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ABSTRACT This paper presents a method of obtaining an operating point configuration for a laser model
based on a traveling wave model (TWM), which can then be used in a circuit-level simulator. The method
first finds an approximate distributed single-mode stationary solution, this solution is then iterated using the
travelingwave equations to an accurate single-mode solution, and finally a short pre-simulation is used to add
harmonic content to create a multi-mode configuration of the laser approximating its behavior at an operating
point. The effectiveness of this approximation is tested by initiating transient simulations from this operating
point and comparing them to the output of the model started from an off state. The stochastic variation in
the operating point for a particular configuration is also well predicted. Included in the formulation are gain
compression and dispersion effects, laser chirp due to variation in the effective index of the laser mode,
and spontaneous emission. Finally, the use of the three-stage process of finding the operating point in a
circuit-level simulator is discussed. Not only does the three-stage method provide a quick, accurate operating
point for the circuit simulator, but the ability to provide an orders of magnitude faster estimate for the initial
circuit-level operating point is critical to the practicality of its use in the simulator. The first stage of the
three-stage method does just this.

INDEX TERMS Laser, modeling, traveling wave, photonic circuit analysis, optoelectronics.

GLOSSARY
BC Boundary Condition. 3, 4
FSS Fast Steady State. 7-9, 13, 14, 17-19
FTSS Fine-Tuned Steady State. 8-10, 13, 14, 17-19
MNA Modified Nodal Analysis. 2
OP Operating Point. 1, 7, 8, 13-20
PS Pre-simulation. 9, 13, 14, 16-20
QHSS Quasi-Harmonic Steady State. 2, 5, 7, 10-19
REM Rate Equation Model. 1, 2, 6, 7, 17
SPE Spontaneous Emission. 2, 4-11, 15, 17, 18, 20
SS Steady State. 1, 4, 6, 17
TWM Traveling Wave Model. 1-4, 7-11, 13-20

I. INTRODUCTION
The integration of optical and electronic devices to achieve
lower costs and higher functionality is attractive for a wide
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variety of information technology applications. A key to
innovation at the design level for these circuits is the avail-
ability of sophisticated computer aided design (CAD) tools
such as circuit-level simulators. Work has been ongoing into
the development of a wide variety of approaches for optical
circuit-level simulation. This progress has involved the cre-
ation of frequency and time domain methods for both linear
and nonlinear devices and circuits as well as initial work into
co-simulation of electronics and optical devices [1]–[5]. The
work has produced a number of commercial products [6]–[8].
The research described in [9] presents a fully integrated
optical/electrical simulator within the SPICE-like framework
commonly used in electrical circuit simulation.

For devices such as integrated lasers an important compo-
nent of circuit-level simulators is the compact model. Com-
pact models are physically-based, fast and flexible. They take
‘‘inputs’’ and determine ‘‘outputs’’ using just enough detail to
keep them extremely fast. For example the input for a laser
might be an applied voltage and the outputs would be the
current flow through the device and the optical output power.
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An important criteria for such compact models is that they
have representations in both the time and frequency domains
and that a direct current (DC) or steady state (SS) solution
is available for determining an operating point (OP) of the
circuit. When determining the operating point of a circuit,
a circuit/system-level simulation tool will often require the
operating point of the compact model to be evaluated many
times (perhaps hundreds) as the simulator iterates the nonlin-
ear circuit equations to convergence. Therefore the require-
ment for a quick determination of an operating point is crucial
for effective CAD of circuits and systems.

A typical laser model for a circuit simulator is the rate
equation model (REM) [10]. Such a model describes the laser
with a set of rate equations that predict the average laser
carrier and photon densities over time. The use of a lumped
model, however, ignores key aspects of the laser operation
due to its distributed nature. Standalone device simulation
of lasers which includes distributed effects is a mature and
prolific field. A number of these models are well suited to
be transformed into compact models for circuit simulation.
Two such examples are models based on transmission line
representations [11] and models based on traveling waves,
Traveling Wave Model (TWM) [12]–[14].

A significant amount of work (see [12]–[15] and references
found in [16] (chapter 31)) has established the ability of
the TWM to predict a wide range of behaviour accurately
and is confirmed by experimental work. These models are
formulated to perform standalone device-level transient laser
simulation and analysis. However, recently a methodology
for creating a compact model for a traveling-wave-based
device for incorporation into an MNA-based solver has been
published [17].

If such models are to be used in a circuit-level simulator
the model must be able to predict an operating point config-
uration for the laser with a requirement that this prediction
is not computationally costly. This is a significant challenge
for a laser as the physics is complex and nonlinear. Even
a simple model of the laser leads to coupled Lorenz-like
equations for the carrier and photon densities that can exhibit
deterministic chaotic behaviour [18]. As such, laser operation
at an operating point should not simply be understood as
a stationary state where all variables are invariant in time.
A laser is an oscillator, potentially resonating at a number of
frequencies (modes), and although the average output power
may be stable in time the internal electromagnetic fields will
not be. In addition there is a random component to the fields
due to spontaneous emission (SPE).

A characteristic specific to a compact model representation
of an optical device in a circuit is that the output optical
field will generally be referenced to a carrier frequency (ωc).
This greatly reduces the computational cost of the model.
The actual optical output of the laser at a particular operat-
ing point or current bias (Id ) will be offset (detuned) from
this frequency causing a linear variation in the phase of the
optical output (chirp) and therefore will also not be station-
ary. The goal of a laser compact model must be to provide

a configuration of the laser that approximates its behavior at
an operating point and produces a minimal disturbance for
the initial part of a transient simulation.

Figure 1 illustrates a long (hundreds of ns) transient
response for a laser simulation from an off state to an oper-
ating point above threshold. It is important to note that the
modulation of the signal due to the optical carrier has been
removed and the response is that of a complex envelope.
Although at the end of the transient the laser state has
evolved to a stable configuration, a significant amount of
harmonic content is present due to detuning, the presence of
multiple longitudinal modes and SPE. The large sinusoidal
modulation of the field results from a chirp of the nominal
carrier frequency due to either model detuning or a carrier
dependent optical index (Henry effect). The two insets show
the other sources of harmonic content—higher order longi-
tudinal modes and SPE. Due to the presence of these other
sources of harmonic content and the constant exchange of
energy between the modes, the final operating point is not
truly harmonic and so we refer to it as a quasi-harmonic
steady state (QHSS). It should be noted that the length of
the transient is considerable and precludes simply simulating
mixed electrical-optical circuits by initializing them in an off
state.

FIGURE 1. Complex envelope transient response of a laser simulation
when started from-off. This transient can last hundreds of nanoseconds.
There is a small amount of detuning to illustrate chirp. The two insets
present the real part of the output at various time scales.

In this paper we will present a methodology to deter-
mine an operating point configuration of a traveling wave
laser compact model [17] suitable to be incorporated into
a time-domain optoelectronic circuit/system simulator such
as OptiSPICE [9], [19]. The three-stage methodology will
be shown in detail and then evaluated by performing tran-
sient simulations from an operating point and showing that
the initial transient disturbance is not significant and that
the simulation matches a simulation transitioned to steady
state from an off state—which we will refer to as from-off.
The ability of the method to predict the natural stochas-
tic variation in the operating point will also be addressed.
In the last section the implications of the three-stage method
will be evaluated for incorporation into a circuit-level
simulator.
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II. TRAVELING WAVE MODEL
Travelingwavemodels (TWMs) of lasers are physically-based
and provide a significant improvement in sophistication
on REMs [12]–[14]. The model is derived directly from
Maxwell’s equations and produces a set of 1D first-order
wave equations for the forward and backward propagating
waves (see Fig. 2).

FIGURE 2. Laser geometry showing the length (L), width w and the three
primary variables for the TWM: carrier density N and forward and reverse
propagating complex fields Êf and Êr .

A. FIELD PROPAGATION
The derivation of the field equations results from two basic
assumptions: 1) propagation of the electromagnetic field in
a homogeneous waveguide which is described by a set of
transverse modes each with a specific group velocity vg
and effective index ng and 2) identification of a reference
(or carrier) wavelength associated with the field. Such a
model is a good candidate for a compact model as it models
the evolution of the envelope of the optical signal and not the
fundamental frequency.

