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ABSTRACT The issues of mean-square admissibility and synthesis of Itô-type stochastic singular sys-
tems (SSSs) under Brownian parameter perturbations are introduced in this article. For ease of computation,
a novel sufficient condition is given to guarantee autonomous systems are mean-square admissible via
strict linear matrix inequalities(LMIs). Furthermore, own to the measurable of the system states, both state
feedback controller and observer-based controller (OBC) for Itô-type SSSs are investigated. However, in Itô-
type SSSs, because the state of the system and the observer can be affected by Brownian fluctuation, it is not
feasible that the observer and control gains design are completely separate. To this end, an innovative design
approach is also proposed to solve the controller and observer parameters simultaneously in form of strict
LMIs. Finally, three examples are introduced to demonstrate the effectiveness of the proposed method.

INDEX TERMS Itô-type SSSs, mean-square admissibility, Brownian parameter perturbations, OBC, strict
LMIs.

I. INTRODUCTION
Singular systems are a kind of dynamic systems, which
are more general and natural to represent and to handle
the behaviour of practical models than the normal ones,
for instance, power systems, electrical circuit systems, con-
strained mechanical systems, bioeconomic systems, and
more other field [1]–[3]. The study of singular systems
has important theoretical and practical significance, so there
are many research achievements on admissibility analysis
and synthesis [4], [5], H∞ control [6], [7], observer and
filter design [8], [9], fault diagnosis and fault tolerance
control [10], [11], and so on. In practical control systems,
there exist stochastic environment noises inevitably. So,
the researches about stochastic systems have been paid more

The associate editor coordinating the review of this manuscript and

approving it for publication was Nasim Ullah .

attentions due to their widespread applications in numerous
actual systems [12]–[14].

Combining the advantages of singular models and stochas-
tic models, stochastic singular models can describe the fea-
tures of physical systems more conveniently and accurately.
Therefore, many attractive results and a large variety of
control problems have been investigated and solved. Based
on H-representation approach, SSSs with Brownian motion
can be converted into the standard singular system, then the
stability theorem of this kind of systems is given via LMIs
in [15]. In [16], based on nonparallel distributed compen-
sation sliding mode control method, robust control issues
of nonlinear SSSs are discussed. Using stochastic Lyapunov
functional, the dissipative controller design method for fuzzy
Itô-type SSSs is proposed in [17]. Using the stochastic analy-
sis techniques, the passivity analysis and state-feedback con-
troller for fuzzy delay SSSs is discussed in [18]. By multiple
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Lyapunov functions and matrix decomposition approach,
mean square admissibility conditions for the SSSs with Pois-
son switching are proposed [19]. In [20], the unmatched
controller design method is given to guarantee IT2 uncertain
fuzzy SSSs stochastic admissibility. In [21], the mean-square
(MS) exponential stability of SSSs with Brownian motion
is proved strictly, which establishes the firm foundation for
the subsequent analysis and synthesis for such system. The
observer-based MS admissible controller design approach
for Markov Itô-type SSSs is discussed via LMIs in [22].
In [21], [22], the sequential design method is given to obtain
controller and observer gains and this calculation method is
comparatively conservative. Thus, a novel method to deduce
the conservatism during the design of controller and observer
is become an important challenge.

According to the background hereinbefore, MS admissi-
bility and controller design problem of Itô-type SSSs is dis-
cussed in this article. First of all, using Lyapunov functional
and stochastic analysis techniques, sufficient conditions for
Itô-type SSSs to be MS admissibility are given and proven
completely via LMIs. Secondly, both state feedback con-
troller (SFC) and OBC are investigated to ensure the MS
admissibility of the considered systems. The parameters of
controller and observer are solved simultaneously and equal-
ity constraint conditions are cancelled by matrix operations.
Finally, the validity and applicability of our proposed method
is illustrated by three examples. The contributions of the
study are summarized below.

1) The sufficient condition of Itô-type SSSs to be
mean-square admissible is proposed with a complete proof
process. Meanwhile, this admissibility condition can be
solved by strict LMIs, which removes the equality con-
straint condition. The obtained admissibility theorem con-
tains related results in deterministic singular systems and
stochastic normal systems.

2) Both the design method of SFC and OBC are given to
ensure the mean-square admissibility of closed-loop system.
In the OBC design technique, the parameters of controller
and observer are solved simultaneously, which is different
from the sequential design method in [21]. Form illustrative
example, the proposed method in this article is less conserva-
tiveness than the relevant results in [21].

