pixels other
than those representing buildings and streets, are changed
according to the values of TR-separation. The input images
are called DE-LAMS images, where the base pixel values
change proportionally to the values of the TR-separation in
the local area.

B. THE ARCHITECTURE OF AE-CNN MODEL

Feature extraction of CNNs is performed by the kernels of
convolutional layers. Since the receptive field of a neuron
in convolutional layers is always smaller than the size of
the input images. This makes CNNs learn local information
on input images and fail to utilize the global information
(i.e., all information exists in the input images).

Each building and street in a propagation environment
should have a different amount of impact on the path loss. For
instance, the buildings close to Tx and Rx should have a larger
influence on the path loss than those in the middle of Tx to Rx.
If we consider an extreme circumstance where there is only
a big building lies in the path from Tx to Rx and the signal
is blocked, the CNN can end up arriving at a local minimum
with high activation values for the parameters of this building,
although the influence of this building should be small. This
results from the loss of useful global information owing to
the locality of feature extraction. This can be manifested by
the heatmap of a CNN-based model presented along with the
E-LAMS image (Fig. 4), the buildings along the left edge,
at the lower right corner, and in the center receive more
attention than the streets. It can also be noticed that some
areas with no buildings and streets, such as the lower right
corner of Fig. 4 (b), are covered with yellow color, while most
streets are covered with blue color.

We further ascribe the improper utilization of global
information to the locality of feature extraction. The key to
achieving better performance is to extract useful features that
contain more global information on input images since path
loss modeling for mmWave is sensitive to the location infor-
mation of buildings and streets on path loss environments.
The discovery of buildings that have significant influences
on path loss is also important.

GC blocks enable channel attention based on the spatial
representation to be learned from the global context of the
input features for better feature extraction. Features such
as buildings and streets that significantly influence the path
loss can be emphasized, whereas unimportant features are
suppressed. Dilated convolution can help a network capture
more information on inputs with a minimal number of addi-
tional parameters to increase the size of the receptive field of
neurons. Therefore, we propose to use GC blocks and dilated
convolutional layers that can be augmented in a conventional
CNN model.
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TABLE 1. Parameters of dilated convolution layers in The AE-CNN path
loss model.

Number Of st 2nd 3rd 4lh
convolutional layer
Input size 41 19 9 7
Input channel 3 8 6 3
Output size 19 9 7 3
Output channel 8 6 3 4
Kernel size 5 3 3 3
Stride size 2 2 1 2
r of GC block 4 2 3 2
-
Hidden layer .L
Flattened e '
activation maps JL !
GC block |
Dilated i
convolution. i i
:
General H
convolution. i
i
Dilated H
convolution. i
i
Dilated E
convolution. i
- 1
Input layer Input images A
(DE-LAMS images) (LoB)

FIGURE 5. Network structure of the proposed AE-CNN path loss model.

Fig. 5 shows the network structure of the proposed AE-
CNN model. The feature extraction part of the AE-CNN
model is composed of four dilated convolutional layers and
three GC blocks. We interleave GC blocks between convo-
lutional layers. The parameters of convolutional layers in the
model are presented in Table 1. When the stride size of one
convolutional layer is one, we cannot use dilated convolution
in that layer. Thus, the third convolutional layer uses gen-
eral convolution. The FC layers, including one hidden layer
of 20 neurons, predict path loss values using the features
extracted from DE-LAMS images with an angle neuron A in
the input layer. The neuron A contains the values of the line
of bearing (LoB) [37]. The LoB of an Rx is the absolute angle
between the direction from Tx to Rx. The LoB indicates the
propagational path and direction of mmWave signals and can
affect path loss when directional antennas are used in the Tx
and Rx. The outputs are the predicted path loss values.

The main idea of this work is to capture as much global
information and essential information from inputs as possi-
ble. The GC block learns a spatial representation of the global
context from the input features to obtain better channel atten-
tion for helping the feature extraction of upper layers. Dilated
convolution can alleviate the locality of feature extraction by
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capturing features in a larger receptive field than the general
convolution.

IV. EXPERIMENTS

We first describe how the input images are generated based
on the measurement data collected and the map images of the
regions where we collected data.