If we assume for simplicity that only one transverse mode
is excited then the field in the waveguide can be given by

Ê(t, z) = Êf (t)ei(ωct−kcz) + Êr (t)e−i(ωct−kcz)

where Êf and Êr are complex envelopes for the forward
and reverse propagating fields. These capture both the local
magnitude and phase of the signals. (Note a ^ over a sym-
bol indicates a complex value). The carrier frequency and
wavenumber for the signal are given by ωc and kc.
The equation for the propagation of the envelopes of the

two waves (assuming they are slowly varying) can be shown
to be [12]:

1
vg

∂Êf
∂t
= −

∂Êf
∂z
−iβ̂(z)Êf

1
vg

∂Êr
∂t
= +

∂Êr
∂z
−iβ̂(z)Êr

where β̂ is a propagation constant that captures effects such
as a local perturbation in the effective index or gain/loss of
the field.

B. LASER MODEL
One of the advantages of the TWM is its physical nature
and the ease with which phenomena can be added to the
model. To complete the model of a semiconductor laser a
number of effects need to be added. First, the addition of

a simple distributed rate equation of the excess carrier density
(N (z)) is needed. Using N (z) the propagation constant β̂ can
be used to model the local material gain and index variation
due to the applied current. In addition, if desired, coupling
between the forward and reverse traveling waves can be
incorporated for distributed feedback based lasers. Finally,
spontaneous emission can be modeled by adding stochastic
terms to the equations (F̂f and F̂r ). Given these additions
the two first-order wave equations describing the evolution
of these two signals are [12]:

1
vg

∂Êf
∂t
= −

∂Êf
∂z
− iβ̂(N , S)Êf + iκ̂f Êr + F̂f (1a)

1
vg

∂Êr
∂t
= +

∂Êr
∂z
− iβ̂(N , S)Êr + iκ̂r Êf + F̂r (1b)

where κ̂f and κ̂r describe coupling of the two waves. We can
define a photon density S(z) = |Êf (z)|2 + |Êr (z)|2 where it is
assumed that the two signals are normalized correctly.

The equation describing the evolution of the carrier density
is given by a distributed first-order rate equation:

dN (z)
dt
=
ηId
qVl
− G0(N (z)− Ntr )S(z)−

N (z)
τn

(2)

where we have a differential gain G0, η is the quantum effi-
ciency, Vl the volume of the active region, Id is the laser cur-
rent and τn the spontaneous emission coefficient. If desired,
other effects such as electron diffusion or a non-uniform
current distribution can be added.

To complete a laser model it should be noted that the
presence of mirrors places a boundary condition (BC) on the
two fields such that:

Êf (0) = R̂ Êr (0) and Êr (L) = R̂ Êf (L) (3)

where R̂ is the reflectivity of the two surfaces at the end of the
laser. The output of the laser will then be given by:

ÊO = Êf (L)
√
1− R̂2

The three first-order rate equations (1, 2) and the
BC relationship (3) comprise a basic distributed model of the
laser, describing both the temporal and spatial evolution of
the laser operation. A key distributed phenomenon captured
by the model is the presence of longitudinal modes and gain
dispersion.

C. LONGITUDINAL MODES AND GAIN DISPERSION
As is well known a laser will support longitudinal modes at
frequencies given by:

ωm = 2π
vg
2L

m = ω1m

wherem is the mode number andω1 = πvg/L. For the TWM
it is convenient to reference frequencies with respect to the
carrier frequency ωc. We are then free1 to choose ωc to be the

1It should be noted that if the carrier frequency cannot be freely chosen
then as discussed below themodel will be detuned and the fundamental mode
will not be stationary.
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dominant laser mode m′ and we have:

ω′l = ω1m− ωc
= ω1(m− m′) = ω1l (4)

where l = m − m′. The TWM laser model will naturally
produce signals (Êf and Êr ) dominated by these modal fre-
quencies. The field component associated with l = 0 is
essentially a stationary field with respect to the complex
envelopes. Components associated with negative and positive
l values represent modes below and above ωc respectively.
There are also an associated set of spatial modes for which
k0 = 0 and km = mk1 where k1 = ω1/Vg.
Due to the frequency dependence of the gain in thematerial

this harmonic content will have a significant effect on the
behavior of the laser. The gain of the material is captured
in the TWM by the propagation constant β̂. In particular the
imaginary part of β̂ (which represents the material gain) will
be a strong function of the frequency.

A commonly used expression to capture the frequency
dependence of the gain is a Lorentzian. Using a shifted fre-
quency ω′ = ω − ωc the gain due to the forward traveling
wave in the material can be described by:

P̂f (ω′) =
Êf (ω′)γ

γ + i(ω′ − ω′L)
(5)

where ω′L = ωL − ωc and ωL is the frequency of maximum
gain. In the time domain this relationship is represented as:

dP̂f
dt
= iω′L P̂f + γ (Êf − P̂f ) (6)

The physical interpretation of this relationship is that of a
band-pass filter relating P̂f to Êf and that at SS (dP̂f /dt = 0)
P̂f will be linearly related to Êf . As ω′ diverges from ω′L the
band-pass nature of the Lorentzian will cause P̂f to be small
relative to Êf .
To incorporate the effect of this polarization on the field

an additional term of the form of −kp(Ê − P̂) is added to the
propagation equations [20]:

1
vg

∂Êf
∂t
= −

∂Êf
∂z
−iβ̂(N , S)Êf

+ i κ̂f Êr + F̂f − kp(Êf − P̂f )

1
vg

∂Êr
∂t
= +

∂Êr
∂z
−iβ̂(N , S)Êr

+ i κ̂r Êf + F̂r − kp(Êr − P̂r )

where kp represents the strength of the coupling between
the polarization and the field. At frequencies near ω′L the
polarization term will be close to zero and the fields will be
unaffected. For frequency components away from the center
of the Lorentzian, however, P̂f will be small making the term
large and negative producing a suppression of the field and
capturing gain dispersion in the laser.

The frequency dependence of the gain is the primary deter-
minant of the distribution of energy between the allowed

longitudinal modes for the laser. The position and width of
the Lorentzian in the frequency domain will determine the
dominant mode and the partition of power between modes
present during transient operation and at a harmonic steady
state.

D. DETUNING, HENRY FACTOR AND GAIN COMPRESSION
A second source of harmonic content in the fields is the
presence of a real part of β̂. This real part has two sources;
1) a constant part δ which typically represents a static detun-
ing and 2) a Henry factor (αH ) capturing the carrier depen-
dence of the real part the effective optical index. The static
detuning is used to align the natural (modal) frequencies
of the laser with the desired carrier frequency ωc [17]. For
example if δ = −1/τp where τp is the average lifetime of
a photon in the laser then ωc is defined to be the frequency
of operation when the laser is at threshold. The Henry factor
is commonly modeled using a linear relationship between the
effective index and the carrier concentration and we can write
for the complex propagation constant,

β̂(N , S) =
[αH
2
G0(N − Ntr )+ δ

]
+ i

[
1
2

(
gfG0(N − Ntr )− αl

)]
= βr + iβi (7)

where we have defined a differential gain G0, a gain com-
pression factor gf and αl specifying losses due to scattering
and absorption. The real and imaginary parts of the complex
propagation constant are denoted by βr and βi. The physical
effect of the βr term is to induce a ‘‘rotation’’ of the field as
it propagates through the laser producing a phase shift on the
output and chirp in the modal frequencies.

The gain compression factor is gf defined by [10],

gf =
1

1+ εS

where ε is the gain compression parameter. This parameter
is used to represent a number of strong nonlinear effects in
lasers such as spatial and spectral hole burning.

E. DISCRETIZATION OF THE TRANSIENT EQUATIONS
A numerical model of these equations is simply formed by
discretizing both space and time with z→ zi and t → tj. The
only care that needs to be taken is to use an up-wind formu-
lation for the spatial derivatives. This leads to the following
equations [17],

N (j+1,i)
= N (j,i)

+1t
[
ηId
qVl
− G0(N (j,i)

− Ntr )S −
N (j,i)

τn

]
Ê (j+1,i)
f = Ê (j,i−1)

f e−iβ̂(zi)1z−i1zκ̂f Ê (j,i+1)
r

+ F̂ (j+1,i)
f − kp(Ê

(j,i)
f − P̂(j,i)f )

P̂(j+1,i)f =

P̂(j,i)f +
1
21t

[
γ (Ê (j+1,i−1)

f − Ê (j,i)
f + ω′L P̂

(j,i)
f

]
1− 1

21tω
′
L
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where the equation for P̂f uses a second-order (trapezoidal)
time derivative to minimize integration error. These equations
plus corresponding ones for Êr and P̂r and the BCs represent
a complete discrete transient model of the laser.