The structure of this article is organized as follows.
In Section II, Preliminary results are provided. Section III
provides main results of MS admissibility and controller
design for Itô-type SSSs. Finally, Section IV and V contain
three illustration examples and conclusions, respectively.
Notations:
Q � 0(Q > 0): positive semi-definite (positive definite)

matrix;
Q � 0(Q < 0): semi-definite (negative definite) matrix;
AT: transpose of A;
E(): expectation operator;
Det(A): determinant of the matrix A.
Rn: n-dimensional Euclidean space;
Rm×n: m× n real matrices set;

Deg(): degree of the polynomial.
A+: Moore-Penrose pseudo inverse of A;
Rank(A): rank of the matrix A.

II. PRELIMINARIES
Consider the Itô-type SSSs defined as follow.

Edx(t) = Ax(t)dt + Bu(t)dt + J x(t)d$ (t)

y(t) = Cx(t) (1)

where x(t) ∈ Rn and u(t) ∈ Rm denote state / input vector,
y(t) ∈ Rq denote output vector; Matrix E might be singular
and RankE = nr ≤ n; E,A,B,J , and C are known
constant matrices.$ (t) is one-dimensional Brownian motion
with E(d$ (t)) = 0 and E(d$ 2(t)) = 0.

Next, some lemmas and definitions are given as follow.
Definition 2.1 ([15]):

• Unforced SSSs (1) is impulse free if

Deg(Det(sE−A)) = Rank(E)

• Unforced SSSs (1) is MS asymptotically stable if
∀x(0) ∈ Rn,

lim
t→∞

E{‖x(t)‖2} = 0

• Unforced SSSs (1) is MS admissible if the system has
the unique solution, impulse free andMS asymptotically
stable.

Assumption 2.1 ([21]): Rank(E,J ) = Rank(E).
Remark 2.1: Based on Assumption 2.1, the invertible

matrices R and S can be obtained such that

RES =

[
Inr 0
0 0

]
RAS =

[
A1 A2
A3 A4

]
RJ S =

[
J1 J2
0 0

]
Considering the state transformation

S−1x(t) =
[
ε1(t)
ε2(t)

]
the system (1) is restricted equivalent with

dε1(t) = (A1ε1(t)dt +A2ε2(t))dt + (J1ε1(t)

+J2ε2(t))d$ (t) 0 = (A3ε1(t)dt +A4ε2(t))dt

(2)

So, it is known that the diffusion term is not the impact of
system structure. Then, when (E,A) is impulse-free, by [1],
A4 is invertible. Further, system (1) is restricted equivalent to

dε1(t) = (A1 −A2A−14 A3)ε1(t)dt

+ (J1 − J2A−14 A3)ε1(t)d$ (t)

ε2(t) = −A−14 A3ε1(t) (3)
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So, the pair (E,A) is impulse free, and Rank(E,J ) =
Rank(E), which guarantee the existence and uniqueness of
impulse-free solution of the system (1).
Lemma 2.1 ([23]): Let X ∈ Rn×n be symmetric with

ETRXER > 0, T ∈ R(n−nr )×(n−nr ) is invertible. Then,
XET + STM is invertible and its inverse is expressed as

(XET + STM )−1 = XE+MTTST

where full row rank matrices M and S satisfies ME = 0 and
ES = 0, respectively; E = ELETR , in which EL and ER are
with full column rank; XT

= X and T is invertible with

ETLXEL = (ETRXER)
−1

T = (MMT )−1T−1(ST S)−1

Lemma 2.2 ([24]): Considering system (1), let

V(x(t)) = xT(t)ETPx(t) (4)

where the invertible matrix P satisfies

ETP = PTE � 0 (5)

By defining the weak infinitesimal operator L, Itô formula
can be given as

dV(x(t)) = LV(x(t))dt + 2xTPTJ x(t)d$ (t) (6)

where

LV(x(t))=xT (t)(ATP+ PTA+ J T (E+)TETPE+J )x(t)

Lemma 2.3 ([25]): If there exist a scalar % > 0 andmatrices
1, Uι, Vι,Wι (ι = 1, . . . ,m) hold[
1 U1 + %V1 · · · Um + %Vm
∗ diag{−%W1 − %W

T
1 · · · − %Wm − %W

T
m

]
<0

(7)

we get

1+

m∑
ι=1

(UιW−1ι V
T
ι +VιW

−T
ι UT

ι ) < 0 (8)

III. MAIN RESULT
A. ADMISSIBILITY ANALYSIS
Theorem 3.1: Unforced SSSs (1) is MS admissible if there
exist a symmetric matrix X ∈ Rn×n and a nonsingular matrix
T ∈ R(n−nr )×(n−nr ), such that the following LMIs conditions
hold.