A. PREPROCESSING

1) MEASUREMENT DATA COLLECTION AND
PREPROCESSING

Field measurements were carried out in two areas of the
United States by Samsung Electronics. A total of 17 scenarios
(S1-S17) were included in the field measurements. Measure-
ments of 13 scenarios (S1-S13) were conducted in California,
and the remaining four scenarios (S14-S17) were conducted
in Houston. Moreover, the simulated path loss values using a
3D ray-tracing method in S14-S17 were provided with the
measured path loss values. In each measurement scenario,
a 28 GHz Tx with a directional antenna and a known location
was fixed on the ground, and a 28 GHz Rx was set on the
rooftop of a moving car. For a Tx with a known location in
a scenario, measurement data including the locations of the
Rx and the receiver signal strength (RSS) values or path loss
values of a directional antenna(s) of the Rx were recorded at
a certain time interval when the car was driven on designated
routes.

The Rx used in S1-S13 has four directional antennas,
whereas that used in S14-S17 has just one directional
antenna. We calculated the average RSS values of four anten-
nas as the RSS value in each Rx measurement location in S1—
S13. The averaged RSS value was then converted to the path
loss value by subtracting the RSS value from the transmission
power of the Tx in that scenario. The transmission power
of the Tx in S1-S7 and S8-S13 was 39 dBm and 53 dBm,
respectively.

2) MAP IMAGE PROCESSING

CNN input images containing information on propagation
environments should be generated to train a CNN based on
the measurement data and the map data. Two-dimensional
(2D) Google street map tiles in the areas where we con-
ducted the field experiment were downloaded. These tiles
were stitched into complete map images for each measure-
ment scenario. The buildings and the objects around streets
in suburban scenarios are assumed to be the pivotal factors in
the propagation environments that have significant influences
on path loss. A series of image processing methods were
used to extract buildings and streets from the 2D Google
streets map images. First, the map images were converted into
grey images. Then, the buildings and streets were extracted
by selecting these pixels based on their pixel values. The
Gaussian filter-based image smoothing method was applied
to remove noisy pixels. Finally, we obtained the processed
Google map images with extracted buildings and streets.
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FIGURE 6. An example of a processed map in S7. (a) Google map image.
(b) Processed Google map image. The pixel values of buildings and
streets are set as 200 and 100, respectively, for better visualization.

Fig. 6 shows a Google street map image and a processed
Google map image. The grey-level pixel values of buildings
and streets used for the input image generation are set as 20
and 10, respectively.

3) HMIM-BASED MAP MATCHING
There are some Rx locations of measurement data aligned
off roads due to measurement errors caused by the limitation
of GPS equipment and the positioning method, as shown
in Fig. 7 (a). This makes the Rx locations of measurement data
imprecise. The alignment of GPS locations with the roads is
called map-matching [38]. The road is divided into two lanes
since a car is driven back and forth on designated routes.
In this work, we implemented a lane-level hidden Markov
model (HMM)-based map-matching method [39] to align the
outliers of the Rx locations on the roads. The Rx location
offsets caused by the GPS error conform to a Gaussian dis-
tribution [40], and most of the offsets are concentrated in the
Gaussian mean. In this work, we first applied the lane-level
HMM-based map matching to calculate the adjustment vector
of each Rx location. Then, the average adjustment vector
of all adjustment vectors was added for all Rx locations of
measurement data.

The distribution of GPS error and the position relationship
between each Rx location can be maintained by moving all
Rx locations of measurement data together onto the road,

(®)

FIGURE 7. An example of the lane-level HMM-based map matching.
(a) Actual Rx locations of measurement data. (b) Corrected Rx locations
of measurement data. The Rx locations of the measurement data are
plotted as green points on the preprocessed Google map image.
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as shown in Fig. 7 (b). The Rx locations of measurement data
used in each scenario were corrected by the average adjust-
ment vector of the lane-level HMM map-matching method.
The measured path loss values in S17 are visualized by over-
lapping Rx locations on the Google map image. As shown
in Fig. 8, S17 is a scenario where all Rx points are LoS sites.
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FIGURE 8. Visualization of measured path loss values in S17. The green
square with a red edge indicates the location of Tx. The points on the
road are the locations of Rx, and the path loss values in dB are indicated
by the filled color as shown in the color bar.

4) INPUT IMAGE GENERATION

E-LAMS images are used as the main components of the
inputs of the basic CNN model. We show examples of
E-LAMS images in Fig. 9. The TR-separation and LoB are
calculated based on the GPS locations of Tx and Rx after
map-matching. The range of TR-separation values used in the
experiments is [30, 600].

(2) (®)

FIGURE 9. Examples of E-LAMS images, where the green and red dots
show the locations of Tx and Rx, respectively.

