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ABSTRACT Knowledge graphs in manufacturing and production aim to make production lines more
efficient and flexible with higher quality output. This makes knowledge graphs attractive for companies
to reach Industry 4.0 goals. However, existing research in the field is quite preliminary, and more research
effort on analyzing how knowledge graphs can be applied in the field of manufacturing and production
is needed. Therefore, we have conducted a systematic literature review as an attempt to characterize the
state-of-the-art in this field, i.e., by identifying existing research and by identifying gaps and opportunities
for further research. We have focused on finding the primary studies in the existing literature, which were
classified and analyzed according to four criteria: bibliometric key facts, research type facets, knowledge
graph characteristics, and application scenarios. Besides, an evaluation of the primary studies has also been
carried out to gain deeper insights in terms of methodology, empirical evidence, and relevance. As a result,
we can offer a complete picture of the domain, which includes such interesting aspects as the fact that
knowledge fusion is currently the main use case for knowledge graphs, that empirical research and industrial
application are still missing to a large extent, that graph embeddings are not fully exploited, and that technical
literature is fast-growing but still seems to be far from its peak.

INDEX TERMS Knowledge graphs, manufacturing, production, systematic literature review.

I. INTRODUCTION
The twenty-first century has been clearly marked by its rapid
growth in artificial intelligence (AI) applications. Thus, com-
panies are required to undergo an inherent transformation
to leverage AI for reaching Industry 4.0 standards and for
gaining a competitive advantage in the international mar-
ket. While AI technologies such as neural networks, natural
language processing, chatbots, autonomous driving vehicles,
and digital twins received increasing attention in the field
of manufacturing and production, little light is shed on the
applications of knowledge graphs (KGs) in this domain.

In recent years, a large number of open (public) as well
as closed (enterprise) KGs have been developed. While open
KGs, which are often academic and open-source projects,
provide access to anyone on the web, enterprise KGs are

The associate editor coordinating the review of this manuscript and
approving it for publication was Shunfeng Cheng.

closed applications within companies that are only accessi-
ble to approved users [1]. Examples for public KG projects
are DBpedia [2], Freebase [3], KBpedia [4], NELL [5],
PROSPERA [6], Wikidata [7], and YAGO [8]. The most
popular commercial and closed KGs are Cyc [9], Google
Knowledge Graph [10], [11], Google Knowledge Vault [12],
and Microsoft Satori. The blog entry by Google [10]1 is
frequently quoted as seminal work of KG research since
it sparked the discussion in this field in 2012. Considering
early KG research from the 1980s, Google has rather revived
KG technology than invented it. The foundation of KGs has
been laid out by Sowa [13], who provided conceptual graph
theory as an early stage contribution for knowledge represen-
tation in semantic networks [14]. Further seminal work on
KGs has been conducted by Stokman and co-authors, who
aimed at building a KG to represent medical and sociological

1Note that Google’s blog entry has been recently updated in [11].
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literature [15]–[17].2 Even though knowledge graphs are
nowadays frequently applied in different domains, there is
still no formal definition, which is accepted in the entire
community. In 2016, Ehrlinger and Wöß [18] proposed the
following widely-acknowledged definition:
Definition Knowledge Graph: A knowledge graph

acquires and integrates information into an ontology and
applies a reasoner to derive new knowledge.

Ehrlinger and Wöß [18] further discuss existing alterna-
tive definitions and their implications and limitations. To be
in-line with the state-of-the-art, our paper covers all studies
that claim to employ a knowledge graph if (1) they have been
accepted by a scientific peer-reviewed journal or conference,
or if (2) they conform to at least one definition reviewed by
Ehrlinger and Wöß. In summary, the common denominator
of a KG is its structure in terms of nodes (entities) and edges
(relationships). For storing graphs, the two most popular data
models areRDF triples and property graphs.3 Themajority of
public KGs is stored in form of Resource Description Frame-
work (RDF) triples (subject-predicate-object), proposed by
the World Wide Web Consortium (W3C).4 In RDF, subjects
and objects are nodes and predicates the edges between
the nodes. Property graphs store nodes and edges natively,
whereas the nodes can have properties in form of key-value
pairs [19].

KGs are primarily used to semantically model a spe-
cific and often complex domain [20]. This explicitly mod-
eled domain knowledge is used to support and enhance
the accuracy of downstream tasks like question answering
[21], [22], information extraction [23], [24], named entity
disambiguation [25], [26], semantic parsing [27], [28], and
recommender systems [29], [30]. Also, the analysis of KGs
with machine learningmethods, e.g., to predict missing edges
or to classify nodes, has gained increasing attention [31].
Since most machine learning models require a set of feature
vectors as input, much research has been done to gener-
ate ‘‘embeddings’’ from KGs. A KG embedding transforms
the nodes and (depending on the approach) also the edges
to a numeric feature vector [32], which serves as direct
input to a machine learning model. Considering the plethora
of application scenarios mentioned above, several domains
have already perceived the substantial benefits KG technol-
ogy brings with it. Example domains, which already rely
on the use of KGs, are science [33], healthcare [34]–[37],
cybersecurity [38]–[41], data defects [42], education and
training [43]–[45], and tourism [46].

To lay out the foundation for novel research in using KGs
in the field of manufacturing and production, we conducted
a systematic literature review. The aim of this review is to

2The increasing popularity of knowledge graphs led to the fund-
ing of several projects related to knowledge graphs in manufac-
turing and other domains. See https://www.nsf.gov/od/oia/convergence-
accelerator/Award%20Listings/track-a.jsp.

3We refer to [19] for a discussion on less common graph data models, e.g.,
hypergraphs, which are not further considered in the frame of this paper.

