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ABSTRACT To realize the unmanned automation of the full mechanized caving, the bottleneck problem
of coal-gangue interface detection in top coal caving must be solved first. Targeting coal-gangue interface
detection on fully mechanized mining face, an alternative scheme to detect coal-gangue interface based on
vibration signal analysis of the tail boom support of the longwall mining machine. It is found that when
coal and gangue fall, the characteristics of vibration signals generated by coal and gangue shocking the
tail boom are different. First, EEMD algorithm is used to decompose the original vibration signals into
intrinsic mode functions (IMFs). Each IMF represents the distribution of energy from high to low. EEMD
algorithm can restrain the mode mixing phenomenon caused by empirical mode decomposition (EMD). The
energy of vibration signals will change in different frequency bands when the top-coal fall down or the
coal-gangue fall down. According the information theory, we define EEMD energy entropy to describe this
change. Experimental results show that EEMD energy entropy of top-coal caving is always greater than that
of coal-gangue caving. Thus, the Mahalanobis distance metric method based on EEMD energy entropy is
proposed for coal-gangue interface detection. The results show the proposed method can be used as a robust
empirical method for coal-gangue interface detection.

INDEX TERMS Coal-gangue interface detection, vibration signals, ensemble empirical mode decomposi-
tion, energy entropy, Mahalanobis distance.

I. INTRODUCTION
Top-coal caving on a fully mechanized mining face is a coal
mining method for gently inclined extra-thick coal seams or
steeply inclined extra-thick coal seams [1], [2]. In the process
of fully mechanized top-coal caving, the difficult problem to
be solved urgently is how to control the caving time according
to the caving degree of top-coal. At present, as all of the coal
caving processes are completed by manual operation of the
electro-hydraulic valve controller, the length of coal caving
time, the level of top-coal recovery, and the amount of gangue
contained depend on manual experience. The realization of
unmanned technology on full mechanized top coal mining
can release manpower, reduce coal mining cost, and improve
production safety and efficiency. Thus, coal-gangue interface
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detection is significant for controlling the ratio of coal to
gangue accurately and realizing the fully mechanized mining
automation.

In recent years, many methods have been proposed for
detecting the coal-gangue interface. Zhang et al. proposed
to detect the instantaneous refuse content of drawn coal
and gangue mixture during top-coal caving by using natural
gamma-ray technology and set up the connection between
radiation intensity and refuse content [3]. Hobson et al. ana-
lyzed several coal and gangue materials through a process of
image acquisition and digital processing and used intensity
values and surface texture properties to find possible differ-
entiation between varieties of bituminous coal and associated
gangue [4]. Yu et al. proposed an expanded-order GLCM
algorithm to recognize coal and coal-gangue image [5].
Based on the noise separation by Independent Component
Analysis (ICA) for acoustic signal, Xu et al. proposed
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a new coal-rock interface detection method by extracting
Mel-frequency cepstrum coefficients [6]. Zhang et al. carried
out Hilbert spectrum analysis for coal and gangue acoustic
signals and proved that the acoustic signal characteristics
could be used to the recognition of coal-gangue interface [7].
Song et al. proposed a newmulti-class characteristic selection
method based on vibration and acoustic signal and designed
an effective minimum enclosing ball algorithm for rapid
detection of coal-gangue in the caving process [8]–[10].
Liu et al. found the distribution of the Hilbert spectrum of
top-coal caving to be more uniform than that of coal-gangue
caving and proposed a new method to detect coal gangue
interface based on the information entropy of the Hilbert
spectrum [11].