ETLXEL > 0 (9)

AT (XE+MTTST )+ (XE+MTTST )TA
+J T (E+)TETXEE+J < 0 (10)

where row full rankmatricesM , S withME = 0 andES = 0.
Proof : First of all, we prove that unforced SSSs (1) is impulse
free and has an unique solution.

By ETLXEL > 0 and E = ELETR , we can obtain

J T (E+)TETXEE+J � 0 (11)

then, (10) results in

8=AT (XE+MTTST )+(XE+MTTST )TA < 0 (12)

Using Assumption 2.1, the invertible matrices R and S can
be obtained such that

Ê = RES =
[
Inr 0
0 0

]
Â = RAS =

[
A1 A2
A3 A4

]
,

RJ S =
[
J1 J2
0 0

]
,

Accordingly, we get

R−TXR−1 =
[
X11 X12
XT
12 X22

]
,

MM−1 = H
[
0 I

]
NTS =

[
0
I

]
G

where H and G are nonsingular matrices.
Then, Pre- and post-multiplying 8 with ST and S, one has[

⊕ ⊕

⊕ AT
4H

TTGT + GT THA4

]
< 0 (13)

where ⊕ is independent from the results discussed below,
the real expressions are omitted. So, we get

AT
4H

TTGT + GT THA4 < 0 (14)

which means A4 is invertible.
Then, we have

Deg(Det(sE−A))

= Deg(Det(R−1)Det(sÊ − Â)Det(S−1))

= Deg(Det(−A4)Det(sInr − (A11 −A2A−14 A3))

×Det(R−1)Det(S−1))

= nr
= Rank(E)

According to Definition 2.1 and Remark 2.1, unforced SSSs
(1) is impulse-free and has an unique solution.
Secondly, we prove that this system is MS asymptotically

stable. Since unforced system (1) is impulse free, then invert-
ible matricesW and G can be obtained for satisfying

WEG =

[
Inr 0
0 0

]
WAG =

[
A1 0
0 I

]
,

WJG =
[
J1 J2
0 0

]
,

W−TXW−1 =
[
X11 X12
XT
12 X22

]
,

MW−1 = N
[
0 I

]
54362 VOLUME 9, 2021
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GTS =
[
0
I

]
Q

where N and Q are the nonsingular matrices.
By defining

G−1x(t) =
[
x1(t)
x2(t)

]
this system is restricted equivalent with

dx1(t) = A1x1(t)dt + J1x1(t)d$ (t)

x2(t) = 0 (15)

Then, pre- and post-multiplying (10) with GT and G,
implies [

AT
1X1 + X1A1 + J T

1 X1J1 ⊕

⊕ ⊕

]
< 0 (16)

Thus, we have

AT
1X1 + X1A1 + J T

1 X1J1 < 0 (17)

Furthermore, by ELXEL > 0 and

WEL =

[
I
0

]
we can deduce X11 > 0. Then, by [15], we have

lim
t→∞

E‖x1(t)‖2 = 0

Further, from x2(t) = 0, one has

lim
t→∞

E‖x(t)‖2 = 0

Thus, on the basis of Definition 2.1, this systems is MS
asymptotically stable.