4https://www.w3.org/RDF

systematically capture the current state-of-the-art of KGs by
revealing their utilization in manufacturing and production.
Already available standards and consensus with respect to
the structure and construction of KGs in this domain should
be discovered and discussed. By having an overview of the
current state-of-the-art, existing solutions can be refined and
extended, as well as novel approaches can be developed that
have not yet been the subject of research. According to the
OECD,5 more than 70 % of the G7’s world trade is based
upon goods. Even though less than 25 % of all jobs are
provided by industries,6 a significant amount of jobs in other
sectors depend on the jobs in the production sector. Despite
the substantial size and importance of this sector, KGs have
been neglected as one of the key AI technologies so far. Thus,
this research contributes to the dissemination and use of KGs
in industry applications by highlighting their benefits and
how companies can leverage them. We aim at answering the
research question: ‘‘Which role play knowledge graphs in
manufacturing and production?’’ The question is answered by
an investigation of (1) the bibliometric key facts, (2) research
type facets, (3) KG characteristics, and (4) KG application
scenarios.

The remainder of this paper is structured as follows:
Section II presents related work and Section III describes the
planning and realization of the systematic literature review.
The results, which were obtained from analyzing the primary
studies and answers to the research questions are provided
in Section IV. In Section V, we further discuss the research
questions along with open research challenges and the threats
to validity. Section VI concludes our study.

II. RELATED WORK
To the best of our knowledge, there is no systematic literature
review or systematic mapping study dedicated to knowledge
graphs in manufacturing and production. Yet, there are still
surveys, reviews, and books that aim to provide an overview
on the state-of-the-art of KG technologies.

Chronologically, we start with Nickel et al. [47], who
provide the first survey on KGs with a special focus on the
usage of latent and graph feature models for retrieving knowl-
edge to predict new facts/edges in the graph. The founda-
tion, architecture, construction, and applications of enterprise
knowledge graphs is outlined in detail by Pan et al. in [48].
Paulheim [49] describes how to refine a knowledge graph
based upon its A-box via completion, error detection, types
of refinement, internal and external methods, and puts for-
ward various evaluation standards that can be employed.
The study of Wang et al. [50] is similar to [47] with a
comprehensive summary of translational distance and seman-
tic matching models in the field of KG embeddings and a
comment on the usefulness of KGs with respect to recom-
mender systems and question answering applications. In [51]

5See, https://data.oecd.org/trade/trade-in-goods-and-services.htmOECD.
G7 countries trade 2.323,096 million USD in services and 5.844,610 million
USD in goods.

6See, WorldBank.
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Lin et al. employ a subset of the KG embeddings presented
in [47], [50] and address complex relation modeling, rela-
tional path modeling, and multi-source information learning.
Contrary to all previously mentioned articles, Yan et al. [52]
do not focus on a specific KG topic, but gives a gen-
eral overview on how KGs are constructed.7 The work of
Gesese et al. [53] is the first survey on KG embeddings that
make use of literals. Furthermore, Kazemi et al. [54] out-
lined how representation learning approaches are expedient
for dynamic graphs. The book of Kejriwal [55] provides a
very general summary of domain-specific KG construction.
One survey about fault domain knowledge graphs has been
written by Wang and Yang [56]. Another important scrutiny
has been conducted by Al-Moslmi et al. [57] outlining
pre-processing tools based on natural language processing,
such as, named entity recognition, named entity disambigua-
tion, and named entity linking, to enable the construction
of a KG. Fensel et al. [46] provide a recent introduction
into knowledge graphs with a lot of well-relatable real-life
examples. Heist et al. [58] give an overview of cross-domain
KGs that are publicly available on the Web. Ji et al. [59]
extend the study of [50] by explaining how different kinds
of neural networks can be used to generate KG embeddings.
Finally, a recent study by Hogan et al. [60] comprises all of
the aforementioned studies’ topics and provides a profound
and comprehensive foundation into the field of knowledge
graphs starting from scratch covering both, deductive and
inductive knowledge representation techniques.

III. RESEARCH METHOD
According to Brereton et al. [61], systematic literature
reviews (SLRs) are ‘‘a means of evaluating and interpret-
ing all available research relevant to a particular research
question or topic area or phenomenon of interest’’. SLRs
are secondary empirical studies used to provide a struc-
tured overview of a research field [62]. An SLR follows
a well-defined methodology, which makes it less likely
that the results of the literature are biased, although it
does not protect against publication bias in the primary
studies [62].

In this SLR, we followed the steps outlined in [62] – a
systematic literature review consists of three main phases,
i.e., the planning of the SLR, conducting the SLR, and
reporting the SLR. This section presents the planning of the
study, i.e., the research questions, the data sources, and search
strategy, along with the classification and evaluation criteria.

A. RESEARCH QUESTIONS
The aim of this SLR is to analyze the current status of knowl-
edge graphs in the field of manufacturing and production.
Thus, existing research is investigated to identify potential

7Keep in mind that this paper was submitted already in June 2015 and got
accepted for publication in January 2016 which in turn means it has been
available prior [47] which could explain the more general view on the topic
matters.

TABLE 1. Research questions.

gaps and opportunities for future work. The main research
question guiding this study is:

Which role play knowledge graphs in manufacturing and
production?

The research question we established for this study
attempts to provide specific insights into the relevant aspects
of how KGs are used in production and manufacturing. This
includes questions about the articles’ bibliometric key facts,
research type facets, specific KG characteristics, and their
application scenarios. We also want to examine the type
of research carried out up to that time (theoretical, pro-
posal, empirical), together with the type of research forums
in which these works have been published and presented.
The exact research questions this SLR answers are reported
in Table 1.