However, themethod based on gamma-ray requires that the
coal or gangue must contain a large number of radioactive
elements, which is easily disturbed by inclusions in coal
and limited by geological conditions. The frequency-domain
characteristics of acoustic signals of coal and gangue are
also used to identify the coal-gangue interface, but it is
difficult to extract the real acoustic signal from the strong
complicated noise environment. The coal gangue identifi-
cation method based on image recognition remains at the
stage of static image analysis. Under the adverse mine pro-
duction environment and complex lighting conditions, it is
difficult to denoise and reconstruct the dynamic image of
coal and gangue caving. According to the different physical
and mechanical parameters of coal and gangue, the empirical
mode decomposition (EMD)method is utilized to analyze the
vibration signal while coal-gangue fall down, and performs
well [11]–[14]. EMD is an adaptive method of signal analy-
sis proposed by Huang et al., which has been widely used
in the fields of fluid mechanics and geophysics [15]–[18].
However, the EMDmethod still has some shortcomings such
as end-point divergence effects, stopping criteria, and mode
mixing [19]–[23]. To solve this problem, Wu et al. pro-
posed an ensemble empirical mode decomposition (EEMD)
method, which superimposed the finite amplitude white
noise many times in the original signal [24]. This method
makes the signal continuous on different scales and elimi-
nates modal aliasing phenomenon to a great extent. Recently,
Liu et al. developed a hybrid model combining EEMD and
support vector regression (SVR) to predict vibration of the
gearbox in high-speed trains [25]. Jiang et al. proposed a
novel detection method for rolling bearing based on EEMD,
which can extract fault feature information of rolling bear-
ing more effectively [26]. Considering the real-time recogni-
tion of caving coal-rock, Li et al. employed a new method
based on EEMD and kernel principal component analy-
sis (KPCA) to realize the real-time recognition of caving
coal-rock [27].

The above research provides a reference and foundation
for coal-gangue interface detection in top coal caving. How-
ever, due to the complex working conditions underground,
different distribution of coal seams, and the existence of
particle disturbance and other conditions, there is still a big

FIGURE 1. Hydraulic support and position of sensors(1. coal seam 2.
coal-gangue 3. gangue 4. sensors).

gap between the various detection methods and the actual
application of the coal gangue identification in the top coal
caving.

In this paper, EEMD is applied to the feature extraction
of vibration signals of coal and gangue. The vibration sig-
nals produced under two typical caving states of top-coal
and coal-gangue are decomposed by EEMD, and the nat-
ural IMFs with frequencies arranged from high to low are
obtained, which effectively suppresses the mode mixing in
these IMFs. Since the energy of the vibration signal in differ-
ent coal caving states varies with the frequency distribution,
a new coal-gangue interface detection method combining the
EEMD energy entropy feature and Mahalanobis Distance is
proposed to describe this change quantitatively according to
the information entropy theory.

This paper is organized as follows: in the next section,
the basic principles and experimental device of coal-gangue
interface detection are introduced. Then, the EEMD algo-
rithm and its implementation are given, and the definition
of EEMD energy entropy is also given. EMD and EEMD of
the simulated signal are presented in the section ‘‘Simulation
signals analysis’’. The application of EEMD energy entropy
characteristics to classify the caving states is then discussed,
and the detailed experimental results are reported. The con-
clusions are provided in the last section.

II. BASIC PRINCIPLE OF THE COAL-GANGUE
INTERFACE DETECTION
The experimental site is located at the No.2303 fully mech-
anized caving face of Zhangcun Coal Mine of Lu’an Min-
ing Group, Shanxi, China. The geological structure of the
coal mine is complex with a length of 220m, an aver-
age coal thickness of 6.45m, a roadway length of 1600m,
and the average dip angle is 5◦. Coal caving equipment
adopts MGTY250/600-1.1D shearer, ZZP4800-17/33 low-
level hydraulic support, and SGZ-830/800 double-chain
scraper conveyor.

The process of coal caving is sequential single-wheel,
then the top-coal falls into the rear chute through the tail
beam. When the top-coal is caved, the coal seam collapses
under the pressure of mine, then the top-coal is released
under the action of tail beam and flapper. The time of
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FIGURE 2. The simulation signal (a) sinusoidal signal with 50Hz (b) high frequency oscillation
signal (c) superimposed signal.

FIGURE 3. EMD decomposes the simulation signal into five IMFs and one residual.

top-coal caving is not strictly limited. Generally, the coal
caving outlet is closed immediately when a large amount of
gangue is released. We found that when coal and gangue fall
down, the characteristics of vibration signals generated by
coal and gangue shocking the tail boom are different [11].
Zhou et al. proved that the crushing probability of coal and
gangue increases with the increase of impact velocity through

the impact crushing test of coal-gangue, but the crushing
probability of the gangue in the same condition is far less than
that of coal, which provides a research foundation for coal
gangue recognition based on impact [28]. The coal-gangue
interface detection system is to identify coal caving states
by analyzing the difference of vibration signals of coal and
gangue. The entire system consists of a portable vibration
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FIGURE 4. EEMD decomposes the simulation signal into five IMFs and one residual.