As a result, this system is MS admissible.
Remark 3.1: (1) If J = 0, Theorem 3.1 is translated to the

criterion of deterministic singular system, which is expressed
as

ETLXEL > 0 (18)

AT (XE+MTTST )+ (XE+MTTST )TA < 0 (19)

(2) If E = I , we get M = 0, S = 0, Theorem 3.1 reduces to
the stochastic stability criterion for normal Itô-type systems,
which can be expressed as

X > 0 (20)

ATX + XTA+ J TXJ < 0 (21)

B. CONTROLLER DESIGN
1) STATE FEEDBACK CONTROLLER
When the system states are completely accessible, the follow-
ing SFC is considered.

u(t) = Ksx(t) (22)

Then, the closed-loop system can be described by

Edx(t) = (A+ BKs)x(t)dt + J x(t)d$ (t)

= Āx(t)dt + J x(t)d$ (t) (23)

Theorem 3.2: The system (23) is MS admissible if there
exists symmetric matrixX ∈ Rn×n, nonsingular matrix T ∈
R(n−nr )×(n−nr ) and matrices L ∈ Rm×n and H ∈ Rm×(n−nr ),
such that the following LMIs conditions hold

ETRXER > 0 (24)[
6 X̄TJ T (E+)TER
∗ −ETRXER

]
< 0 (25)

where

6 = X̄TAT + AX̄ + B(LET +HM )+ (LET +HM )TBT

X̄ = XET + STM

Then, the controller parameter Ks is given by

Ks = (LET +HM )(XET + STM )−1 (26)

Proof : Using Schur complement lemma [2], LMI (25) is
equivalent to

X̄TAT
+AX̄ + B(LET +HM )+ (LET +HM )TBT

+ X̄TJ T (E+)TER(ETRXER)
−1ETRE

+J X̄ < 0 (27)

Then, by Lemma 2.1, we know that X̄ = XET + STM is
nonsingular and its inverse is

X̄−1 = (XET
+ STM )−1 = XE +MTTST

Meanwhile, by (24), we have

ETL XEL = (ETRXER)
−1 > 0

Let L = KsX andH = KsST, we get

X̄T ĀT
+ ĀX̄ + X̄TJ T (E+)TETXEE+J X̄

= X̄TAT
+AX̄ + BKs(XET + STM )

+ (XET + STM )TKT
s BT

+ X̄TJ T (E+)TERETLXELE
T
RE
+J X̄

= X̄TAT
+AX̄ + B(LET +HM )+ (LET +HM )TBT

+ X̄TJ T (E+)TERETLXELE
T
RE
+J X̄

= X̄TAT
+AX̄ + B(LET +HM )+ (LET +HM )TBT

+ X̄TJ T (E+)TETR (ERXER)
−1ETRE

+J X̄ < 0 (28)

Further, pre- and post-multiplying (28) with X̄−T and X̄−1,
imply

ĀT (XE +MTTST )+ (XE +MTTST )T Ā
+J T (E+)TETXEE+J < 0 (29)

Based on Theorem 3.1, the system (23) is MS admissible.

2) DESCRIPTOR OBSERVER-BASED CONTROLLER
If the state variables are not measured, SFC cannot be
achieved to realize system stabilization. then, the following
OBC is given.

Edx̂(t) = Ax̂(t)dt + Bu(t)dt + L[ŷ(t)− y(t)]dt
ŷ(t) = Cx̂(t)

u(t) = Kox̂(t) (30)
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where x̂(t) the estimation of x(t), L, Ko are observer and
controller parameters, respectively.

Define

ε(t) = x(t)− x̂(t)

η(t) = [xT(t), εT(t)]T

Form (1) and (30), we can obtain the following closed-loop
system

Ẽdη(t) = Ãη(t)dt + J̃ η(t)d$ (t) (31)

where

Ẽ =

[
E 0
0 E

]
,

Ã =
[
A+ BKo −BKo

0 A+ LC

]
,

J̃ =
[
J 0
J 0

]
Theorem 3.3: System (31) is MS admissible if there are

a scalar % > 0, symmetric matrix X ∈ Rn×n, Y ∈ Rn×n,
nonsingular matrix Ts ∈ R(n−nr )×(n−nr ), To ∈ R(n−nr )×(n−nr )

and matrices XK ∈ Rm×m, YK ∈ Rm×n, YL ∈ Rn×q, such
that the following LMIs conditions hold.