RQ1 provides an overview of bibliometrics of published
studies, concerning knowledge graph applications in produc-
tion and manufacturing to exhibit the importance and timeli-
ness of this topic. In more detail, we analyze the publication
trend, publication venues, and origin countries of research
institutes that have published studies in this field. RQ2 inves-
tigates the maturity of knowledge graph applications by ana-
lyzing which research methods have been used for the val-
idation of research. The specific construction techniques of
knowledge graphs are addressed in RQ3. This is of major
importance for consultants and practitioners as it reveals the
structure of knowledge graphs employed in a production and
manufacturing setting. Finally, RQ4 examines the application
scenarios in which knowledge graphs have been used in
the context of production and manufacturing, i.e., in which
particular manufacturing domains knowledge graphs have
been used, for which concrete use cases knowledge graphs
are used, and which kinds of systems are developed based on
knowledge graphs.

B. DATA SOURCES AND SEARCH STRATEGY
To build an adequate search string we have selected two
major search terms: ‘Method’ and ‘Field’. The first major
search term represents the employed methodology, namely,
’knowledge graph’ whereas the second major search term
illustrates the field in which the knowledge graph should
have been used. This term includes all sorts of technologies
and synonyms of manufacturing and production in which
the knowledge graph application should take place. Terms
like ’enterprise’, ’industry’, ’company’, ’corporate’, ’manu-
facturer’, ’manufacturing’, ’organization’, and ’production’
should cover all synonyms for production and manufactur-
ing, whereby, we included the German word ’industrie’,
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TABLE 2. Search string.

as well, since knowledge graphs could also be applied in
terms of Industrie 4.0 which is also commonly used in the
international academic literature. Furthermore, ’internet of
things’ should supply us with references concerning ’inter-
net of things’ and ’industrial internet of things’ whereas
’physical system’ is related to literature with a focus on
the combination of knowledge graphs and cyber-physical
systems. In addition, ’enterprise’ and ’management’ retrieve
references with respect to ’enterprise knowledge graphs’,
and finally, we specifically outlined ’product’ for ’product
knowledge graphs’ which is a rather new but interesting field
of knowledge graph applications.

The final search string that has been used in the presented
study is shown in Table 2. The search terms were constructed
using steps described in [61], in which the Boolean OR is
used to incorporate alternative spellings, synonyms or related
terms, and the Boolean AND is combining the link to major
terms.

The proposed search strategy is set out in Table 3. The
scope of the search considers publications and contributions
presented in both academic and professional forums and
publications. That is, we have considered academic publi-
cations (such as those published in journals or presented in
academic conferences or peer-reviewed books) in addition
to publications and contributions presented in industry or
professional forums, such as conferences, workshops, and
online publications. For academic publications, the sources
of choice are: ACM Digital Library, IEEExplore, ISI Web of
Science, ScienceDirect and Springer. It has been a need to use
a general search enginewhich in our case isGoogle Scholar to
include non-academic contributions and publications. Certain
criteria on the data sources has been invoked to overcome par-
ticular challenges to avoid assessing hundreds of thousands
of articles. To keep the search within reasonable bounds,
we restricted the number of results retrieved from Google
Scholar to 300.8 What is more, this data source was applied
only to search for non-academic primary studies: those papers

8Note, that this number was sufficiently high, since a significant part of
the last results returned by the engine did not include any primary studies.

TABLE 3. Summary of the search strategy.

or articles published in industry/professional conferences,
workshops, online journals/magazines or corporate blogs.
The strategic search has been conducted recursively, that is,
relevant studies referenced in the primary studies will also be
considered. Personal blogs or web pages have been excluded
from the search.

The inclusion and exclusion criteria whether a paper is
taken into account for the systematic literature review is
shown in Table 4. Every study needs to include at least
one of both major search terms. Additionally, it has to be
published in an academic or professional forum. English
has to be the language of the full-text and the publica-
tion date is not allowed to exceed the 26th of February,
2020. In case, the inclusion criteria have been fulfilled
and none of the exclusion criteria has been triggered as
well, the study will be considered as a primary study in
the SLR.

In the first round, the title and abstract of each study
are analyzed whether the paper is an eligible fit for the
SLR. Although corporate blog posts are considered, per-
sonal blogs or web pages are strictly excluded. In case,
the paper is only available in the form of a PowerPoint
presentation or the emphasis of the article is not on knowledge
graphs in a production or manufacturing setting it is excluded
as well.

In the second round, we are left with all papers that
have been affirmed to be relevant in the first round. In this
round, also the full texts of the papers are considered. If an
article only has an abstract but no full-text, or represents
a summary of a workshop it is excluded. Non-academic
or non-professional papers are eliminated as well. Further,
we have dropped papers discussing knowledge graphs but
only refer to manufacturing and production as potential usage
domain without describing a concrete application scenario of
knowledge graphs in this domain. For deciding if a paper
describes a use case from the manufacturing domain we
have used the North American Industry Classification Sys-
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TABLE 4. Summary of the selection strategy.

TABLE 5. Data items extracted from each study.

tem (NAICS)9 as a reference. The NAICS is a classification
system for business establishments providing a systematic
overview of the manufacturing domain. All other articles
that are in-line with the inclusion and exclusion criteria are
considered as primary studies.