F. HARMONIC STEADY STATE EQUATIONS
As a naive approach to finding a steady state operating point
of the laser one can find a set of time-independent equa-
tions by setting all time derivatives to zero and dropping
the stochastic SPE terms. If, for simplicity, we assume no
detuning, a Henry factor of 0, no wave coupling and ω′L = 0,
with no SPE, the time-independent propagation equations
become decoupled and straightforward to solve. For exam-
ple the propagation equation for the forward traveling wave
becomes,

∂Êf
∂z
= −iβ̂(z)Êf

which can be directly solved to give:

Êf = Êf 0e−iβ̂z (8)

This trivial solution, however, only provides information
on the primary longitudinal mode (l = 0 see (4)) and does
not yield any information regarding the amplitudes of the
other modes that we know will be present. In order to obtain
such information we need to have the frequency information
implicit in the full field equations.

The obvious way to proceed is to assume we have a har-
monic steady state solution with all modes present. To find
the harmonic steady state equations we begin with the time
domain equations and move to the frequency domain by
expanding the fields and polarization response using a Fourier
series of the complex envelope at a particular position z
with the laser modes frequencies as a basis. Ignoring modes
beyondM the fields have the form of

Êf (z) =
M∑
−M

êfi(z)eiωit (9)

For a particular z of the forward going field (remembering
that the ê coefficients are functions of z) we have from (1a)
(dropping the SPE term) by equating the ith coefficients,

∂ êfi
∂z
= −

iωi
vg
êfi−iβ̂(z)êfi − kp(êfi − p̂fi)

Defining, p̂fi = 0(ωi)êfi = 0iêfi we can obtain,

0i =
γ

i(ωi − ω′L)+ γ

from (6). Allowing us to write,

∂ êfi
∂z
= K̂iêfi

where

K̂i = −
i
vg
ωi−iβ̂(z)− kp(1− 0i) (10)

Using a spatial discretization z = j1z for j = 0 . . .m with
êfij denoting the ith mode at position j we then assume that

K̂i is constant over the spatial step and we have:

êfi(j+1) = êfijeK̂ij1z and êri(j−1) = êrije−K̂ij1z (11)

The carrier density N (z, t) can be assumed to be static with
respect to the optical frequencies and we have N (z, t) = N (z)
and discretizing gives,

ηId
qVl
− G0(Nj − Ntr )Sj −

Nj
τn
= 0 (12)

To obtain a harmonic steady state solution the above three sets
of equations (Eq.s (11) and (12) for 2×n×m+m unknowns)
must be solved subject to the boundary conditions present at
the mirrors,

êf ,n,1 = êr,n,1eK̂n,11z and êr,n,K = êf ,n,K eK̂n,K1z (13)

The equations (11–13) using the definition of S above can
be written as a set of coupled nonlinear equations where the
coefficients êfi, êri and Nj are the unknowns. As the equations
are nonlinear they need to be solved by an iterative technique
such as Newton-Raphson.

Unfortunately, these equations are not self-consistent. This
is because of the requirement that each mode creates a mag-
nitude profile from an appropriate gain that matches the
reflectivity at the laser ends and forms a consistent power
flow over one pass through the laser (once forward and once
backward). For a single mode this is possible as an appropri-
ate N (z) can be found that creates the needed gain. However,
assuming the reflectivities are constant for all modes but the
total gain is different due to the Lorentzian gain dispersion
this requirement is impossible to meet.

In Fig. 3 this is illustrated for the simple case of two modes
and a constant but differing gain for each mode. The gain
of the laser is effectively determined by the dominant high
gain mode and the fields will be self-consistent over a single
pass. A higher order (lower gain) mode will, after a single
pass, not return to the initial field strength resulting in a

FIGURE 3. Illustration of the power distribution in two modes within the
laser assuming two constant but different gains and a single mirror
reflectivity. Note that the ends of the fundamental (high gain and larger
magnitude) meet exactly while the ends of the higher order mode
(smaller amplitude and gain) do not.
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constantly changing distribution for the mode. This can be
confirmed by running a transient to steady state and extracting
the N (z) distribution. It is found that the gain distribution in
the laser does indeed produce a self-consistent solution for the
dominant mode of the laser. However, the other modes are not
self-consistent resulting in time varying harmonic content.
This consequence is a reflection of the fact that the laser does
not reach a true harmonic steady state, but rather a QHSS
which is tightly bound to an attractor. Due to this situation
the system of equations does not converge during iteration
and this approach is not fruitful.

III. OBTAINING AN OPERATING POINT
As the previous section has shown that obtaining a true
harmonic steady state solution to form an operating point
configuration is unworkable we proceed by attempting to
find an approximate solution. We use the REM to demon-
strate that there will always be a dominant mode with the
other modes being almost negligible. A dominant mode
solution will then be found providing an excellent approxi-
mate solution—although with no other mode harmonic con-
tent. This motivates the overall approach; to first obtain
a dominant mode for steady state operation and then to
fine-tune it to reduce the startup transient. Harmonic content
in the form of longitudinal modes is then introduced into
this solution to create an appropriate operating point con-
figuration. This three-stage method will be well suited to
the task of providing an operating point for a circuit-level
simulator.

A. MULTI-MODE POWER DISTRIBUTION
The multi-mode REM [10] is used to estimate the mode
amplitudes in the laser:

dN̄
dt
=
η(Id − Io)

qVl
−
N̄
τn
−

k∑
i=−k

Gi(N̄ − Ntr )S̄i
1+ εS̄i

(14a)

dS̄i
dt
=

Gi(N̄ − Ntr )S̄i
1+ εS̄T

−
S̄i
τp
+
βiN̄
τn

(14b)

where N̄ is average carrier density, S̄i the average photon

density of the i’th mode, S̄T =
∑k

i=−k S̄i is the total photon
density and we are solving for 2k+1 modes in total. The gain
associated with each mode is again given by a Lorentzian and
we have:

Gi = G0
γ 2

γ 2 + i(ωi − ωL)2
(15)

The rate equations for S̄i (14b) determine the threshold
value (Nth) at which the photon density exceeds losses and
lasing occurs. This equation shows that each mode will have
its own threshold as determined by that mode’s gain (15).
The mode with the largest gain will always have the lowest
threshold. Initially, when the laser is turned on there is a rapid
increase inN and itmoves above the threshold ofmanymodes
and all these modes are strongly excited as shown in Fig. 4.

FIGURE 4. Transient REM with 11 modes for transition from-off to lasing
(I = 68 ma). (a) Average carrier density. Inset shows the effective
threshold current for each mode given the frequency dependent gain.
Orange line in both is the actual steady state value. (b) Average Photon
Density for all modes showing the initial transient when all modes are
excited to the steady state values where the fundamental is dominant.
Dotted lines show steady state values.

As the transient evolves the mode closest to the peak gain
always becomes dominant and N decreases until it is slightly
above the threshold value for this mode. The other modes will
be suppressed because the carriers are consumed by the mode
that is above their threshold. This is shown in Fig 4b where
we see all modes initially have similar photon densities until
N stabilizes with only the dominant mode above threshold
containing the vast majority of the photons. Note that the
harmonic content in the higher order modes can take tens of
nanoseconds to come to equilibrium.

B. SIMPLIFIED STEADY STATE TRAVELING WAVE
EQUATIONS
The previous section shows that it is expected that the config-
uration of the operating point of the laser will be dominated
by the single mode nearest the peak of the gain distribution.
Assuming single-mode operation we can proceed to find a
solution quite simply as we avoid the singular matrix created
by the reflection of multiple modes discussed in section II-F.
This dominant mode could be chirped (shifted from ωc)
producing a modulation of the laser output. The other modes
and the SPE will contribute to the configuration by providing
a harmonic perturbation to this mode.

As we are only dealing with a single mode we can
use the trivial solution from (8) and can write for
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the SS state equations:

|Êf ,k | = |Êf ,k−1|e−iβk1z (16a)

|Êr,k | = |Êr,k+1|e−iβk+11z (16b)

Sk =
∣∣∣Êf ,k ∣∣∣2 + ∣∣∣Êr,k ∣∣∣2 (16c)

Nk =
[
ηId
qVl
+ gfG0NtrSk

] [
gfG0Sk +

1
τn

]−1
(16d)

where

βk =
1
2
[δ + αHgk + i(gk − αb)] (17)

gk = gfG0(Nk − Ntr )

These equations have been written in terms of the magnitude
of the envelopes and the phase has been removed. This can
be done as S is only dependent on the field magnitudes and
allows a solution to be found regardless of mode chosen to be
dominant.

Equations (16a) and (16b) describe the growth of the two
fields as they pass through each section of length 1z with
a gain determined by Nk . The total gain along the laser must
exactly equal the loss at the two laser ends for a self-consistent
solution. Under these conditions we obtain a set of coupled
nonlinear algebraic equations for the single-mode solution
subject to the boundary conditions prescribed by (13). Again,
it is only the imaginary part of βk that is used for (16a)-(16b).