ETLXEL > 0 (32)

ETLYEL > 0 (33)811 − BYK − BXK + XTs B + ρY T
K

∗ 822 − ρY T
K

∗ ∗ − ρXK − ρXTK

 < 0 (34)

where

811 = ATXs + XT
s A+ J T (E+)TETXsEE+J

+J T (E+)TETXoEE+J + BYK + Y TK B
T

822 = ATXo + XT
o A+ YLC + CTY T

L

Xs = XE+MTTsST

Xo = YE+MTToST

Then, the gains can be given by

Ko = X−1K YK
L = X−To YL

Proof : Let

X̃ =
[
X 0
0 Y

]
, M̃ =

[
M 0
0 M

]
,

T̃ =
[
Ts 0
0 To

]
, S̃ =

[
S 0
0 S

]
then, one has

M̃Ẽ =
[
M 0
0 M

] [
E 0
0 E

]
=

[
ME 0
0 ME

]
= 0

ẼS̃ =
[
E 0
0 E

] [
S 0
0 S

]
=

[
ES 0
0 ES

]
= 0

It is noted that

Ẽ+ =

[
E+ 0
0 E+

]
,

ẼL =

[
EL 0
0 EL

]
, ẼR =

[
ER 0
0 ER

]
and by (32)-(33), we get

ẼTL X̃ẼL > 0 (35)

Next, it can be derived that

5 = ÃT (X̃Ẽ+ M̃T T̃ S̃T )+ (X̃Ẽ+ M̃T T̃ S̃T )T Ã
+ J̃ T (Ẽ+)T ẼT X̃ẼẼ+J̃

=

[
11 + J T (E+)TETXoEE+J −XTs BKo

∗ 12

]
=

[
21 + J T (E+)TETXoEE+J 0

∗ 22

]
+ I1XTs BKoI2 + (I1XTs BKoI2)T (36)

where

11 = (A+ BKo)TXs + XTs (A+ BKo)
+J T (E+)TETXsEE+J

12 = (A+ LC)TXo + XTo (A+ LC)
21 = ATXs + XTs A+ J T (E+)TETXsEE+J
22 = ATXo + XT

o A+ YLC + CTY T
L

I1 =
[
I
0

]
, I2 =

[
I −I

]
By Ko = X−1K YK , it can be established that

I1XTs BKoI2 = I1BYKI2 + I1(−BXK + XTs B)X
−1
K YKI2

Further, (36) can be rearranged

5 = 2+ UX−1K V + V TX−TK UT

2 =

[
21 + J T (E+)TETXoEE+J 0

∗ 22

]
U = I1(−BXK + XTs B)
V = YKI2 (37)

By Lemma 2.3, we can obtain that (34) guarantees (37). So,
5 < 0. Further, Using Theorem 3.1, this system is MS
admissible.
Remark 3.2: Due to the existence of the term

J T (E+)TETXoEE+J in (36), the calculation method of
controller and observer parameters for the closed-loop system
cannot completely separate. There are fundamental differ-
ence between the OBC controller design of deterministic and
stochastic singular systems.
Remark 3.3: In [21], [22], the solutions of controller

and observer parameters are given by the sequential design
method. In this method, the controller gain is solved firstly.
Then, by bringing the obtained controller parameter value
into the other LMIs, the observer parameters can be solved,
which causes this method more complex and conservative.
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FIGURE 1. Mean-square admissibility analysis by theorem 3.1 (∗)
and [21] (◦).

To resolve this issue, a novel design method is given in this
article, in which the gains can be obtained simultaneously
in terms of strict LMIs. Thus, the conservativeness can be
significantly decreased.

IV. ILLUSTRATIVE EXAMPLES
Example 1: Consider the following SSSs:

Edx(t) = Ax(t)dt + Bu(t)dt + J x(t)d$ (t) (38)

y(t) = Cx(t) (39)

where

E =

 1 0 0
0 1 0
0 0 0

 , A =

 10 3 1
a 6 1
−b −1 0


J =

 0.5 0 1
−2 1 1
0 0 0

 , B =

−1 1
−1 0
0 2


C =

[
1 0 1
−3 1 1

]
The MS admissibility for this system is checked by using
Theorem 3.1 and Theorem 4 in [21] for several values of pairs
(a,b) in Fig. 1, where a ∈ [5, 15] and b ∈ [5, 15]. One can
find that Theorem 3.1 is less conservativeness than
Theorem 4 in the [21].
Example 2 ([15]): Consider the oil catalytic cracking pro-

cess with influenced by the random environment and the
following simplified model is given as

dx1(t) = [W1x1(t)+W2x2(t)+ B1u(t)+ D1f ]dt

+ [F1x1(t)+ F2x2(t)]d$

0 = [W3x1(t)+W3x2(t)+ B2u(t)+ D2f ]dt (40)

where x1(t), x2(t), u(t) and f indicate regulated vector,
the business benefits vector, regulation value, and nonlinear
disturbance, respectively.