With the calculated TR-separation and DE-LAMS algo-
rithm, DE-LAMS images are generated as examples shown
in Fig. 10, where the TR-separation of four DE-LAMS
images increases from (a) to (d). The pixel values of buildings
and streets are fixed at 120 and 100. The range of pixel values
of the background pixels is [1, 80].

Upon completion of the image generation, the proposed
AE-CNN path loss model was trained and its perfor-
mance was evaluated. Details of the experimental settings
and dataset separation are presented in subsection IV-B.
Three sets of experiments were conducted as presented in
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FIGURE 10. Examples of DE-LAMS images, where the green and red dots
show the locations of Tx and Rx, respectively. The grey level of the
background pixel indicates the values of normalized TR-separation.

subsection IV-C. First, experiments on the usage of distance
information in inputs were conducted. Second, experiments
were conducted to show the performances of the combina-
tions of functional modules in the proposed AE-CNN model.
Third, experimental results of conventional deterministic and
empirical methods are presented. Comprehensive visualiza-
tion with detailed discussion and analysis is presented in
subsection IV-D. First, we visualized the extracted features to
show the influence of DE-LAMS images on feature extrac-
tion. Second, the predicted values of AE-CNN models is
compared with measurement data and the predicted values
of conventional methods to show the performance of the
proposed model. Third, the predicted errors of AE-CNN on a
test scenario are visualized.

B. EXPERIMENTAL SETUP

The experiments were conducted using Keras and Tensor-
Flow [41]. The stochastic gradient descent (SGD) optimizer
was used for the experiments. The detailed hyperparameters
of the models are listed in Table 2, and statistical information
on the dataset separation is presented in Table 3. There are
8502 samples in the training dataset and 1237 samples in the
test dataset, including S7, S13, and S17.

TABLE 2. Settings of hyperparameters.

Hyperparameters Settings
Learning rate 0.001
Batch size 64
Maximum training epoch 1000
TABLE 3. Data separations.
. Number
Data Scenarios of data item
Training 11 scenaqos 1.n California 3502
3 scenarios in Houston
S7 472
Test S13 465
S17 300

C. EXPERIMENTAL RESULTS

Experiments were conducted to show the performances of
functional modules proposed in the AE-CNN model. The
root mean square error (RMSE) of predicted path loss in test
scenarios are presented in Table 4.
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TABLE 4. Results of experiments.

RMSE in test scenarios ¢

Sets Model Inputs®
S7 S13 S17
CNN E-LAMS 8.99 10.95 11.75
A CNN E-LAMS + TR 8.39 9.86 11.48
CNN DE-LMAS 6.44 8.97 9.42
D-CNN DE-LAMS 5.29 7.94 4.52
B* CNN+GC DE-LAMS 522 7.63 5.24
AE-CNN DE-LAMS 4.64 7.18 3.85
CI - 17.53  25.69 29.33
ch ABG - 17.56 2594 30.02
3D
. - - - 3.96
ray-tracing

*The basic CNN model with dilated convolutional layers and GC blocks
is denoted as “D-CNN” and “CNN+GC”, respectively.

*The RMSE of the CI and ABG model on the training dataset of deep
learning models is 15.99 and 16.06, respectively. The simulated results of
the 3D ray-tracing method are denoted as “3D ray-tracing”.

““Inputs” includes “TR”, “E-LAMS”, and “DE-LAMS”, denoting that
the models are trained with the distance neuron, angle neuron, E-LAMS
images, and DE-LAMS images, respectively. The values of LoB are used
as the angle neuron 4 in the models of sets A and B. The LoB is not shown
in the inputs for brevity.

9The bold values indicate that the model achieves the best performance
in that experimental set for that scenario, whereas the values with italic
and bold fonts indicate that that model achieves the best performance for
that scenario.

1) USAGE OF DISTANCE INFORMATION

As described in subsection III-A, the DE-LAMS algorithm
generates DE-LAMS images with the distance information
embedded. We conducted experiments to validate that the
DE-LAMS images can help CNN models achieve better per-
formance than other inputs, as presented in set A of Table 4.
The basic CNN models were trained with E-LAMS images,
E-LAMS images and the distance neurons, and DE-LAMS
images, respectively. It can be observed that CNN mod-
els trained with the DE-LAMS images achieved smaller
RMSE than the other models. This indicates the CNN models
trained by DE-LAMS images can efficiently learn the influ-
ence of latent features with dependency on distance. Closer
inspection is presented in subsection IV-D with various
visualizations.