C. FINDING A SINGLE-MODE STEADY STATE SOLUTION
Equations (16a)-(16d) are nonlinear but with an appropriate
initial guess a solution can efficiently be found by iteration.
Initial values for N̄ and S̄ are obtained by using the REM (14)
with the assumption of the existence of a single mode.

To solve (16a)-(16d) we initially set Nk = N̄ for all k
and the fields to zero. Using (16a) and (16b) in combination
with the mirror’s reflectivities, we can update the forward
and reverse travelingE fields. Repeated iterations (alternately
updating the distributed values of Êf , Êr andN ) continue until
the values converge. The number of iterations is small and
typically of the order of 10. We will refer to this approxi-
mate operating point as the Fast Steady State (FSS) solution.
To illustrate this process Fig. 5 presents the initial REM value
for N̄ and the final FSS distributions for an example of a ridge
laser with a length of 300 µm operating at 1550 nm.
The fields calculated from (16) and presented in Fig. 5b

are the magnitudes of the dominant mode. If the dominant
mode is the fundamental then these values can be used as
is. However, for a mode that is not the fundamental (and
therefore not stationary) we simply add the real part of βk
for whichever mode is desired. This provides the number of
2π rotations of the phase appropriate to the mode.
Even though the FSS is a good approximation to an oper-

ating point solution, when used to start the TWM it will
produce a transient. This is because the TWM is sensitive to
matching N with the total photon density determined by Êf
and Êr and even a close approximation may have a significant
transient.

FIGURE 5. Distributed quantities for an FSS operating point along the
laser (z). (a) Carrier density above Ntr . Shown is the initial guess from
REM, final solution and average value. (b) Magnitude of the propagating
fields showing final stationary solution.

An example is shown in Fig. 6. The two figures present the
average carrier density and the laser output for a full transient
from-off. Also shown in these figures are laser simulations
started from the FSS operating point. For the vertical scales
used in these plots the FSS appears to be a very good approx-
imate starting point. However, the inset figures in Fig. 6
present the simulation from-off after it has run to QHSS and
the initial 2 ns of simulation from the FSS. As can be seen
in these figures there is a small but noticeable transient in
both the average carrier density and the output field. It should
be noted that the transient arises not from an inappropriate
value for N̄ or E (which lie within the natural variation of the
OP) but because each implementation will be subtly different.
To match exactly requires an exact match of the algorithms.

D. FINE-TUNING FAST STEADY STATE SOLUTION
The FSS method given above is very quick and efficient but
produces a small but significant transient. To eliminate this
transient we run the exact TWMalgorithm on the FSSwithout
the stochastic forcing of the SPE—producing a deterministic
evolution that can be run to a convergence. With no SPE
present the solution will stay in the dominant mode as there
is no physical mechanism to create power in the other modes.
This procedure is performed with all parameters (Henry fac-
tor, detuning, etc.) at their correct value and the resultant
operating point will produce very little transient. Although
this step (which we will refer to as Fine Tuned Steady
State (FTSS)) is significantly more computationally intensive
than the FSS (typically in the order of tens of thousands
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FIGURE 6. Full from-off transient response for default laser parameters
and αH = 2.7 compared with FSS operating point. (a) Average carrier
density N̄ . (b) Output field magnitude |EO(t)|. Inset are details of the
operating point transient from FSS and FTSS. The FSS produces a small
transient which after approximately 1.5 ns has become of the order of the
natural variation of the operating point. The FTSS displays no noticeable
transient upon startup.

of iterations) it obtains a very clean single-mode operating
point solution with no significant transient as can also be seen
in Fig. 6 and its insets. Note that when started from the FSS
OP it is still much faster than running a simulation from-off.

E. ADDING HARMONIC CONTENT
The previous two sections determine a distribution for N and
the field magnitudes of an FTSS solution. To form a complete
operating point solution, however, energy must be added into
the other harmonic modes of this stationary laser solution. Let
us quickly review all sources of harmonic content in the laser
simulation. In total there are three sources:

1) The dominant mode not being the fundamental mode.
2) Field rotation (chirp) due to a non-zero detuning (δ) or

Henry factor (αH ).
3) Laser modes other than dominant mode.

The first two types of harmonic content can be seen in Fig 7
which presents the real part of the laser output for three
simulations. In the first two the dominant mode is the fun-
damental with and without detuning and the last is the case
where the dominant mode is the 1st harmonic. If the laser is
chirped (either statically or by a non-zero Henry factor) the
laser output is sinusoidally modulated at a frequency deter-
mined by the difference between the dominant mode and ωc.
If the dominant mode is not the stationary fundamental then
the output is modulated by ω′l where l is the order of the

FIGURE 7. Real part of the laser output field ÊO for three simulations
from-off: 1) Fundamental dominant no detuning, 2) Fundamental
dominant and a small detuning of 2% of ω1 3) A significant detuning
producing a 1st harmonic dominant OP.

dominant mode. The chirp of the laser fields by detuning or
a non-zero αH causes a ‘‘rotation’’ of the internal fields of
the laser and complicates the determination of which mode is
dominant. This is further discussed in appendix.

The formation of the FTSS has taken care of the first two
types of harmonic content. The dominant mode was selected
in the approximate FSS solution and the fine-tuning has
introduced the effect of the Henry factor and static detuning
(chirping the laser) and found a solution completely consis-
tent with the TWM equations (without SPE present).
The final source of harmonic content is the non-dominant

harmonic modes. Fig. 8 compares the last 1 ns of the simu-
lation from-off with a fundamental dominant mode and no
detuning from Fig. 7 with a 1 ns simulation starting at an
FTSS OP. Thus we compare the FTSS with the expected
harmonic content of the fields. In Fig. 8a the red trace is
the stationary FTSS and the blue is the full transient. Note
the stochastic nature of the operating point obtained from
a full transient, with harmonics present, and the constant
amplitude for the single-mode stationary state. The plot of
the magnitude of the E-field over time shows both a high
frequencymodulation and random variation present in the full
transient.

The presence of this harmonic content can be seen
in Fig. 8b where the Fourier transform of the laser output is
presented. It can be seen that even when the dominant mode
is the stationary fundamental harmonic content is present in
the higher order modes. The noise floor created by the SPE is
present as are the distinctive peaks of the higher order modes.
The diminishing of the modes as we move away from the
dominant mode is expected due to the Lorentzian.

The random variation present in Fig. 8a arises from
the SPE. In the TWM the SPE is implemented by adding
small random components (F̂f and F̂r ) to the fields.
See (1) [15]. The broad spectrum SPE injects energy into all
laser modes which is then amplified by stimulated emission
and sustained only for the cavity modes. The SPE thus seeds
the higher order modes and provides an intrinsic background
random field.

To add the appropriate energy to the other modes of the
operating point we use a short pre-simulation (PS) using the
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FIGURE 8. Laser simulation presenting transient response at an operating
point for Ib = 68 mA for two cases with and without harmonic content
present. The red trace shows the stationary state; whereas blue is the
case where higher order harmonics and SPE are present. (a) Real part of
the output E-field. Inset shows the structure of the high frequency
modulation due to higher order modes and SPE. (b) Magnitude of the
frequency content of output field.

full TWM transient model including SPE to naturally add
harmonic content from other modes. We will refer to such an
operating point as a PS configuration with the understanding
that it is normally run after an FSS followed by an FTSS. The
length of the PS is, of course, of concern as it will, in part,
determine the computational cost of obtaining the operating
point of the laser and circuit in which it is placed. However,
as we shall find, it will be quite short (approximately 1 ns) as
we are simply perturbing the FTSS solution.
To illustrate this procedure Fig. 9a presents a 10 ns operat-

ing point simulation from FTSS. For this run the Henry factor
was set to 2.7 which detunes the laser such that the dominant
mode is the 2nd positive mode.

To analyse the harmonic content the field was captured in
a sliding time window of 1 ns length. As this window was
moved through the 10 ns simulation every 20 ps an FFT was
performed to decompose the signal into modal powers. The
one captured at 6 ns is shown in Fig. 9b. From the FFT the
power present in each mode can be extracted and plotted as
function of time. This is shown in Fig. 9c for the fundamental
(mode 0) and the 4 lowest positive modes. The dominant
mode (second harmonic) is well above the others and remains
constant while the others start at what is essentially the noise
floor for our spectrum and rise quickly to their steady state
levels.