C. DATA EXTRACTION AND SYNTHESIS
To answer the RQs defined in Table 1, we extract specific
data from the selected primary studies. Table 5 highlights the
data items (D1 toD9) extracted for the analysis in this review.
D1, D2, and D3 provide clues concerning the distribution of
knowledge graph studies in manufacturing and production
over years, venues, and countries of publication, and thus
answers RQ1. D4 and D5 directly contribute to the answers
of RQ2. D6 can be used to answer RQ3. D7, D8, and D9
contribute to the answer of RQ4 and further discussion of
knowledge graph approaches in manufacturing and produc-
tion. To ensure that the data extraction results are unbiased,
two authors performed the data extraction for each primary
study independently, and then one checked the data extraction

9According toNAICS, themanufacturing sectors are, foodmanufacturing,
beverage and tobacco product manufacturing, textile mills, textile product
mills, apparel manufacturing, leather and allied product manufacturing,
wood product manufacturing, paper manufacturing, printing and related
support activities, petroleum and coal products manufacturing, chemical
manufacturing, plastics and rubber products manufacturing, nonmetallic
mineral product manufacturing, primary metal manufacturing, fabricated
metal product manufacturing, machinery manufacturing, computer and elec-
tronic product manufacturing, electrical equipment, appliance, and compo-
nent manufacturing, transportation equipment manufacturing, furniture and
related product manufacturing, and miscellaneous manufacturing.

results of the other, and finally, they discussed and reached a
consensus on the data extraction results.

D. EVALUATION
A six-point Likert-scale was designed to provide a quality
assessment of the selected primary studies. We categorize
studies to five different research type facets that are weighted
according to their quality of evidence (as proposed by [63]),
namely from Opinion Papers ’1’ to Evaluation Research ’5’.
The final numerical value which generates the evaluation of
each paper assumes a value between 0 and 1. The evaluation
provides insights into the degree to which different aspects of
knowledge graphs are considered in existing research in the
field. It was decided that the results of this assessment would
help to identify the quality of research carried out.

The questions composing the quality assessment are shown
in Table 6 and follow the six-level classification of evidence
evaluation suggested by [64]. The purpose of these evaluation
questions was to assess the primary studies based upon the
employedmethodology, as well as, how the proposal has been
integrated.

IV. EMPIRICAL RESULTS
In this section, we offer the detailed results of our literature
analysis. Thus, this section is structured around the four
research questions we have answered.

A. RESULTS OF THE SEARCH
The initial search resulted in 833 articles. A detailed break
down by databases is shown in Table 7. We have obtained
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TABLE 6. Evaluation level of research type facet (see [63]).

TABLE 7. Electronic databases included in this SLR.

227, 172, 84, 23, 21, and 356 studies from ACM Digi-
tal Library, IEEExplore, ISI Web of Science, ScienceDirect,
Springer, and Google Scholar,10 respectively.

Removing the duplicates of all 833 found publications
leaves us left with 745 studies. Out of those 745 studies,
analyzing the abstract has revealed that 682 are not relevant
for the SLR. 5 out of the remaining 63 articles have not been
written in English. After reading the full-text of all 58 articles,
24 have been identified to be relevant as primary studies for
this systematic literature review. In each step, at least two
authors needed to have the same opinion on whether a paper
is included or excluded. In case, two authors had a different
opinion on one study, a third author decided whether to keep
the primary paper in the selection process. 2 articles have
been added as a result of snowballing the references of all
papers. The detailed breakdown of the search process is given
in Figure 1. As the findings indicate, the number of primary
studies obtained may appear to be quite small – there are just
24, however, as will be shown in greater detail in this section,
all these papers were published between the years 2016 and
2020. The full list of primary studies gathered is listed in the
appendix.

B. RESEARCH QUESTIONS
In this section, we answer each research question outlined
in Table 1 by discussing the analysis of the primary studies.

10In the case of Google Scholar, two searches have been conducted,
whereas the first search targeted all studies that have the search string
included in the title of the article (56 articles), and the second search extracted
the first 300 most relevant articles that include the search string in the
manuscript.

1) RQ1: WHAT ARE THE BIBLIOMETRIC KEY FACTS OF KG
FOR PUBLICATIONS?
Figure 2 shows the distribution of the studies according to the
year they have been published. The first primary studies with
a focus onKGs in amanufacturing or production environment
date back to 2016. This highlights the fact that this field
of research is still in its early stages of development. The
number of studies published in 2017 is six times that of 2016.
Moreover, the number of publications in 2017 is larger than
in 2018. However, the number of primary studies published
in 2019 is more than twice as much as in 2018. As we have
only covered the first two months in 2020 the number of
published studies can be disregarded, however, deducting
from previous years we expect that KG in production and
manufacturing studies will exceed 2019 as a result of its
increasing popularity.

Next, we have analyzed the origin countries of the primary
studies. Therefore we have analyzed the affiliations of the
authors, i.e, the countries of their research institutes. For each
study, we have taken the origin countries of all authors into
consideration. Figure 3 depicts the results of the analysis and
shows that most primary studies originate from research insti-
tutes located in Germany (8 studies), and China (7 studies).
Four studies were published by research institutes from Italy,
followed by three studies from the United Kingdom and the
United States each. Both India and Singapore are the origin of
two studies, and one study originates from Finland and Russia
each.

After the analysis of the primary studies by country,
we continue by focusing on the type of publication forum.
The ordered distribution of the type of forums is shown
in Figure 4. A closer look at Figure 4 points out that 12
primary studies – which are exactly half of all primary
studies – have been published in conference proceedings.
8 primary studies – representing one-third of all studies –
have found their outlet in journals. In addition, only 2 articles
have been printed in workshops whereas 1 primary study
has been available as a book, and 1 primary study is still a
pre-print.
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FIGURE 1. Primary study selection process.

FIGURE 2. Distribution of primary studies by year.

We continue by classifying the primary studies accord-
ing to their Scimago11 research field. The classification by

11https://www.scimagojr.com

FIGURE 3. Distribution of primary studies by country.

Scimago is not unique and therefore, a single study can be
assigned tomultiple research fields. Figure 5 reveals thatmost
studies have been published in Computer Science. In more
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FIGURE 4. Distribution of primary studies by forum.

detail, 19 articles and hence almost 80% of the articles belong
to this category. 9 primary studies are considered in the
field of Engineering which represent 37.5 % of all selected
papers. Additionally, 3 studies have been published in outlets
that are considered in the field of Business, Management
and Accounting. Finally, all remaining fields – Chemical
Engineering, Materials Science, Mathematics, Physics, and
Astronomy, and Social Science – inherent 2 primary studies.
This demonstrates that KGs mainly belong to the discipline
of computer science and engineering.

