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ABSTRACT The rapid development of civil UAV promotes the social and economic development, and
the frequent ‘‘flying illegally’’ events has brought great challenges to aviation safety and government
supervision. The frequency hopping communication system used in UAV data transmission and control link
has the advantages of anti-jamming and anti-interception, and its complex electromagnetic environment,
which also brings great difficulties to UAV detection. In this paper, the detection of civil UAV is realized by
frequency hopping signal monitoring. Firstly, by analyzing the signal characteristics of UAVs, an adaptive
noise threshold calculation method is proposed for find the signals from spectrum data. Then, the improved
clustering analysis algorithm is proposed based on constructed the waveform shape characteristics and peak
characteristics of UAV frequency hopping signal. Finally, according to the designed experimental process,
the experimental environment is set up, and the UAV monitoring, discovery and parameter estimation are
realized by using the improved clustering analysis algorithm, and compared with K-means, K-means++,
DBSCAN,Multi-hop and Auto-correlation methods. The results show that the method has certain robustness
and has a good application prospect.

INDEX TERMS Civil UAV, hopping signal detection, clustering.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) of civil applications
is growing rapidly across many application domains and
improving ones’ quality of life, such as real-time monitoring,
providing wireless coverage, remote sensing, search and res-
cue, delivery of goods, security and surveillance, precision
agriculture, and civil infrastructure inspection, up till now,
UAVs industry has greatly promoted social and economic
development, and become thousands of billions market
value [1]–[3]. Meanwhile, civil UAVs are also faced many
challenges within specific vertical domains and across many
application domains, such as UAVs amateurs have weak
air safety awareness, immature operation and imperfect air
control system, and ‘‘illegal flying’’ of civil UAVs have
brought unprecedented threats to aviation safety and personal
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privacy [4]. To overcome these challenges, formulating rele-
vant laws, regulations and policies to implement the super-
vision of UAVs must be done by the government, as well as
technicalities of detecting, locating and controlling UAVs are
urgently developed [5].

In existing studies, UAV detection methods mainly include
sound monitoring, visible light, infrared or radar detection
and radio spectrum monitoring, etc. [3]. Among them, sound
monitoring is susceptible to the noise of surrounding life,
visible light is usually affected by weather and building
occlusion. While UAV miniaturization and even ‘‘invisible’’,
makes infrared and radar detection technology difficult to
play an advantage. Radio spectrum monitoring is through
equipment (radio receiver and antenna, etc.) to monitor the
UAV frequency band all-weather, analyze the spectrum data,
then detect the control signal or the communication signal.
Compared with these methods, spectrum monitoring has
the advantages of good applicability and less influence by
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the environment, become an important method for UAV
discovery [6]–[10], [28].

The electromagnetic environment of UAV in radio fre-
quency band is complex, noise and interference coexist [11],
and most of the UAV signals are frequency hopping (FH)
signals, which further increases the difficulty of detection
and analysis. Research on FH signal detection, separation
and recognition based on spectrum monitoring data has
become a hot spot in UAV signal analysis field [12]–[15].
FH signal detection methods are mainly frequency domain
and time domain detection. Common frequency domain
analysis methods include Fourier transform [16], wavelet
analysis [17], [18], Wigner-Ville distribution [19], spectro-
gram, etc. [20]–[22]. Time domain detection methods include
image analysis, energy detection, correlation detection,
etc. [23]–[28].

The paper in [14] propose an improved channelized MWC
scheme for non-cooperative detection and frequency estima-
tion of FHSS signals, by adjusting the channel weighting fac-
tor, it can better adapt to the single hop width, greatly reduce
the amount of calculation, and achieve good results compared
to the traditional method, but only based on theoretical analy-
sis and numerical simulations, and not real implementation of
channelized MWC. In [15], [16], [19] papers, a novel method
based on sparse linear regression to solve the problem of
computation burden in parameters estimate, which the results
are only better on hop timing estimation, the estimation per-
formance of other parameters is general. An approach based
on frequency difference and one-dimensional non-linear filter
has been proposed in [18], which the robustness against
white Gaussian noise has been enhanced but need SNR is
greater than 13 dB which is an extremely harsh precondition,
and is also reflected in [20], the author propose a detection
scheme based on the Neyman-Pearson test, and the results
shows better than method of auto-correlation-based when the
hopping period is short, and so on. the front papers methods
almost set a harsh precondition, or manual parameter, and
also not make a real environment experiment within multiple
frequency hopping signals active, lacking of persuasion of
practical application.