2) DILATED CONVOLUTION AND GC BLOCKS

Dilated convolution can capture more global information
from inputs to alleviate the locality of feature extraction.
GC blocks can obtain the attention of prominent features of
propagation environments from inputs. As presented in set B
of Table 4, the performance of the D-CNN model, CNN+GC
model, and the proposed AE-CNN model are studied. These
models were trained with DE-LAMS images. As one can
see, the D-CNN model performs better than the basic CNN
model in terms of the test RMSE. This indicates that the
global information extracted from input images using dilated
convolution is beneficial to the performance improvement
of the CNN models. The CNN+GC model outperforms the
D-CNN models except in S17. As all Rx locations of mea-
surement data in S17 are LoS sites, the D-CNN model can
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benefit from its larger receptive field of the neurons in dilated
convolutional layers. The experimental results indicate that
the D-CNN model can capture more useful environmental
information on the streets than the CNN+GC model. The
AE-CNN model can capture global information from inputs
to alleviates the locality of feature extraction with dilated
convolutional layers. The GC blocks of the AE-CNN model
can help the AE-CNN model extract essential features having
significant influences on path loss and suppress unnecessary
features. Thus, the proposed AE-CNN model can achieve
satisfactory performance for all test scenarios.

Ablation experiments were conducted to study the influ-
ences of different numbers of dilated convolutional layers and
GC blocks on the performance of CNN models. The results
are presented in Tables 5 and 6. Table 5 presents the RMSE
of models with respect to the number of dilated convolutional
layers. The number of dilated convolutional layers means
how many times we replace a general convolutional layer
with a dilated convolutional layer. There are three dilated
convolutional layers in the AE-CNN model, and its third
convolutional layer uses the general convolution, as shown
in Fig. 5. Table 6 presents the RMSE of models with respect
to the number of GC blocks in S7. The number of GC blocks
means how many times we add a GC block to a CNN model
or a D-CNN model after a convolutional layer. As presented
in Tables 5 and 6, the RMSE is smaller when more dilated
convolutional layers and GC blocks are used in CNN models.
It indicates that the use of them together makes the AE-CNN
path loss model achieve better performance than the models
that use just one of them.

TABLE 5. RMSE of ablation experiments on number of dilated
convolutional layers.

Number of dilated convolutional layers

Models 1 2 3
CNN 5.47 5.42 5.29
CNN+GC 5.17 4.82 4.64

TABLE 6. RMSE of ablation experiments on number of GC blocks.

Number of GC blocks
Models I 5 3 1

CNN 574 552 534 522
D-CNN 520 5.10 479 4.64

3) RESULTS OF CONVENTIONAL DETERMINISTIC AND
EMPIRICAL METHODS

Experimental results of conventional methods are presented
in set C of Table 4, including the empirical CI model and
ABG model and the deterministic 3D ray-tracing method.
The parameters of the CI and ABG model calculated by solv-
ing the closed-form solutions via mathematical derivations
are presented in Table 7. Samsung Electronics provided the
simulated path loss values using a 3D ray-tracing method
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TABLE 7. Parameters of empirical methods.

Models CImodel  ABG model
a 2.57

a 304 B 2385
Parameters Y 336

o 1606 o 1599
*nis the PLE. , B, and y is a frequency-dependent term, a floating-
offset value, and a distance-dependent term, respectively. o is the standard
deviation of the fading term.

with the measurement data. The experimental results indicate
that CNN models outperform conventional methods in terms
of the RMSE in the test scenarios. The proposed AE-CNN
path loss model even achieves slightly better performance
than the state-of-the-art deterministic 3D ray-tracing method
in S17.

D. VISUALIZATION AND DISCUSSION

Various visualizations are presented to validate the satisfac-
tory performance of the proposed AE-CNN model by solving
the issues of the basic CNN-based path loss model for 5G
communications in suburban environments.

1) VISUALIZATION OF EXTRACTED FEATURES

Features of propagation environments captured from input
images by the proposed AE-CNN model are visualized
as shown in Fig. 11. The input image and its overlapped
heatmap are shown together to demonstrate the effects of the
DE-LAMS images and the attention rendered by GC blocks.
As shown in the second column of Fig. 11 (a), the bottom
right building is considered as the main feature of prop-
agation environments. This indicates that the CNN model
cannot extract useful information sufficiently enough from
E-LAMS images. Moreover, the streets are not thought of as
crucial factors in the propagation environment. The images
in the third column of Fig. 11 (a) show that the GC blocks
emphasize the importance of buildings in the bottom center
and buildings on the top side. E-LAMS images can just have
a small influence on the feature extraction of the AE-CNN
model. When the inputs, namely the E-LAMS images, can
only provide a limited amount of information on propagation
environments, the attention cannot exhibit a significant effect
in the feature extraction.