FIGURE 2. State x1(t) and x2(t).

Choose the following parameters:

W1 = 1, W2 = 1.5, W3 = 0.5, W4 = −1

B1 = B2 = 1, D1 = D2 = 0, F1 = F2 = 1

the following systems can be obtained.

Edx(t) = Ax(t)dt + Bu(t)dt + J x(t)d$ (t) (41)

where

E =

[
1 0
0 0

]
, A =

[
1 1.5
0.5 −1

]
J =

[
1 1
0 0

]
, B =

[
1
1

]
When the initial condition x0 =

[
1 1

]T, Fig. 2 shows state
responses (60 tests) of this system. Then, one can find that this
system is unstable.

Next, By solving LMIs (24)-(25), the following state feed-
back controller gains are obtained.

Ks =
[
−2.8505 −3.5000

]
Then, Fig. 3 shows the states responses (60 tests) and means
of closed-loop system. So, this system is MS admissibility
under state feedback controller.
Example 3: The circuit system is shown in Fig.4. Variables

R, L, and C1,2 stand for the resistance, inductor, and capaci-
tances, respectively; VC1 (t), VC2 (t) stand for the voltages of
C1, C2; IC1 (t) and IC1 (t) stand for the currents flowing over
them; and Ve(t) is the voltage source. Based on the principle
of circuits, this system can be given as follows:

V̇C1 (t) =
1
C1

IC1 (t) (42)

V̇C2 (t) =
1
C2

IC2 (t) (43)

İC2 (t) =
1
L
(VC1 (t)− VC2 (t)) (44)

0 = VC1 (t)+ IC1 (t)R+ IC2 (t)R− Ve(t) (45)
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FIGURE 3. State x1(t) and x2(t): State feedback controller.

FIGURE 4. Circuit system.

Further, choose the state x(t), control input u(t), and output
y(t) as

x(t) =


VC1 (t)
VC2 (t)
IC2 (t)
IC1 (t)


u(t) = Ve, y(t) = VC2

Equations (42)-(45) can be written as:

Eẋ(t) = Ax(t)+ Bu(t)
y(t) = Cx(t) (46)

where

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , A =


0 0 0 1
0 0 1 0
−1 1 0 0
1 0 R R



FIGURE 5. State x1(t).

FIGURE 6. State x2(t).

B =


0
0
−1
1

 , C =
[
0 1 0 1

]
Matrix A is influenced by the random environment such

as A = A + J"noise". This "noise" term can be described
effectively by white noise $̇ (t). Then, system (46) becomes

Edx(t) = Ax(t)dt + Bu(t)dt + J x(t)d$ (t)

y(t) = Cx(t) (47)

Next, Let C1 = 1,C2 = 2,L = 1,R = 2,

J =


0 1.0000 0 −0.5000
0 0.0100 0 0.0100
0 0.4000 0 0
0 0 0 0


the initial states are x1(0) = 3, x2(0) = −4 and x3(0) = 1,
stochastic state responses (60 tests) and mean of this system
are given in each figure (see Figs. 5-8). So, this system is
unstable.
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FIGURE 7. State x3(t).

FIGURE 8. State x4(t).

FIGURE 9. State x1(t): observer-based controller.

Next, using the LMIs Theorems 3.3, the controller and
observer parameters are given by

Ko =
[
−0.5596 −0.1453 −0.1901 0.976

]

FIGURE 10. State x2(t): observer-based controller.

FIGURE 11. State x3(t): observer-based controller.

FIGURE 12. State x4(t): observer-based controller.

L = 103 ×


−1.3769
−0.0985
−0.6953
−0.0378
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Then, the simulations of closed-loop system under OBC
is obtained in Figs. 9-12. It is obvious that the system is MS
admissibility under observer-based controller.

V. CONCLUSION
The issues ofmean-square admissibility and controller design
for SSSs with Brownian parameter perturbations is studied.
Both SFC and OBC design method are given to guaran-
tee closed-loop systems are MS admissible via strict LMIs.
Different from the previous results, the novel OBC design
scheme is introduced to compute the controller and observer
gains simultaneously and the conservation is reduced in the
method proposed. Three examples are given to demonstrate
the feasibility and efficiency of the proposed results.
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