Inspection of these plots shows that the length of the
PS sufficient to create the higher order mode excitation,
introduce SPE, and establish an appropriate operating point
configuration, is roughly 0.5-2 ns. After the creation of the
dominant mode using the FSS and FTSS the introduction of
other harmonic content is a fairly small perturbation to create
the final operating point.

F. SUMMARY
To summarize the steps in obtaining an operating point we
have:

1) Obtain an FSS solution with the harmonic parameters
set to zero. Any mode may be selected to be dominant.

2) Fine-tune this operating point with the harmonic
parameters and iterate using the TWM to create the
FTSS.

3) Run a short PS to add in the other modes and produce
the PS operating point.

The first step produces an approximate single-mode solution
to the operating point, the second an exact single-mode oper-
ating point and the final stage creates a multi-mode operating
point. It should be emphasized that all three operating points
have utility within the context of either initiating a simulation
from an operating point or within the context of a larger
system/circuit-level simulation.

If one wishes to simply start from an approximate oper-
ating point and can tolerate a small transient during which
the laser comes to harmonic equilibrium, the FSS provides
a very quick solution. The use of the FTSS eliminates the
small transient but the solution will still be single-mode.
Finally, the use of the PS will recreate an exact multi-mode
model of the operating point of the laser from-off within
the limitations of the stochastic nature of the laser. When
embedded as a compact model in a circuit-level simulator all
of these configurations will have a use. This will be discussed
more fully in Sec. V.

All of the configurations above assume a known dominant
mode configuration for the operating point to be obtained.
As has been discussed the dominant mode of the laser is
typically the mode nearest to the peak of the gain curve.
However, as will be seen in the next section complications
arise due to the precise alignment of this curve with the
mode frequencies and the stochastic behavior of the laser.
Details regarding the impact of the dominant mode choice
are presented in Appendix.

IV. RESULTS
This section will investigate various aspects of the work
described above. It will first establish the need for an oper-
ating point solution, describe the wide variety of operating
point configurations that can arise and establish the ability of
the methodology of Sec: III to accurately capture these con-
figurations. Finally, it will compare the statistical variation
across harmonic steady state configurations of the method
with respect to full transient solutions.
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FIGURE 9. Simulation of an operating point (αH = 2.7, Id = 68 mA) from an FTSS for a fine-tuned dominant mode with a full convergence (≈100k
iterations). (a) Output field magnitude as function of time. Shown is the moving time window from which the mode power values are obtained.
(b) FFT of 1 ns time window ending at 6 ns showing mode powers to be extracted. Black vertical lines indicate default laser modes, vertical blue dotted
lines chirped mode frequencies. (c) Power in laser modes 0 to +4 over time. Dotted vertical line indicates time that powers extracted from Fig. 9b. Note
that the FTSS starts with the dominant mode (2) well above the others and it remains constant. The other modes quickly come up to a harmonic
quasi-equilibrium with variation due to the random nature of the SPE.

FIGURE 10. Transient response of a laser started from-off for a bias of Id = 68 mA. (a) Average carrier density N̄ . (b) Output E-field magnitudes. (c) Mode
Intensities.

To characterize the effectiveness and reliability of the
method given above a variety of simulations were performed.
The basic approach is to run a given test configuration
from-off in the TWM, and run it sufficiently long enough so
as to reach steady state—this is the desired QHSS operating
point. The calculated operating point is then used to start
another TWM simulation which is compared to the desired
one. The response of the output will, of course, be unsteady
due to SPE and harmonic content but the variation should
be within the same limits for both results. Each should be
stable, agreeing on field levels and frequency content and as
well, the operating point simulation should not have an initial
transient in the output.

The results in this section pertain to an example III-V based
laser [10] with parameters summarized in Table 1.

A. SIMULATIONS FROM-OFF FOR A VARIETY OF
CONFIGURATIONS
In this section we will first present some full laser transients
from-off to illustrate the complexity of dynamics in forming
a QHSS. Figure 10 presents a TWM from-off transient for
a simple default configuration with Id = 68 mA and the
detuning, Henry factor and gain compression all set to zero.
The Lorentzian gain curve is centered on the carrier frequency
(ω′L = 0). The first figure presents the response of the average

TABLE 1. Parameters for the III-V based laser used for the test
simulations.

laser carrier density (N̄ ), the second the output electric field
magnitude (|E|), and the final figure the mode intensity for
the fundamental mode as well as the first four positive modes.
For this case it can be seen that starting the laser from-off
produces a large initial transient whichmanifests in the output
field for over 10 ns.

The mode intensity plot (Fig. 10c) shows the evolution
of the power distribution in the modes during the transient.
Initially, there is quick growth in the fundamental (0th) mode
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as it is positioned at the peak of the gain curve. It quickly
becomes dominant and as the transient progresses, power in
the non-dominant modes drops and the power in the 0th mode
increases with the resulting power distribution determined by
the relative gain of each mode. Although 15 ns is not enough
time to transition to the final QHSS (the power in the 1st mode
is still dropping) the laser has come to a stable state that will
continue to evolve and is very unlikely to change dominant
mode. This transient is typical for a simple evolution to a
QHSS with a clear dominant mode.

In Fig. 11 the output field is presented for a number of
different bias currents with the same conditions for the other
laser parameters. Although similar behaviour is noted for
all bias conditions it can be seen that as the bias current
approaches the threshold current (Ith ≈ 33 mA) the transient
response takes longer to settle to a QHSS.

FIGURE 11. Full from-off transient responses compared with operating
point simulations as Id varies from 38 mA to 78 mA.

The transients presented in Fig. 10 and 11 are all roughly
less than 25 ns.2 However, much longer transients manifest
themselves—either simply for stochastic reasons or due to
the configuration that the laser is placed in. Some examples
are presented in Fig. 12.
The first example (Fig. 12a) presents a laser with the gain

curve centered on the fundamental mode. However, through
sheer happenstance the mode that has become dominant after
start-up is the 1st negative mode (despite having a lower gain
than the 0th mode). This results in a long transient as this
mode acquires power at the expense of the other modes. The
QHSS that is formed using a dominant 1st negative mode
is potentially unstable and a longer simulation may show a
transition to a QHSS formed using the fundamental mode.

In the second example (Fig. 12b) a laser biased at 38 mA
with the gain curve placed at ω′L = −2.5ω1 is shown. The
placement of the gain curve midway between the 2nd and
2rd negative mode results in the gain of these two modes
being essentially identical and both are likely to become the
dominant mode of the resultant QHSS. Typically this results
in a somewhat longer transient with one mode dominating

2It is difficult to define a precise length of the transient due to the stochastic
nature of the QHSS, but to quantify the time a settling time is defined by a
peak to peak |E| < 105 being maintained for more than 10 ns.

from start-up. In some cases, however, a mode will become
dominant and then after a long time the other possible domi-
nant mode will grow in intensity. The laser will then undergo
a chaotic transition as the QHSS switches dominant modes.
This can be seen to be the case in the mode intensity plot of
this simulation. Initially, the laser evolves to a QHSS with
the 2rd mode being dominant. Although the second mode
initially decreases in intensity after 400 ns it then increases
in power until a chaotic transition occurs between 500 and
700 ns resulting in a QHSS with the 2nd mode dominant.
Detuning the laser or introducing a non-zero Henry factor can
have similar results due to shifting the mode spectrum with
respect to the gain curve.

The final case shown in Fig. 12c introduces the effect of
gain compression on the laser transient in the presence of
both static detuning and Henry factor. The combination of
additional nonlinearity and the gain curve being misaligned
with the mode spectrum produces a long region of initial
instability. In this region nomode is able to become dominant.
Finally after 150 ns the highest gain mode (2rd) becomes
dominant and a stable QHSS is formed.
The simulations discussed above show a wide range of

settling times from tens to hundreds of nanoseconds. It should
be noted that the laser continues to settle for times longer than
presented in these plots (this is not visible on the plot scale
necessary to include the large transient). It can also be seen
that the stochastic nature of the laser creates a distribution of
settling times for a specific set of parameters. To investigate
this sets of 100 runs were performed for a few laser configura-
tions and then histograms of the settling times were compiled.

Three sets of these distributions are presented in Fig. 13
which expand on the simulation configurations used
in Fig. 12. Figure 13a shows data for the default laser config-
uration with three differing bias currents of 38, 58 and 78mA.
As can be seen the bulk of the settling times are distributed
with a peak at approximately 20 ns for all three currents and
with some broadening as the current is increased. The higher
current biases also exhibit a longer tail with long runs of
the order of hundreds of ns being generated (such as shown
in Fig. 12a for the case of Id = 78 mA which has a settling
time of 110 ns.).