In this paper, by focusing on frequency characteristics of
the civil UAV control link signals (which are FH signals),
a new FH signal detection of civil UAVs based on improved
K-means clustering algorithm is proposed to fast discovery
civil UAVs. Concretely, an adaptive noise threshold calcula-
tion method is firstly provided to preprocess spectrum data
of civil UAVs in radio frequency band. Then an improved
K-means clustering algorithm is proposed to analyze FH
signals of civil UAVs and estimate parameters of them. Exper-
iment results and comparison with K-means, K-means++,
DBSCAN, Multi-hop and Auto-correlation methods finally
show that the proposed method is useful and effective to
detect civil UAVs.

The rest of this paper is structured as follows:
In Section II-A, characteristics of frequency hopping sig-
nals of civil UAVs are briefly reviewed. In Section II-B,

introduce the idea of frequency hopping signal detection of
the paper. In Section III, the process of the method to detect
FH signals of civil UAVs is described in detail. In Section IV,
several experiments are built to verify the performance of
the proposed algorithm. In Section V, the performance of the
algorithm is compared and analyzed, and conclude the paper
is in Section VI to show.

II. FREQUENCY CHARACTERISTICS AND DETECTION
OF CIVIL UAV CONTROL LINK SIGNALS
FH signals of civil UAVs work in open ISM band 2400MHz-
2483.5MHz, in which there are WIFI, wireless mouse,
cord-less phone, blue-tooth, microwave and ZigBee besides
FH signals of UAVs [11], hence electromagnetic environment
is often very complex, such as Figure 1 shows the spectrum
waterfall map for electromagnetic environment of UAVs in
ISM band at some time.

FIGURE 1. The spectrum waterfall map for electromagnetic environment
of UAVs.

In the section, frequency characteristics and detection of
FH signals of civil UAVs are analyzed.

A. FREQUENCY CHARACTERISTICS OF FH SIGNALS
Comparison with other signals in the ISM band, FH signals
of civil UAVs own many interesting and important charac-
teristics, which can help us to parameterize the FH signals
not only from the theoretics but also applications point of
view [11], [16], [22], [28]–[32]. In the paper, as Figure 2
shows, these characteristics are summarized as follows:

FIGURE 2. A frame of spectrum data of UAV.

The bandwidth of the FH signal of a civil UAV is stable.
The bandwidth of a FH signal is consisted by the transmis-
sion bandwidth and the protection bandwidth. The former
is the distance between the maximum and minimum fre-
quency points of the FH signal, which is theoretically about
2MHz; the latter is to protect the effective transmission of
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a FH signal. In most real applications, 1MHz protection
bandwidth is added to the left and right of the FH signal
respectively, hence the bandwidth of an actual received civil
UAV signal is about 4MHz.

The frequency sequence of a civil UAV FH signals is fixed.
The frequency sequence is a set of non-repetitive chronolog-
ical frequency points of an actual received civil UAV signal.
And in real applications, the FH frequency sequence of a civil
UAV signal is often unchanged.

FH signals law of civil UAV can be observed. Despite the
dwell time of the signals is very short between two FH in a
certain span (it is usually microseconds), the FH period of
the civil UAV signal is fixed, i.e., the sum of the time that
the signal energy starts to disappear and the next FH energy
starts to rise is fixed. In addition, FH speed (the rate of the
frequency hops and time) and peak energy of a civil UAV
signal are stable, the signal of 100-1000 hops per second is
medium speed FH signal.

Theoretically, the aforementioned frequency characteris-
tics can be utilized to distinguish FH signals of civil UAVs
from signals in open ISM band 2400MHz-2483.5MHz. How-
ever, obtaining these frequency characteristics are not trivial.
In real world applications, special data mining methods are
needed to extract these frequency characteristics of FH sig-
nals of civil UAVs.

It is worth noting that there are Bluetooth signals almost
have some same characteristics, such as frequency hopping,
active in 2400MHz-2483MHz, frequency hopping time-
sequence, and a stabled dwell time, the difference is that
Bluetooth signals is only 1M bandwidth in real applications,
and transmission distance is less than 30meters, and even if in
an open environment, the transmission distance is less than 60
meters, which is within sight. Therefore, we can combine the
actual environment and frequency hopping signal detection
results for comprehensive analysis to determinewhether there
are Bluetooth signals.

B. DETECTING FH SIGNALS OF CIVIL UAVS
From the data mining point of view, based on frequency
characteristics of a FH signal of a civil UAV, the FH signal
can be parameterized, i.e., the FH signal can be expressed into
frequency characteristics space, and then the civil UAV can
be discovered by detecting the FH signal in the frequency
characteristics space. In this paper, bandwidth, waveform,
short-time peak energy and time sequence features are
selected as frequency characteristics of FH signals, further-
more to extract four frequency characteristics of signals,
an improved K-means clustering algorithm are proposed
to classify signals in open ISM band according to each
frequency characteristic, respectively. Then FH signals are
detected according to clustering results of four frequency
characteristics of signals. Intuitively, Figure 3 shows dwell
time, bandwidth, cycle and interval of FH signals of civil
UAVs.