2) RQ2: WHICH RESEARCH TYPE FACETS DO THE
IDENTIFIED PUBLICATIONS ADDRESS?
The question regarding the research type facet is of funda-
mental importance as it demonstrates the applicability of the
approach and whether it has already been implemented in a
real-world scenario. This information is not only essential for
researchers, but it is also of major concern for practitioners
and consultants.

Figure 6 explicitly displays the clear picture of the primary
studies by research facet type. In this regard, the majority of
primary studies – 11 in total – can be considered as solution
proposals since although they have paved the ground for
novel KG applications, neither evaluation nor validation took
place. 9 selected articles fall into the category of validation
research. Hereby, the knowledge graph methodology has
been employed in a real-world setting. More information
about the specific application scenario is given in
Section IV-B4. Less attention has been brought to evaluation
research since only 2 papers have been conducted so far.
In both remaining categories – experience papers and opinion
papers – we have found a single study. This analysis shows
that even though multiple solutions for industry-specific
problems have been proposed, there is not a wealth of

TABLE 8. Classification of primary studies by research type facet.

literature yet that has incorporated those suggestions into
real-world applications. This step is clearly missing at the
current state of the literature. The details are illustrated
in Table 8.

3) RQ3: WHAT ARE THE SPECIFIC KNOWLEDGE GRAPH
CHARACTERISTICS?
In this section, we examine the type and construction of the
employed KGs. According to literature, a KG can either be
constructed by a bottom-up or a top-down approach [65],
[66]. In the top-down approach, a domain expert conceptually
models the schema of the KG, often in form of an ontology,
which is then populated with data to complete the knowl-
edge graph. In the bottom-up approach, the structure of the
knowledge graph is (typically automatically) induced from
the data [65], [66]. In terms of data model, a KG can either
be an RDF graph or a property graph [19], [67]–[70].

The decision for a specific construction approach and
data model clearly influences a successful application of the
KG. The top-down approach, for instance, is very restrictive
when adding new triples due to carefully modeled schema
constraints. The bottom-up approach, on the other hand,
allows rapid growth of the KGwith little human effort, which
could however lead to KGs with lower quality (e.g., incorrect
relationships). Interestingly, we did not find many papers,
which used machine learning or deep learning approaches to
construct a KG.

Figure 7 shows that 69.57 % of the KGs have been con-
structed with a top-down approach and only 30.43 % with
a bottom-up approach. This is an interesting finding since
a growing amount of research focuses on the automated
generation of KGs with bottom-up approaches. For example,
Wang et al. [50] use neural networks to induce the structure
of a KG.

With respect to the data model, Figure 8 discloses that the
majority of KGs (87.5 %) are modeled as RDF graphs and
only 12.5 % are modeled as property graphs. Even though
12.5 % is not much, it is still more than expected since there
is a strand of literature that claims that knowledge graphs are
RDF graphs [18].

4) RQ4: WHAT ARE THE APPLICATION SCENARIOS OF
KNOWLEDGE GRAPHS?
We have analyzed the primary studies with regard to the
application domain, use case, and system kind. Table 9
provides a summary of each primary study.
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FIGURE 5. Distribution of primary studies by Scimago research field.

FIGURE 6. Distribution of primary studies by research type facet.

The application domain describes in which field of man-
ufacturing and production KGs have been used. Figure 9
depicts the results of the classification with respect to the
NAICS schema. As shown in the figure, in half of the ana-
lyzed primary studies - 12 primary studies - no concrete
application domain was provided. 4 primary studies describe
the use of KGs in the field ofmachinery manufacturing, 3 pri-
mary studies come from the field of chemical manufactur-
ing, 3 primary studies come from the field of transportation
equipment manufacturing, 1 primary study has been pub-
lished in the field of fabricated metal product manufacturing,
and 1 primary study comes from the context of textile product

FIGURE 7. Distribution of kind of knowledge graph.

FIGURE 8. Distribution of knowledge graph construction.

mills. The assignment of each primary study to an application
domain is shown in Table 10.

We have analyzed each primary study for the motivating
use case, i.e., why a knowledge graph has been constructed.
Figure 10 provides an overview of which use cases have
been described in the selected primary studies. 50 % of
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TABLE 9. Summary of primary studies.

TABLE 10. Manufacturing domains of primary studies.

all primary studies, i.e., 12 studies, describe a knowledge
fusion use case where KGs are used for integrating data
from different information sources with each other. 3 primary
studies are using KGs for automatically integrating separated

manufacturing processes with each other, 3 primary studies
deal with the creation of digital twins based on data stored
in a knowledge graph, 3 primary studies use KG data for the
automated generation of source code. 1 primary study deals
with the development of a general KGmanagement platform,
1 primary study describes a predictive analytics use case.
For one of the primary studies, no concrete use case could
be identified. Table 11 links the assignment of each primary
study to its motivating use case.

Finally, we have investigated which kinds of systems
have been developed on top of a knowledge graph.
Figure 11 depicts the identified kinds of systems. In 8 cases
a search-based application, i.e, an application providing a
search engine based on semantic technologies, has been
developed. In 3 cases, a code generation system has been
proposed. 2 primary studies demonstrated the development
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FIGURE 9. Knowledge graph manufacturing domains.

TABLE 11. Knowledge graph use cases.

of a data visualization and analysis system. In 2 cases
a digital twin has been created, 2 studies supported the
modeling/description of a cyber-physical system, and 2
studies provided a simulation platform. In 2 studies a sys-
tem for the automated construction of a knowledge graph
was proposed, 1 study proposed a KG management sys-
tem. In 2 primary studies, no concrete system based on
a knowledge graph was developed. Table 12 lists which
kinds of system have been described by each primary
study.