FIGURE 5. The original vibration signals.

data acquisition terminal and a real-time signal processing
platform. As shown in Figure 1, the acceleration sensors are
fixed on the hydraulic support, acquiring vibration signals
from the steel plate when coal and gangue fall down and
shock the tail boom. The level of sensitivity of the vibra-
tion sensor is 5mV/g, and the maximum measuring range is
1000g. The frequency range of the sensor is from 1Hz to
15KHz. The axial front-end of the sensor is equipped with
a powerful magnet which can be firmly attached to the steel
plate.

FIGURE 6. EEMD results of vibration signal for top-coal caving.

III. EEMD ALGORITHM AND ENERGY ENTROPY
A. EEMD ALGORITHM
EMD is a time series analysis method proposed by
Huang et al., which can analyze both linear stationary signals
and nonlinear and non-stationary signals. Its key idea is to
decompose the complex signal into several IMFs, which con-
tain different time scales reflecting the local physical charac-
teristics of signals. However, the mode mixing of EMD will
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FIGURE 7. EEMD results of vibration signal for coal-gangue caving.

FIGURE 8. EMD results of vibration signal for top-coal caving.

make IMF lose its physical meaning [29]–[31]. Huang con-
siders that mode mixing is an intermittent phenomenon and is
related to the selection of extreme points during decomposi-
tion. To address this problem, Wu et al. proposed the EEMD
algorithm. In this algorithm, the Gauss white noise is super-
imposed on the original signal, and then EMD decomposition
is carried out many times. The total mean value of each IMF
component is taken as the final decomposition result. EEMD
algorithm takes full advantage of the statistical characteris-
tic of uniform frequency distribution of Gauss white noise,
which makes the signal with noise continuous at different
scales and significantly reduces the mode mixing [32]–[35].

EEMD algorithm is described as follows:
Step (1): Let the original signal is x(t), and superimpose

random Gauss white noise gm(t) with an amplitude coeffi-
cient k on x(t) to get the noise signal xm(t), namely

xm(t) = x(t)+ kgm(t) (1)

Step (2): Perform EMD on xm(t) to get p IMFs cmn(t)
(n = 1, 2, 3. . . . . .p), where cmn(t) represents the nth IMF got
from the mth EMD.

Step (3): Repeat steps (1) and (2) N times. Perform the
total average operation of the IMF got by N times EMD to
eliminate the influence of adding Gauss white noise on the
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TABLE 1. Comparison of EEMD energy entropy.

FIGURE 9. EMD results of vibration signal for coal-gangue caving.

TABLE 2. EEMD Energy entropy eigenvalue.

actual IMF. Thus, the final IMF is as follows:

cn(t) =
1
N

N∑
m=1

cmn (2)

where cn(t) is the nth IMF after EEMD, n = 1, 2, 3. . .p.

B. EEMD ENERGY ENTROPY
Information entropy can describe the average uncertainty of
probabilistic systems [36]–[38]. If the probability distribution
p(xi), i = 1, 2,. . . , n, denoted by p1, p2, . . . , pn, then the
information entropy H (S) can be defined as:

H (S) = −
n∑
i=1

pi lg pi (3)

The probability distributions satisfy the following equation
because of the completeness of probability space:

n∑
i=1

pi = 1 (4)

According to the extreme principle of information entropy,
if the probability distribution is uniform while the proba-
bility of each event in the system is equal, the value of
information entropy, that is, the degree of uncertainty is the
largest [39]–[43].

After EEMD of the original input signal x(t), n IMFs can
be obtained to calculate the energy of each IMF, denoted by
E1, E2,. . . , En.

Ei =
∫
+∞

−∞

|ci(t)|2dt, (i = 1, 2, . . . , n) (5)

Due to the orthogonality of EEMD, the sum of the
energy of n IMFs should be equal to the total energy
of the input signal if the residual is ignored. Since each
IMF component contains different frequency components,
E = {E1, E2,. . . , En} automatically forms an energy distribu-
tion of the input signal in the frequency domain. The energy
of each IMF is normalized, that is, pi = Ei/E . Then, similar
to the information entropy, energy entropy based on EEMD
can be defined as:

H (p) = −
N∑
i=1

pi log10 pi (6)

The formula (6) also satisfies the complete property of
information entropy. According to the extreme principle of
information entropy, the more uniform the pi distribution is,
the larger the value of EEMD energy entropy is.