Fig. 11 (b) shows the overlapped heatmaps of the AE-CNN
model trained with DE-LAMS images. The images in the sec-
ond column of Fig. 11 (b) show more buildings are over-
lapped with red color compared with Fig. 11 (a), and some
streets are overlapped with light blue color as marked by
the purple boxes. It indicates that more buildings and streets
are considered to influence path loss. The importance of the
buildings on the left edge is emphasized while the importance
of the buildings in the center is suppressed. The red area of
the building in the right bottom corner is adjusted to an area
with a similar shape of the building as marked by the left red
box. The visualization in Fig. 12 indicates that the distance
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Heatmap (Before)

Heatmap (After)

An E-LAMS Image

A DE-LAMS Image

Overlapped Heatmap (Before) Overlapped Heatmap (After)
- .
—

(b)

FIGURE 11. (a) An E-LAMS image and its overlapped heatmaps before
and after using attention rendered by GC blocks. (b) A DE-LAMS image
and its overlapped heatmaps before and after using attention. There are
three columns with a total of five images in each figure. The image in the
left column is the input image that is an E-LAMS image or a DE-LAMS
image. The green and red points at the input image indicate the locations
of Tx and Rx. The images in the center column are visualizations before
using GC blocks, including a heatmap image, and the heatmap image
overlapped on the input image. The images in the right column are
visualizations after using GC blocks. The areas covered by red boxes and
purple boxes contain emphasized buildings and streets by the attention,
respectively.

information embedded in DE-LAMS images can help the
AE-CNN model efficiently improve learning the latent fea-
tures with dependency on distance. Besides, the visualization
of heatmaps indicates that the global information on propa-
gation environments is vital for mmWave path loss modeling
using deep learning.

2) VISUALIZATION OF PREDICTED PATH LOSS
The AE-CNN model trained with DE-LAMS images
achieved the best performance on each test scenario as pre-
sented in Table 4; its predicted path loss and the measured
path loss in each test scenario are visualized in Figs. 12—17.
The performances of the proposed AE-CNN path loss
model in S7 and S13 are shown in Figs. 12 and 13, respec-
tively. The trend of predicted and measured path loss val-
ues can indicate the continuous variations of path loss with
respect to the measurement index or the TR-separation. It can
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FIGURE 12. Measurement data and the predicted values of the AE-CNN
model versus index in S7. The predicted path loss of the AE-CNN model
and the measured path loss are denoted as “AE-CNN” and
“Measurement”, respectively.
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FIGURE 13. Measurement data and the predicted values of the AE-CNN
model versus index in S13.
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FIGURE 14. Measurement data and the predicted values of the Cl and
ABG model, and the predicted values of the AE-CNN model versus
TR-separation in S7. The predicted path loss of the Cl and ABG model are
denoted as “Cl” and “ABG", respectively.

be observed that the trend of the predicted path loss can
match that of the measured path loss in S7 and S13. This
indicates that the AE-CNN model can predict path loss values
according to the given scenario and the specific Rx positions.

Figs. 14 and 15 show the performances of the proposed
AE-CNN model with respect to the log-scale TR-separation
in S7 and S13, respectively. As one can see, the predicted
values of the AE-CNN model is close to the measurement
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FIGURE 15. Measurement data and the predicted values of the Cl and
ABG model, and the predicted values of the AE-CNN model versus
TR-separation in S13.
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FIGURE 16. Measurement data and the simulated values of the 3D
ray-tracing method, and the predicted values of the AE-CNN model versus
index in S17. The simulated path loss of the 3D ray-tracing method is
represented by “3D ray-tracing”.

160 ¢ Measurement E
= Cl
150 * ABG i
+ 3D ray-tracing L —
@140 * AE-CNN o i
z /—
2130} .
o
-J
£ 1201 R
I
o
110 «
100 - <]
90 L L L L

200 300 400 500 600
TR-Separation (m)

FIGURE 17. Measurement data and the predicted values of the Cl and
ABG model, simulated values of the 3D ray-tracing method, and the
predicted values of the AE-CNN model versus TR-separation in S17.

data in both S7 and S13. The empirical models, including
the CI and ABG model, show good performance when the
TR-separation is smaller than 150 meters in S7, as shown
in Fig. 14, but they underestimate the overall path loss when
the TR-separation is higher than 150 meters. Fig. 15 shows
the predicted path loss of the empirical methods is under-
estimated in S13. The empirical methods could not make
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accurate predictions when the range of path loss values is
changed because the transmission power of Tx varies in dis-
tinct scenarios. The proposed AE-CNN model can be immune
from such changes.