V. DISCUSSION
In this section, we provide a discussion of the summarized
results obtained from the classification and analysis of our
study, along with an identification of gaps and opportunities
for future research, and a discussion of the threats to validity
of our study.

TABLE 12. Knowledge graph-based system kinds.

A. ABOUT THE BIBLIOMETRIC KEY FACTS OF KG FOR
PUBLICATIONS (RQ1)
The first aspect we want to highlight is the fact that the appli-
cation of knowledge graphs in manufacturing and production
(although in an early stage) is attracting a lot of attention
from both industry and academia. It should be noted that most
primary studies that have been considered in this literature
review stem from the field of Computer Science. The Engi-
neering and Business, Management, and Accounting sectors
are far behind. This may be because the Computer Science
community has led the way in knowledge representation
models from the beginning. Today, knowledge graphs are
understood as the natural evolution of such models to make
them more adaptable to novel paradigms based on cloud and
edge web platforms as well as new solutions for massive
data and knowledge storage and maintenance. Furthermore,
as can be observed in the results shown in the previous
section, most of the studies selected have been published in
conference proceedings to date. This is often an indicator that
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FIGURE 10. Knowledge graph use cases.

FIGURE 11. Knowledge graph system kinds.

the research topic is still emerging. In fact, in most research
fields, as the state-of-the-art matures, more journal papers
holding archival value are produced. Therefore, knowledge
graphs do not seem to be an exception.

With regard to the countries leading research in knowledge
graphs in the field of manufacturing and production, it could
be observed that Germany and China are the two countries
from which most primary studies originate from. Both coun-
tries also belong to the top manufacturing countries on a
value-added basis, i.e., in 2018 China was the top manufac-
turing country and Germany held position 4.12 Analyzing the
relation between the origin countries of the primary studies

12See https://www.statista.com/chart/20858/top-10-countries-by-share-
of-global-manufacturing-output

and the leading manufacturing countries further reveals that
theUnited States as second-largest manufacturing nation only
takes the fourth rank in the origin countries of the primary
studies. For Japan as the third-largest manufacturing country,
we could not find any primary study. Since the application
of KGs in manufacturing and production is still an emerging
topic (see above) and there are still little primary studies,
the analysis of the origin countries should be seen as a current
snapshot, which can easily change in the future.

B. ABOUT THE RESEARCH TYPE FACETS THAT THE
IDENTIFIED PUBLICATIONS ADDRESS (RQ2)
It is also noteworthy that the number of validation research
papers, which provide sound evidence of the usefulness of
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FIGURE 12. Summary of classification.

knowledge graphs in the production andmanufacturing sector
is still rather limited. So far most articles are proposing a
solution for potential issues that can occur in production
environments. However, these works have not been imple-
mented in a real-world setting. Despite results obtained from
validation research papers provide solid foundations for the
employment of knowledge graphs in manufacturing and pro-
duction, and show the usefulness of such approaches in this
field. Knowledge graphs in the field of manufacturing and
production is a very important path that cannot be ignored
if we take a look at the evolution of topics, the number of
publications, and research type forum over time as shown
in Figure 12. At the same time, experience papers and opinion
papers are in the minority at the moment. The fact that the
new approaches based on deep learning have facilitated and
accelerated the proposal of fully automated solutions does
not seem to provide new views on their potential impact on
production and manufacturing companies. This can probably
change when advances are made to process numerical and
tabular data in knowledge graphs, or on the other hand,
to apply deep learning models directly on the knowledge
graph without requiring an intermediate step of calculating
embeddings13 from the graph, which can serve as direct input
for the deep learning model.

C. ABOUT THE SPECIFIC KNOWLEDGE GRAPH
CHARACTERISTICS (RQ3)
Another interesting takeaway is that against the vast majority
of KG literature, knowledge graphs in an industry setting are
usually constructed following a top-down approach. Thus,
it seems that in an industry setting top-down knowledge
graphs enjoy higher popularity. This could be caused by the
fact that production settings require dedicated restrictions and
schema constraints to ensure high quality in the knowledge
graphs. With regard to the used graph model, RDF graphs

13Note: as mentioned in the Introduction, a KG embedding represents the
data in the graph as numeric vectors.

have been used in a majority of the analyzed approaches.
This is in contrast to the industrial state-of-practice that
typically favors property graphs. However, the popularity of
RDF graphs for KG development might hint at the greater
potential of RDF for the development of knowledge-based
applications.

It is worth mentioning that barely any paper with respect to
this area is using machine learning or deep learning methods
to expand the knowledge graph. We guess that this obser-
vation could be caused by the fact that companies want to
knowwhy decisions have beenmade and themissing explain-
ability of ’black box’ models such as neural networks is an
uncertainty factor companies do not want to deal with in
their production process. Additionally, as knowledge graphs
mainly deal with textual pieces of information the number of
machine learning tools that can be used for the prediction of
categories is rather limited or have unrealistic assumptions to
provide adequate results, at least if compared to situations that
require the processing of numerical information, as is usually
the case in the industrial sector.

In short, although the options in terms of representation
and evolution of the knowledge graphs are diverse, most of
the solutions proposed to date are eminently conservative and
do not yet make intensive use of the new developments with
regards to machine learning.We envision that, however, these
advances will be increasingly incorporated into the existing
body of literature soon as new solutions based on bottom-up
knowledge graphs will be proposed in combinationwithmore
mature deep learning techniques that allow being used in still
unexplored yet relevant domains.