The second plot presents data for a laser biased at 38 mA
and shifted gain curves. As we saw in Fig. 12b long settling
times can occur if the gain curve is placed between two
laser modes. This is confirmed in this plot with tight short
distributions for ω′L = −2ω1 and ω′L = −3ω1. However,
for ω′L = −2.5ω1 we have a broad distribution with a long
tail. This is due to transients such as shown in Fig. 12a where
neither the 2nd or the 2rd mode achieves dominance quickly.

The last plot (Fig. 13c) shows the effect of non-zero gain
compression (ε) with increasing ε producing broader distri-
butions and in particular creating a long tail even for a gain
curve coincident with the fundamental laser mode.

The results presented in this section show the wide diver-
sity of from-off transients resulting from variation in the laser
configuration. They also demonstrate the chaotic nature of the
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FIGURE 12. Three examples of long time to steady state simulations. For each case the output field intensity and the modal power is presented.
Default parameters are used with exceptions noted. (a) Id = 78 mA: The long simulation time is caused by the random start. Most simulations with
this configuration start in the fundamental (0th mode) and reach steady state in 30 ns. This simulation formed a QHSS with the 1st negative mode and
took ≈100 ns. (b) Id = 38 mA and ω′L = −2.5ω1: The laser initially forms a QHSS with the 2rd mode dominant, but transitions to a QHSS using mode 2
at around 600 ns. (c) δ = 0.5ω1 and ε = 5: This simulation displays a long chaotic period before a QHSS forms and is typical for large gain
compression factors.

FIGURE 13. Histograms of time to reach steady state for multiple different configurations (δ = 0 and αH = 0). The settling time to form a QHSS was
defined by a peak to peak |E | < 105 for more than 10 ns. (a) Varying laser bias (I = 38 mA, I = 58 mA and I = 78 mA) and ω′L = 0 with no gain
compression. (b) I = 38 mA and with shifting gain curve (ω′L = −3ω1, ω′L = −2.5ω1, and ω′L = −2ω1. (c) I = 68 mA, δ = 0.5ω1 and varying gain
compression (ε = 0, ε = 2 and ε = 5).

transient with the QHSS forming from a complex evolution
and displaying a variety of dominant mode configurations.
Even if only a few long settling times occur, when they do it
would dramatically impact the total circuit simulation time.
So this presence of long transients to form the QHSS provides
a strong motivation to develop the method of Sec. III for
forming a QHSS operating point from which the laser can
then be simulated.

B. OPERATING POINT DETERMINATION AND
PRE-SIMULATION
The simulations in the previous section demonstrate that a
wide array of physical effects determine the final QHSS
present after a transient initiated from-off. In addition to the
full transients from-off the plots in Fig. 10 and 11 present

simulations started from an operating point constructed using
this paper’s methodology. As can be seen, at the scale used in
these plots, the operating point appears to be well constructed
and reproduces the QHSS of the transitions from-off. In this
section a more detailed analysis and comparison of the oper-
ating point configuration is given with respect to the average
values of the optical output and the harmonic content present
at the operating point.

As discussed in Sec. III the basic method of construct-
ing the operating point configuration is to first create an
approximate dominant mode configuration (FSS), fine-tune it
(FTSS), and then use a short PS to introduce harmonic content
to the configuration. The result of this procedure for a laser
biased at 68 mAwith a chirp from a Henry factor of αH = 2.7
is shown in Fig. 14. Note that these plots are different from
the full from-off plots in Fig. 10 in that the TWM simulations
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FIGURE 14. Transients comparison between a TWM started at an OP and a TWM already at a QHSS after 200 ns for a laser biased at 68 mA and
with αH = 2.7. Three cases are shown: 1) OP started from the FSS; 2) OP started from the FTSS; and 3) OP started after PS of 0.5 ns. (a) Carrier
density (N). (b) Output E magnitude. (c) Spectral modes power density over time for from-off (top) and from OP (bottom). (d) Spectral distribution
of the output optical power for the final 1 ns. FSS has noticeable transient, the FTSS only has transient on non-dominant modes and after PS there
are no transients.

are not shown from-off or t = 0. These simulations plot the
tail end of the TWM from-off simulation so they can be used
as a reference for comparison with the calculated operating
point configuration simulation.

The figure shows four plots for each of three simulations:
carrier density, E-field magnitude, modes intensity over time
and temporal spectrum. Because the FSS is a quick approx-
imation we see that the transient in both the carriers and
E-field is significant albeit short. The spectrum compares

well, although the mode plot shows that there was a transient
in the spectrum, including the dominant mode.

The FTSS compares well with the TWM. There is now
only a transient in the mode plot for the non-dominant modes.
The carriers and E-field vary in the same manner as the
actual TWM output. The transient in the spectrum is only
in the non-dominant modes because we have fine-tuned this
configuration to the dominant mode eliminating the other
modes. In these examples the initial mode power distribution
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of the FSS appears better than the FTSS. This is due to
the approximate FSS containing power in the non-dominant
modes. However, the initial power distribution in the FTSS
is not determined by the model equations and is not strictly
correct.

The PS simulation is an excellent approximation to the
TWM steady state. There are no transients on any outputs and
the power in the non-dominant modes matches that present in
the simulation from-off.

These results show that for the case of a chirped funda-
mental as the dominant mode all three methods of creating an
OP result in a viable configuration—with the understanding
that the FSS will produce a small transient and the FTSS
will produce a small spectrum transient if used alone. The
methodology provides for a choice of dominant mode to form
the QHSS and that will now be discussed.

C. EFFECT OF DOMINANT MODE
Choosing a valid dominant mode is critical for forming a sta-
ble operating point. As was seen in the simulations from-off
given above, the mode nearest (or even at) the Lorentzian
peak may not be the mode which forms the QHSS to which
the laser evolves. For a situation where the peak is near
a mode it will most likely be the dominant mode in the
QHSS. However, the peak can be located anywhere in the
modal spectrum and, in particular, the Henry factor will
move the modes through the spectrum as a function of laser
bias.

Simulations from-off show that a QHSS close to the peak
of the Lorentzian can be quasi-stable even if not the near-
est to the peak. For from-off simulations such quasi-stable
operating points will produce long transients with chaotic
transitions from one QHSS to another (see Fig. 12). If such
a fundamentally non-dominant mode is chosen to form an
operating point the TWMwill at some point undergo a chaotic
evolution to a higher gain mode—a process that can take
longer than starting the laser from-off.

Fig. 15 illustrates the situation where the choice of the
initial mode used for the starting operating point is important.
For this simulation the Henry factor was set to αH = 2 and the
choice of parameters places the gain peak roughly half way
between the 1st and 2nd mode. In Fig. 15a we see a simulation
of 50 ns for an OP initiated in the 1st mode—which is stable.
The second set of figures (Fig. 15b) presents the same simula-
tion but with the 2nd mode used to form the OP and it is again
stable. However, in the final set of figures the OP is formed
from the fundamental (0th) mode and the simulation displays
a chaotic transition to a QHSS with the 1st mode dominant.

The transient simulation from the OP formed using the
fundamental mode is quite stable lasting approximately 10 ns,
but the laser state is noticeably different from a typical sim-
ulation from-off with this set of laser parameters. At the
point of transition the TWM envelope changes the direction
of rotation, settles on the first harmonic as the dominant
mode and a stable laser state forms. The transition is very
clearly seen in the modal evolution with the 1st mode rising

in magnitude until at 20 ns it becomes the dominant mode.
This plot also makes obvious the chaotic period from 10 ns to
30 ns where there is a large amount of instability in the mode
powers—also apparent in the plot of the field magnitude.

The methodology for the creation of the OP is agnostic to
the choice of the dominant mode and can be used to determine
the behaviour of the laser when placed in a particular config-
uration. However, care must be used in choosing the mode.
If a mode is chosen that is not adjacent to the gain peak with
respect to frequency, the OP may well be unstable and the
simulation will reflect that instability.

D. VARIATION OF PARAMETERS
A requirement of the method is that it provides an effective
operating point solution for a full range of parameter val-
ues. This should include bias current ranges from threshold
to realistic maximum values, Henry factors typical for the
laser in question, variation in the position and width of the
Lorentzian gain profile, appropriate values for the gain com-
pression constant and static detunings for accommodating
system-level requirements on the specification of the carrier
frequency. The basic requirements of a successful operating
point construction are the absence of a significant initial
transient, an appropriate set of modal powers and long-term
stability.