Figs. 16 and 17 show the performance comparisons over
the predicted values of the AE-CNN model and conventional
methods. Compared with the simulated values of the 3D
ray-tracing method, the predicted path loss of the proposed
AE-CNN model achieves better performance with a real trend
matching the measured path loss. Whereas the simulated
path loss of the 3D ray-tracing method is almost distributed
in a straight line related to log-scale TR-separation values,
as shown in Fig. 16. This is caused by way of the deterministic
methods to calculate path loss values. Since S17 is a scenario
where all Rx points are LoS sites and its measurement data
is recorded when a car with a rooftop Rx moved away from
Tx, the influence of free space path loss is mainly consid-
ered for the 3D ray-tracing method. This phenomenon also
exists in Fig. 17. The predicted values of empirical methods
in Fig. 17 show an overall overestimation of the measured
path loss. This indicates that the performance of empirical
methods could be unsatisfactory when the applied scenarios
are distinctly different from the scenarios used to calculate
their parameters.

3) VISUALIZATION OF PREDICTED ERRORS

Fig. 18 shows the absolute predicted error of the CNN model
and AE-CNN model with their polynomial fitting curves.
The AE-CNN model shows the smaller absolute error in
a wide range of the TR-separation than CNN model. The
fitting curve of the AE-CNN model is flatter than that of the
CNN model. This indicates that the proposed AE-CNN path
loss model can achieve reliable performance in a large area.
Further, the difference of absolute predicted error between
the AE-CNN model and the CNN model increases with
the decline of TR-separation. Besides, Fig. 3 (c) shows that
the proposed AE-CNN model achieves better approximation
with respect to the TR-separation in S7 by closer inspection.
These observations also show the effectiveness of DE-LAMS
images for the proposed model.

This section studied the influences of several approaches in
the proposed AE-CNN path loss model on path loss predic-
tion performance for 28 GHz mmWaves in suburban envi-
ronments through extensive experiments. First, DE-LAMS
images with the distance information improve learning the
latent features with dependency on distance. Second, dilated
convolution alleviates the locality of extracted features and
captures the global information on input images. Third, the
attention rendered by GC blocks utilizes global information
from inputs to extract essential features having significant
influences on path loss and suppress unnecessary features of
propagation environments. With the captured global informa-
tion via dilated convolution and attention from DE-LAMS
images, the AE-CNN path loss model can extract features
having significant influences on path loss and suppress
unnecessary features.
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FIGURE 18. Predicted error of the CNN model and AE-CNN model versus
TR-separation.

The comprehensive visualization with detailed analysis
demonstrates the promising and satisfactory performance of
the AE-CNN path loss model. Furthermore, the proposed
AE-CNN path loss model does not require detailed informa-
tion on the propagation environment, and it only needs to
have access to 2D maps that are easy to obtain. The proposed
model’s input preprocessing procedures and generation of
input images are pixel-level calculation and copying. They
do not require a lot of computational resources and time.
These advantages make the AE-CNN path loss model is more
applicable in large-scale development.

V. CONCLUSION
This paper proposed a novel AE-CNN path loss model using
deep learning with dilated convolution and attention. The
use of the AE-CNN path loss model represents an effi-
cient and straightforward approach to predict the path loss
of 28 GHz mmWaves for 5G communications in suburban
environments. The experimental results indicate the proposed
AE-CNN path loss model can yield superior performance
compared with popular conventional deterministic and empir-
ical methods. The preprocessing of the 2D maps and the gen-
eration of input images is concise and efficient. The proposed
AE-CNN path loss model can easily be applied to diverse
scenarios due to its favorable advantages in practice.
Buildings and streets in suburban environments that signif-
icantly influence path loss are the main factors considered in
this study for mmWaves. Other factors such as the influence
of moving vehicles and the Tx and Rx height should be
considered for further studies. We focus on the applying of
deep learning technologies into path loss modeling in this
study. However, the fine-tuning of the network structures
and selecting more appropriate hyperparameters can be done
with extensive experiments to improve the performance of the
proposed AE-CNN model. Other state-of-the-art deep learn-
ing technologies should be considered on path loss modeling
for 5G communications in suburban environments and urban
environments.
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