IV. SIMULATION SIGNAL ANALYSIS
To verify the EEMD method, a simulation signal x(t) is
constructed by a frequency of sinusoidal signal x1(t) with a
frequency of 50Hz and the high-frequency oscillation signal
x2(t). The sampling frequency is 1KHz and the number of
sampling points is 1000, as shown in Figure 2.

Firstly, the signal x(t) is decomposed by EMD, and the
result is shown in Figure 3. It can be seen that five IMFs and
one residue are obtained by EMD, but the two constituent
signals x1(t) and x2(t) are not completely separated. Seri-
ous mode mixing occurs at 0.3s, 0.5s, and 0.7s of the C1
component. In this case, the IMFs obtained by EMD are
meaningless.

In order to overcome mode mixing, the EEMD is further
used to decompose the simulation signal above. The ampli-
tude coefficient k of the added white noise is 0.04, and the
number of timesm of EMD is 100. Figure 4 shows the decom-
position result of EEMD. It can be seen that theC1 component
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TABLE 3. Experimental results for EEMD energy entropy.

TABLE 4. EMD energy entropy eigenvalue.

is approximate to a high-frequency oscillation signal, and the
C2 component is approximate to a low-frequency sinusoidal
signal with a frequency of 50Hz. Therefore, the simulation
results prove EEMD to be an effective method that can
separate the components of the original signal reflecting the
physical meaning of the signal accurately. The mode mixing
phenomenon is effectively suppressed.

V. COAL-GANGUE INTERFACE DETECTION BASED ON
EEMD ENERGY ENTROPY
A. EEMD FOR COAL-GANGUE VIBRATION SIGNAL
In this paper, EEMD is applied to coal-gangue interface
detection. The experimental data is fromNo.2303 fullymech-
anized caving face of Zhangcun Coal Mine. The total time
of coal caving usually lasts about 90s. Generally, the whole
process of coal caving can be divided into two stages. The
stage in the first 60s is considered as the state of top-coal
caving without gangue. The next stage in the last 30s is
considered as the state of coal mixed with gangue caving.
The vibration signals acquired from these two stages are
used as experimental samples. Figure 5 shows the acquired
two-stage vibration signals in the coal caving face, in which
Figure 5(a) is the time-domain signal of top-coal caving, and
Figure 5(b) is the time-domain signal of coal-gangue caving.
The sampling frequency is 8KHz and the sampling time
is 250ms.

In this research, EEMD is applied to the analysis of sepa-
rate vibration signals of top-coal and coal-gangue. The num-
ber of decomposition is set to 200, and the standard deviation

of white noise is 0.4 times that of the original signals. The
decomposition results are shown in Figures 6-7. And the sig-
nals are also decomposed by EMD for comparison, as shown
in Figures 8-9.

As shown in Figures 6-7, EEMD decomposes the two
original vibration signals into 7 IMFs and residual r . The
7 IMFs contain different frequency components from high to
low. The original vibration signals are also decomposed by
EMD into 7 IMFs and residual r , in which each IMF contains
different time scales.

However, it is found that there is an obvious mode mix-
ing in EMD results. In the case of the top-coal caving,
low-frequency signals appear in the high- frequency sequence
in IMFs from C2, as shown by arrow 1 in Figure 8. When
coal-gangue fall down, the same phenomenon also appears
in IMF C1, as shown by the arrows 1-3 in Figure 9. There
are even end-point divergence effects in IMF C4 and IMF
C6 shown by the arrows 2-3 in Figure 8. Arrows 4 and
5 in Figure 9 also show serious end-point divergence effects.
Comparatively, the result of EEMD is relatively stable with
good orthogonality, which can better explore the essence of
signals.

B. COAL-GANGUE INTERFACE DETECTION BASED ON
EEMD ENERGY ENTROPY
In the state of top-coal caving, the frequency of each IMF
forms the uniform distribution automatically after EEMD.
When goal-gangue fall down, the frequency distribution of
each IMF will change. At the same time, the energy distribu-
tion of the coal-gangue vibration signal will change accord-
ingly. To verify this change, EEMD energy entropy is then
calculated respectively according to Section 3. Table 1 lists
the value of energy entropy under the two caving states.