To investigate the robustness of the method a large num-
ber of simulations were performed varying the parameters
of interest. For all cases the method was found to work
well—subject to the selection of an appropriate initial dom-
inant mode. A few characteristic examples are presented
in Fig. 16 where the E-field magnitude, mode evolution and
spectrum are shown for six different parameter configura-
tions. The bias current, chirp from detuning and chirp from
Henry factor are varied. For the output E-field the final 5 ns
of a TWM run from-off is compared with a run from the
operating point solution. The spectra are calculated on the
last 1 ns of E-field data. The spectrum is shown first as
a plot of the mode strengths over time and then a normal
spectrum frequency plot comparing the reference TWMwith
the operating point simulation.

For all the configurations the operating point simulations
agree well with the TWM QHSS obtained from simulations
from-off. As expected for the QHSS there is a continuous
fluctuation in the output due to SPE and mode competition.
In the time domain the variation due to the stochastic SPE
means we cannot expect an identical output, but we do expect
the fields to stay within the limits of field variation. The
E-field plots show that the natural amplitude variation is in
good agreement and that the operating point has no noticeable
transient at the start.

The mode plots over time show that the modal ener-
gies have the same average behaviour and variability as the
from-off TWM reference—subject to the continuous fluctu-
ation due to SPE. These plots also show that the operating
point creates no transients with respect to the power in the
non-dominant modes. The spectrum of the final 1 ns shows

54788 VOLUME 9, 2021



J. H. Rasmussen, T. J. Smy: Obtaining an Operating Point Solution of a Traveling Wave Laser Model

FIGURE 15. Comparison of transient response of laser where three modes are chosen for the OP. TWM from-off starts after QHSS has been reached
and is the same for each case. (a) Mode 1: stable and matches TWM. (b) Mode 2: stable but does not match TWM. (c) Mode 0: after 20 ns goes through
transition period and switches to stable dominant mode 1.

excellent agreement. Although these simulations present a
transient simulation of 5 ns in length, simulations of these
configurations (and others) were run for hundreds of ns to
confirm the long-term stability of the operating point created.
We conclude that the OP provides a very accurate operating
point solution for a wide range of the TWM parameters with
negligible transient.

E. STATISTICAL VARIATION
The results presented above show that the method of Sec. III
produces individual operating points that reproduce the
QHSS created by from-off simulations with essentially no
initial transient and that simulations run from these operating
points have the appropriate modal energies and behaviour.
However, due to the stochastic nature of the laser model,
when run from-off the QHSS obtained from a set of runs
will exhibit a natural variation in average output intensity and
internal variables such as the average carrier density. We now
wish to investigate if the method proposed will also produce
this natural variability.

The first two stages of the method of Sec. III (the FSS and
FTSS) are deterministic so the source of the variability in a
QHSS created using this method is the third stage PS. It was

shown above that a 1 ns PS is sufficient to produce the modal
energy distribution appropriate for an operating point. In this
section we show that it is also sufficient to create the expected
variability in the operating point. This is done by running
100 simulations of each configuration and comparing the
time averaged magnitude of the E-field and average carrier
density for the final 1 ns of the TWM and its corresponding
operating point. These values will be plotted in a histogram to
show the statistical variation of the two simulations and how
well they agree.

Fig. 17 shows histograms for five different bias currents
ranging from 38 mA (slightly above the threshold current
Ith = 33.2 mA) to 78mA. Fig. 17a shows the carrier density
histograms and Fig. 17b the E-field histograms. The car-
rier density varies inversely with the E-field magnitude as
expected. The spread of the E-field also increases as the bias
current decreases and approaches threshold, at which point
it will cease to lase. Note that the E-field magnitude scales
are not all identical to facilitate comparisons with respect to
the width of the distributions, but are shown approximately
relative to each other. A comparison of the histograms illus-
trates that the operating point distributions match the TWM
from-off distributions.
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FIGURE 16. Transient for a variety of configurations comparing the 1 ns PS OP with TWM already at a QHSS after 200 ns. For each configuration
plot |EO|, modes over time and temporal spectrum. (a) Id = 38mA. (b) Id = 78mA. With Id = 68mA: (c) δ = 104 = 0.5ω1. (d) δ = 209 = ω1.
(e) αH = 2.70. (f) αH = 5.4.
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FIGURE 17. Histograms comparing averages over final 1 ns of TWM and 1 ns PS OP. Histograms of 100 runs for current biases
of 38mA to 78mA. (a) N̄ . (b) E-field magnitude.

Fig. 18 shows histograms for three different detunings:
δ = 0, δ = 0.5ω1, δ = ω1. The introduction of a
detuning creates a situation where the from-off simulations
can create differing operating point configurations dependent
on the dominant mode of the QHSS.We see that with nonzero
detunings carrier density and E-field cluster around two val-
ues—a different value for each dominant mode. It should be
noted that for the simulations run from an OP the dominant
mode is a parameter and runs were initiated so that the
number of runs in each configuration matched the from-off
simulation.

A similar set of histograms is shown for the Henry Factor
in Fig. 19. TheHenry Factor has a similar effect to detuning in
that it produces a chirp and so we expect similar results. The
plot shows three values of Henry Factor: α = 0, α = 2.7,
α = 5.4. And again we see the nonzero Henry Factor
producing two high frequency values corresponding to the
two steady state dominant modes. The distributions match
well with the from-off simulations.

The last set of histograms shown in Fig. 20 show the
statistical results while varying the gain compression param-
eter ε. The values are ε = 0, ε = 2, and ε = 5.
A nonzero gain compression results in a distribution of
dominant modes, each with its characteristic carrier values
and E-field magnitudes. Note that the gain compression of
ε = 5 results in three different dominant modes although
the −1 mode occurs only once in 100 simulations. This
set of histograms also shows the excellent agreement of
the operating point distributions with the TWM from-off
simulations.

From this set of results we can conclude that a
pre-simulation of 1 ns is sufficient to create the expected
variability in the operating points.

FIGURE 18. Histograms comparing averages over final 1 ns of TWM and
1 ns PS OP. Histograms of 100 runs for detunings of δ = 0, 104 = 0.5ω1,
209 = ω1. I = 68 mA. (a) N̄ . (b) E-field magnitude.

V. DISCUSSION AND COMPUTATIONAL
CONSIDERATIONS
Although the ability to start a stand-alone laser simula-
tion from an operating point is a useful capability, the
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FIGURE 19. Histograms comparing averages over final 1 ns of TWM and
1 ns PS OP. Histograms of 100 runs for Henry factors of αH = 0, 2.7, 5.4.
I = 68 mA. (a) N̄ . (b) E-field magnitude.

primary motivation for the methodology described above is
to facilitate the use of the TWM in a circuit-level simulator.
As described in Smy and Rasmussen [17] the TWM is well
suited for incorporation into a circuit/system-level simulator
due to the common use of a complex envelope modulating
an underlying carrier. It is also a very sophisticated physical
description of the laser capturing an array of phenomena not
modeled by simpler descriptions such as the REM.
Generally, a circuit-level designer will desire to simulate a

transient simulation of a circuit from an operating point and
the initial task of the simulator will be to obtain an operat-
ing point for the circuit and therefore, of course, of all the
elements in the circuit. Although the type of simulator being
used will determine the methodology for obtaining this oper-
ating point, in essence a SS solution of a coupled set of non-
linear algebraic-differential equations will need to be found.
This will typically be done by using a Newton-Raphson itera-
tion procedure duringwhich the element compactmodels will
be called upon to determine an operating point configuration
for a given set of inputs. Even in moderately sized circuits3

this procedure can require many iterations and an efficient
simulation engine will require quick compact model updates.

The iterative procedure used by a simulator requires the
outputs of each compact model to converge to a specified

3For example an optical communication integrated circuit with 16 lasers,
modulators and transistor based drivers.

FIGURE 20. Histograms comparing averages over final 1 ns of TWM and
1 ns PS OP. Histograms of 100 runs for gain compression factors of
αH = 0, 2, 5. I = 68 mA. (a) N̄ . (b) E-field magnitude.

criteria. For a compact model of a laser such as the TWM
this presents an issue as the model is inherently stochas-
tic due to SPE and the operating point itself is actually a
quasi-harmonic steady-state (QHSS) due to chirping of the
envelope and higher order modes. However, the three-stage
methodology for finding this QHSS given above is well suited
for use in obtaining an operating point. Reviewing the three
stages:

A. FAST STEADY STATE (FSS)
This initial stage provides a very quick deterministic approx-
imate solution to the QHSS. Because it is single-mode the
internal quantities are not in precise agreement with the fun-
damental TWM equations, leading to a small transient when
used as the starting OP. However, the outputs of the compact
model4 fall within the natural range of variation due to SPE
and harmonic variation. The method itself requires typically
only ten internal iterations to converge to a new OP and thus
requires on the order of a thousand floating point calculations.
This computational intensity is not larger than one would find
using an array of complex transistors modeled with BSIM

4The optical fields produced as the facets are typically accurate to
within 1% of the value of the final QHSS
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mosfet compact models. Each update takes roughly 50 ms
for a 51 element model in Matlab.5

B. FINE TUNED STEADY STATE (FTSS)
The second stage in finding the QHSS involves fine tuning
the FSS by iteration using the TWM equations with SPE set
to zero. This provides a deterministic single-mode solution
that is consistent with the TWM and produces no transient
when used as an OP. However, it is computationally rel-
atively expensive taking tens of thousands of iterations to
converge—roughly equivalent to running the TWMequations
for 1 ns. Each update takes roughly 10 s for a 51 element
model in Matlab.