D. ABOUT THE APPLICATION SCENARIOS (RQ4)
With regard to the application domain analysis, which
answers where knowledge graphs have been employed in
manufacturing and production, it could be observed that for
50 % of the primary studies no explicit application domain
could be determined. We see two reasons for this: First, many
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primary studies are still at an early stage of research (see
also RQ2) and have not yet been evaluated in an industrial
setting. Therefore, no concrete field of manufacturing could
have been determined. Second, some primary studies propose
general solutions that are not only applicable to a single
field of manufacturing. For instance, analyzing data from
production lines in a knowledge graph is a relevant topic
across many manufacturing domains.

With respect to the use cases for which knowledge graphs
have been applied, it could be observed that knowledge
fusion is the main use case for knowledge graph applications,
which has been exploited by half of the analyzed studies.
This comes as no surprise, since the integration of different
data sources can be seen as a strength of knowledge graphs.
Further, knowledge fusion can also be seen as a founda-
tion/prerequisite for other use cases, i.e., the creation of digi-
tal twins, automated process integration, program generation,
and predictive analytics. All those use cases build upon the
integration and analysis of data from different data sources.
The spectrum of use cases also shows the potential of knowl-
edge graphs as the underlying technology for production and
manufacturing companies.

Analyzing the kinds of systems that have been devel-
oped in the primary studies revealed that in most cases
(8 studies) search-based applications have been built based
on knowledge graphs. These systems provide means for
searching and exploring the data stored in a knowledge
graph and allow analyzing relationships between data that
has initially been stored in different data sources. Closely
related to search-based applications are data visualization
and analysis systems, which have been subject of research
in 2 studies. All these systems focus on supporting analyt-
ical tasks and knowledge discovery. Code generation sys-
tems have been developed as part of 3 studies. In 2 studies,
source code for autonomous robots/vehicles was generated,
in 1 case test cases were generated from specifications. This
shows the possibility of using knowledge graphs for automat-
ing constructive activities, i.e., software development tasks,
which represents a paradigm shift from requirements-driven
to data-driven development [71]. Multiple system kinds
deal with digital representations manufacturing and produc-
tion processes. This includes the creation of digital twins,
the automated modeling (documentation) of cyber-physical
systems, and the simulation of processes. Finally, 3 studies
focus on the construction and management of knowledge
graphs, rather than on use cases where knowledge graphs are
further used. 2 of these approaches investigate the automated
construction of knowledge graphs from existing data. 1 study
has proposed a platform for the creation and management of
knowledge graphs. These works can be seen as the foundation
for facilitating the wider application of knowledge graphs in
the future.

In summary, the analysis of the current application scenar-
ios of knowledge graphs in manufacturing and production
shows the wide applicability and potential of knowledge
graphs as underlying technology and foundation for a variety

of different use cases and different system kinds. The differ-
ent use cases (RQ4), the current number of primary studies
(RQ1), and the current maturity of research (RQ3) show that
knowledge graphs are still an emerging research topic with
multiple open research challenges.

E. OPEN RESEARCH CHALLENGES
After examining the existing literature on knowledge graphs
in the field of manufacturing and production, we have iden-
tified five open research challenges that have not been ade-
quately addressed to date. The following is a description of
each of these open research challenges (ORCs).

1) ORC1: PROPER HANDLING OF NUMERIC
AND TABULAR DATA
Today, almost all of the solutions presented in the literature
are specifically designed to work with the information of
an eminently textual nature. While it is true that this is an
important type of information in industry, it is not precisely
the predominant kind in manufacturing and production envi-
ronments that usually work with machines and equipment
that produce data of a numerical and even tabular nature.
Tabular data is the type of data that is frequently represented
in comma-separated values and is usually one of the most
common input methods in industrial environments since it
allows to model a wide variety of data associated with tem-
poral aspects (timestamps), spatial aspects (coordinates), and
similar categorical attributes. However, such files usually
lack extensive metadata, i.e., there is often no contextual
information to the data. For interpreting such plain textual
files (e.g., comma-separated values or Excel spreadsheets),
knowledge graphs can open a wide range of possibilities
for downstream tasks like data analysis, data integration or
knowledge discovery. Recently, intensive research work has
been carried out on the problem of mapping tabular data to
knowledge graphs14 and it is likely that these advances may
represent a qualitative leap forward in this sector.

2) ORC2: FURTHER RESEARCH IN REAL-TIME
KNOWLEDGE GRAPHS
A fact that seems widely assumed among researchers and
practitioners is the suitability of knowledge graphs to prop-
erly deal with data, information, and knowledge of differ-
ent nature that might arrive through different channels and
sources. However, in the course of this study, we have not
observed a great number of works related to the temporal
aspect when processing knowledge graphs. The manufactur-
ing industry, however, requires solutions that can operate sat-
isfactorily in environments with significant time constraints
as many of the processes are automated and require a high
degree of synchronization between them. In fact, we are con-
vinced that further research on issues related to the fast updat-
ing knowledge graphs in real-time as information is received
through different channels and sources will be a great advance

14https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
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in this sector. We look forward to new proposals in this regard
when basic research would facilitate it.

3) ORC3: AUTOMATIC LINKAGE WITH OTHER PUBLICLY
AVAILABLE KNOWLEDGE GRAPHS
One of the main characteristics that have made knowledge
graphs popular is the possibility to grow based on identifying
similar pivot points in other knowledge graphs that have been
designed independently but have ended up being offered to
the public, for example, on the web. However, it seems that
all the research that has been published in relation to the
manufacturing and production sector do not take into account
this characteristic when designing and implementing solu-
tions. On the contrary, it seems that the community is working
with knowledge graphs contained in silos that solve a specific
task without requiring connection to other publicly available
graphs. Thismeans that not all the capabilities that knowledge
graphs can offer are being used to the fullest. Obviously,
to stimulate more intensive research in this direction, it is
necessary to have better solutions for the automatic alignment
of entities between different knowledge graphs. In this sense,
it should be noted that promising methods have appeared
recently15 and will soon be used with certain guarantees of
success.