As shown in Table 1, the EEMD energy entropy of top-coal
caving is greater than that of coal-gangue caving. Because
when top-coal fall down, the coal flow is relatively uniform,
and the energy distribution of the vibration signal is close to
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TABLE 5. Experimental results for EMD energy entropy.

random distribution, so the entropy value is relatively higher.
However, when gangue mixed with coal fall, the energy of
the vibration signal will be concentrated in certain frequency
bands. The less uniform energy distribution causes the value
of energy entropy to be smaller. If a large amount of gangue is
mixed in top-coal, the energy of IMFs is more concentrated.
If appropriate analysis time is selected, the coal-gangue inter-
face can be detected by the value of EEMD energy entropy.

Hence, the Mahalanobis distance function is proposed as
a quantitative method to identify the interface between coal
and gangue during coal caving, based on the value of EEMD
energy entropy calculated from selected IMFs. The algorithm
is described as follows:

Step (1): Acquire 2N vibration signals withN known states
of top-coal caving and known states of coal-gangue caving as
a training set. The sampling frequency is 8KHz.

Step (2): Carry out EEMD for each sample in the training
set and calculate energy entropy value S as the eigenvalue.
Step (3): For each state i, the mean S̄i and variance

σi of the eigenvalue S are calculated respectively (where
i = 1,2 denotes the two caving states of top-coal caving or
coal-gangue caving) and S̄i is used as the feature template in
each state.

Step (4): For each test signal, the eigenvalue is also
obtained according to the above steps, denoted by St .
Step (5): Calculate the Mahalanobis distance between St

and the template eigenvalue S̄i in each state:

di =

∣∣St − S̄i∣∣
σi

, i = 1, 2 (7)

Step (6): Compare the values of d1 and d2, and take the
state corresponding to the minimum Mahalanobis distance
as the caving state of the test sample signal. For example,
if d1 < d2, it means that top-coal fall down. And if d1 > d2,
the coal-gangue state is applicable. In the special condition
of d1 = d2, it is unable to classify the state of the test sample
signals.

C. VALIDATION STUDY
In this study, a total of 50 vibration signals are acquired by
the data acquisition terminal for each state with a sampling
frequency of 8KHz, among which 10 randomly selected sam-
ples for each state are taken as test samples. The remaining
40 samples, consisting of 20 samples for each state, are used
for training data sets. The EEMD energy entropy mean S̄i and
variance σi for the training samples corresponding to each
caving state are listed in Table 2.

Utilizing formula (7), the Mahalanobis distance between
St and the template eigenvalue S̄i is obtained. Table 3 lists
the detection results of 10 sample signals. It can be seen
that there is a clear difference between the Mahalanobis dis-
tances corresponding to each of the caving states, suggesting
an unambiguous identification of the signals. Furthermore,
the detection results are totally consistent with the real caving
state. Experimental results show that the Mahalanobis dis-
tance of EMMD energy entropy of tail boom vibration signals
can be used to classify the caving states.

For comparison, EMD energy entropy is also used for
validation testing with the same training set and test set. The
EMD energy entropy mean and variance for the training sam-
ples corresponding to each caving state are listed in Table 4.
Table 5 lists the detection results of 10 sample signals. From
Table 5, we found that there is error discrimination in samples
No.2 and No.3. The overall accuracy rate is only 80% in this
validation.

VI. CONCLUSION
Coal-gangue interface detection during top-coal caving min-
ing is a challenging problem. In this paper, the EEMD algo-
rithm and energy entropy theory are applied to extract the
vibration signal features of the tail boom support, which
can be used for top-coal and coal-gangue caving state clas-
sification. We decomposed the measured vibration signals
of coal-gangue into IMFs, each of which represented the
distribution of frequency from high to low. Compared with
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EMD, we found that EEMD can effectively suppress the
modemixing phenomenon and reduce the degree of end-point
divergence. Therefore, it can reveal the physical nature of
vibration signals better. The energy of vibration signals will
change in different frequency bands when the top-coal fall
down or the coal-gangue fall down, so we applied EEMD
energy entropy to distinguish the two caving states. Experi-
ments show that the EEMD energy entropy of top-coal caving
is considerably bigger than that of coal-gangue caving. Based
on these results, we proposed the Mahalanobis distance met-
ric applied to EEMD energy entropy as a classification tool
for top-coal and coal-gangue caving states. The validation
study proved that EEMD energy entropy can be used as a
robust empirical method for coal-gangue interface detection.
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