C. PRE-SIMULATION (PS)
The final stage of the creation of an QHSS OP is a short
1 ns pre-simulation using the full TWM equations with SPE.
This adds energy to the higher order modes, variability to
the OP and is obviously not a deterministic solution due the
random nature of the SPE. A PS of 1 ns takes roughly 10 s for
a 51 element model in Matlab.

The above model update times were for a Matlab imple-
mentation and comparisons to commercial simulators written
in a compiled language such as ‘C’ can not be readily made.
However, it is clear that when finding a circuit-level OP
the use of the FTSS and PSS are precluded from the initial
iteration due to the computational intensity of each stage.
Although obviously much faster than simulating the device
using the full TWM equations from-off6 both the FTSS and
PS require a large number of iterations (in the order of tens
of thousands). The FSS, however, is ideally suited for this
purpose as it is fast (200 times faster in the Matlab imple-
mentation) and deterministic.

Therefore a procedure can be proposed for the use of the
three-stage methodology within a circuit simulator. During
the initial stage of convergence the FSS is used. Once a
circuit-level OP has been found that is consistent with the
FSS the procedure can be continued for a small number of
iterations using the FTSS. Finally one last pass is done to
obtain the PS to provide a QHSS solution appropriate to start
a transient solution.

VI. CONCLUSIONS
This paper presents a method of obtaining an operating point
configuration for a laser model based on a traveling wave
model. Intended for use in a circuit-level simulator this con-
figuration can be used as an initial starting point in a circuit
starting at a bias point. A three-stage method is presented that
provides a fast approximate solution for convergence to an
initial circuit-level operating point, a precisely tuned OP con-
sistent with the traveling wave model equations and finally a
harmonically complete operating point. A key aspect of the

5All Matlab simulations were run on a 2012 iMac with a 2.9 GHz
i5 processor.

6Which, 1) involves long simulations of 10 ns - 100 ns and 2) is indeter-
minate in when exactly the device has obtained an OP.

model is the addition of harmonic content to the stationary
solution of the laser model, recreating its behavior at a QHSS
solution.

The effectiveness of this solution is shown by initiating
transient simulations from a wide variety of operating points
and observing the size of the initial disturbance in the laser
output and the evolution of the power in the laser modes.
Included in the model formulation are gain compression
and dispersion effects, laser chirp due to variation in the
effective index of the laser mode, and spontaneous emis-
sion. The results presented show the effectiveness of the
method in obtaining a sufficiently accurate operating point,
as well as the need to include harmonic content to incorporate
multi-mode behaviour, spontaneous emission, and chirp in
the laser due to a Henry factor.

It must be stressed that the effectiveness of this solution is
not only measured by the accuracy of the final operating point
but by the practicality of the solution in a circuit simulator.
Because the operating point will be calculated many times for
each operating point required, the computational cost needs
to be extremely small for the circuit simulator’s initial stage of
convergence. The three-stage methodology not only provides
a reasonably fast final operating point calculation but also an
extremely quick estimate for the circuit simulator’s first stage.

APPENDIX
DOMINANT MODE DETERMINATION
The dominant mode at which the laser operates is largely
dependent on the position of the Lorentzian gain curve with
respect to the mode structure. If the peak of the gain curve
is close to a particular mode then this mode will generally
be the dominant mode in any OP formed. As the dominant
mode is often chosen to be ωc (in the absence of significant
detuning) this will typically be the fundamental mode. How-
ever, if ω′L lies midway between two modes the dominant
mode can be either of these two modes. For example if ω′L
is halfway between the 2nd and 2rd harmonics (ω′L = 2.5ω1)
the dominant mode after a full transient from-off will be the
either the 2nd or 2rd mode. The dominant mode frequency is
also effected by the presence of a non-zero value of static
detuning (δ) or Henry factor (αH ) which cause an internal
rotation of the laser field shifting the mode frequencies with
respect to the gain curve.

This is illustrated in Fig. 21 which shows the forward and
reverse traveling waves Êf and Êr along the laser length at
an operating point with an effective non-zero detuning of
δ = 0.4ω1 for three cases. In Fig. 21a the fields are identical
to the original stationary solution with the fundamental mode
dominant but are rotating over time at rate of −1ω. Fig. 21b
shows a harmonic solutionwith the first harmonicmode dom-
inant that is also rotating over time but at a rate of ω1 −1ω.
The third figure shows a configuration for αH = 2 which
produces an output approximately equivalent to the two other
cases. At the output of the laser all three operating points will
have the frequency shift (chirp) equal to the base frequency
of the dominant mode plus the chirp of 1ω = −0.4ω1.
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FIGURE 21. Complex envelope (E) fields along the laser (z) for an operating point with effective detuning of 1ω ≈ 0.4ω1. Real part of the field is on the
y axis, imaginary part on the x axis with propagation along the z axis. Fields rotate because of the presence of a real part to β. Using a static detuning
δ = 0.4ω1: (a) Fundamental is dominant mode; (b) First harmonic is dominant mode. (c) Using αH = 2 with the first harmonic as the dominant mode.

Fig. 22 shows the time and spatial spectra of the three
configurations of Fig. 21. In Fig. 22a the first case shows the
dominant temporal frequency of the fundamental ω0 shifted
by −1ω due to a static detuning. The spatial frequency
(in Fig. 22b) is not shifted and remains at k0. For the second
case in which the dominant mode is the first harmonic the
temporal frequency is seen to be ω1 − 1ω while the spatial
frequency is now k−1. The gain curve of the Lorentzian
is shown to illustrate that two configurations have similar
gain. It should be noted that the these two configurations
are at identical operating conditions and use the same laser
parameters and yet the two steady state solutions are quite
distinct operating points each determined solely by which
mode is chosen to be dominant. The choice of which one to
use is therefore arbitrary.

The overall affect of a non-zero Henry factor is quite sim-
ilar to static detuning. From (17) we see that both contribute
to the real part of β. Because αH is multiplied by the gain
(which is N dependent) it will vary as N . Still, the effect of
the Henry factor will be approximately the same as detuning
with the average value of β due to the Henry factor. This is
shown in Fig. 21c where the case of a dominant 1st harmonic
was chosen. For a Henry factor of αH = 2 the frequency
shift is approximately−0.4ω1 with a βave = 39. This agrees
with the detuning constant β = δ/2 = 41.5 in Fig. 21b
producing similar spectra to this case (see Fig. 22), with a
temporal frequency shift from ω1 of −1ω and the dominant
spatial mode being at k−1.

If, as for the first two configurations presented in Fig. 21,
the peak of the Lorentzian lies between two laser modes
the random nature of the SPE implies that even with iden-
tical parameters and inputs the laser will not always end
up at the same operating point after a full transient. Not
only will each simulation be unique but the dominant mode
will not always be the same for each. There will be a sta-
tistical distribution of mode configurations for each set of
parameters.

To choose the dominant mode with which to form
the operating point configuration one needs to determine the
position of the laser modes in frequency with respect to the

FIGURE 22. E field frequency spectra for an operating point with an
effective detuning of 1ω ≈ −0.4ω1 for the three cases in Fig. 21.
(a) Temporal frequency spectrum of the laser output. The gain curve of
the Lorentzian is shown (not to scale) for illustrative purposes. (b) Spatial
frequency spectrum which is always an integral number of k1.

Lorentzian peak—including the effects of detuning and the
Henry factor. Detuning simply shifts the mode structure and
can easily be accommodated. To calculate the shift due to the
Henry factor requires an appropriate carrier distributionN (z).
As N (z) varies only slightly through the laser, the distribution
appropriate with αH = 0 can be used to determine the effec-
tive detuning. Once the position of the modes are determined
with respect to the Lorentzian the mode nearest to the peak
can be chosen. As other nearby modes might be semi-stable
(particularly if the Lorentzian peak lies close to the point
midway between two modes) one can also investigate other
modes nearby.
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