4) ORC4: A HIGHER DEGREE OF COVERAGE OF ALL
MANUFACTURING AND PRODUCTION DOMAINS
Based on the current state of evaluation (RQ2), although
we have seen a great deal of research work in a number
of categories in the manufacturing and production sector,
the truth is that there is still a lack of validation of existing
approaches in this context as well as many industrial cat-
egories that remain largely unexplored. For example, there
is an abundance of generic solutions for Industry 4.0 or the
Internet of Things, and even there are already some innovative
solutions for categories that are important from the economic
point of view such as the chemical and automotive sectors.
However, we can see that most categories of the NAICS
classification have not yet been explored from the point of
view of basic and applied research on knowledge graphs to
automate and/or improve the industrial processes that they
currently implement (evaluation research). We think that this
question is related to the incipient emergence of knowledge
graphs in this sector. Therefore, it is expected that in the
coming years more evaluation research will appear in each
category that make up the NAICS taxonomy.

5) ORC5: COLLECTION OF BEST PRACTICES CONCERNING
THE DEVELOPMENT OF REFERENCE ARCHITECTURES
FOR KG DEVELOPMENT
It also appears from our study that no work has been done
in the direction of compiling and understanding what the
best practices are in this sector. It remains a great future
challenge to be able to identify the reference architectures for
the design, implementation, and exploitation of knowledge

15https://paperswithcode.com/task/entity-alignment

graphs in industrial and production environments. We think
that a compilation of best practices in this area can be truly
beneficial in maintaining high standards of quality results,
as well as, saving resources in the form of money and time
when developing new systems or making changes to existing
ones. The truth is that until now all the development has been
carried out without clear guidelines that might promote the
best outcomes. On the contrary, each team has developed its
own solutions to the best of its knowledge. We believe that
it could be highly beneficial to have a set of best practices
that can standardize the development of knowledge graphs
in the field of manufacturing and production. In this way,
the domain can grow sustainably and reach a high degree of
development that is beneficial to all stakeholders involved.

F. THREATS TO VALIDITY
To mitigate threats to validity [72] regarding subjective mea-
sures, all selected primary studies were analyzed according to
defined criteria by all three authors. Studies with conflicting
votes were analyzed in detail and discussed in the group
before they were re-evaluated again by all researchers.

The exclusion of relevant studies during screening is
another threat to validity. We tried to mitigate this by clearly
defined criteria and a multi-stage screening process, which
facilitated in-depth analysis of studies with ambiguous eval-
uations.

Our mitigation strategy against low statistical power is to
use five academic libraries and Google Scholar as an addi-
tional data source to obtain the most complete possible result
set of publications. We also considered alternative terms for
describing sub-fields in the field of manufacturing and pro-
duction as keywords for the search process to mitigate risks
of publication selection and instrumentation.

VI. CONCLUDING REMARKS
In this paper, we have presented a systematic literature review
on knowledge graphs in manufacturing and production envi-
ronments. With the growing amount of scientific literature
on KGs, an overview of the current development is needed
to assess the applicability for this specific domain. Thus,
we have come to weave a systematic literature review of one
of the most prominent fields of application for knowledge
graphs. To date, a lot of attention has been paid to fundamen-
tal research in KGs as attested by the growing literature on
knowledge graph surveys.

After carrying out a systematic search for primary stud-
ies, we have classified the identified studies according to
four facets: (1) bibliometric key facts, (2) research type, (3)
knowledge graph characteristics, and (4) application scenar-
ios. Based on this classification, we have analyzed the current
state of research and identified open research challenges.

We identified that almost 90 % of the research has been
conducting in one of the top 9 manufacturing countries
worldwide.16 This highlights the fact that KGs are of par-
ticular importance for the manufacturing and production

16See, Statista.
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domain. Furthermore, the majority of research papers have
been published in conferences. This fact illustrates that this
research area is still in an early stage. It should also be noted
that more than 95 % of all published studies underwent a
review process and are thus academically sound. Another
interesting fact is that almost all papers belong to the category
of computer science or engineering. Barely any evaluation
papers were identified and more than 80 % of the selected
studies are either solution proposals or validation research
papers. Notably, almost 70 % of all KGs in manufacturing
and production follows a top-down approach whereas slightly
more than 30 % are constructed employing a bottom-up
approach. Finally, 87.5 % of the relevant KGs have been
identified as RDF graphs whereas 12.5 % belong to the
category of property graphs.

The general trend that can be seen is that this area of
knowledge, albeit upward, is still very fragmented. This
means that several research groups, as well as public and
private organizations, focus their research on small sections
and manufacturing sectors that are of interest to them, but
they do not usually look further beyond. In addition, most
solutions are focused on the classical use of graph-oriented
computing, so it does not take full advantage of new methods
based on deep learning that allows the processing of graphs.
Nevertheless, although timidly, some works are emerging
and our forecast is that the number of works in this sense
will shoot up in the near future. Furthermore, the research
activity has not yet covered a good part of the categories
included in the NAICS classification, but we believe that
new works will appear that will cover practically all the
categories.

Although an upward trend can be discerned, we think that
the use of knowledge graphs in manufacturing industries has
not yet fully reached its peak. But the figures evidence that
is currently and most likely will remain a very active field
of research in the near future. After all, knowledge graphs
offer an effective and efficient way to address some of the
problems that have traditionally plagued the manufacturing
and production environments. So as future work, we will
continue to monitor the literature in this sector to gain a better
understanding of how knowledge graphs can boost innovation
and ensure that there are no remaining gaps to fill.
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