In addition, because there exists noise in any radio signals,
an adaptive noise threshold calculation method is provided

FIGURE 3. The schematic chart of FH signal parameters.

FIGURE 4. Detection of FH signal of UAV process.

to preprocess signals. From the data analysis point of view,
the adaptive noise threshold calculation method is mainly
used to extract the spectrum data higher than the noise thresh-
old, the process is equal to obtain effective spectrum data of
radio signals.

From these ideas, the FH signal of UAV is detected from
the characteristics of signal duration continuity, signal fre-
quency point connectivity, bandwidth similarity, waveform
feature similarity, short-time peak energy similarity and time
sequence correlation. Specifically, aiming at FH signal detec-
tion in low SNR electromagnetic environment, according
to the characteristics of noise and signal distribution in
frequency domain, the adaptive noise threshold calculation
method is used to extract the spectrum data higher than the
noise threshold. Then, the improved clustering algorithm is
used to cluster the extracted signals with bandwidth, wave-
form, energy and dwell time characteristics to detection
the FH signals of UAV, and estimate the parameters. The
schematic chart is shown in Figure 3, and the algorithm
processing is proposed is shown in Figure 4, which shows
the process of using improved clustering algorithm to detect
and sorting the FH signal of UAV in detail, and analyzes the
system error at the end of experiment:

1) The FH signal of UAV is extracted by adaptive threshold
calculation method.

2) Using the improved clustering algorithm to extract the
signal bandwidth, wave form characteristics and resident
time, energy, then clustering.

3) Separation of various classification according to the time
sequence, the class whose number of signals in the sorting
results is less than 10% of the total number of detected signals
is discarded;

4) The FH signal parameters of the classification results
are estimated.
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III. THE PROPOSED METHOD TO DETECT
FH SIGNALS OF CIVIL UAVS
According to ITU-R P372 proposal, radio noise obeys the
normal distribution under certain conditions, theoretically,
this also means that the number of noise points in the spec-
trum distribution is more than the number of signal points,
and with the accumulation of time, the statistical distribu-
tion characteristics of signal and noise become more obvi-
ous. Intuitively, noise points and signal points in frames
of spectrum data are convex distribution, which are shown
in Figure 5, where θ is the signal threshold.

FIGURE 5. Schematic diagram of spectral data distribution.

A. ADAPTIVE THRESHOLD CALCULATION METHOD
Up till now, there are many researches for how to obtain
signal threshold θ [23]–[25]. In [23], an automatic algorithm
extraction of the signal components (useful information) from
the noisy mixture is based on the time-frequency distribution
segment to a fixed number of data classes is proposed, which
depends on the differences in the time frequency structures
of noise and signal components. In [24] paper innovatively
proposed a dynamic threshold based target signal coopera-
tive extraction method for high frequency electromagnetic
environment measurement, which reduces the influence of
manual factors and improves the automatic degree and effi-
ciency of high frequency electro-magnetic environment mea-
surement, but it’s not completely applicable to detect uav
signals which is in a moving status and complex frequency
environment.

In the paper, inspired by the characteristics of the FH signal
of UAV, the adaptive threshold calculation method based
on current spectrum data is proposed. Formally, let a frame
of spectrum data in open ISM band St = {s1, s2, · · · , sn}
(where si is signal energy level (dbµV) of i sampling
point), then the signal level interval of the spectrum data
can be calculated, i.e., [Smin, Smax] in which Smin =

min{s1, s2, · · · , sn}, Smax = max{s1, s2, · · · , sn}. Suppose
split width of interval is b, for example, b = 2dbµv in
real applications, then the level interval [Smin, Smax] can
be divided by m =

Smax−Smin
b sub-intervals, denoted by

[Smin−1, S1],[S1, S2], · · · ,[Sm-1, Sm = (Smax)] such that Sj =
Sj−1 + b for each j ∈ {2, · · · ,m}. According to m sub-
intervals, statistical analysis of the FH signal can be fin-
ished in the frame of spectrum data, then the number of
sampling points in each sub-interval can be obtained, i.e.,
Si ∈ [Sj−1, Sj]. Accordingly, statistical law of the FH signal

FIGURE 6. Energy segmentation diagram of a frame of spectrum data.

can be described by the following function:

y = F(x),

where x ∈ {[Smin−1, S1], [S1, S2], · · · , [Sm-1, Sm = (Smax)]},
y is the number of sampling points in x. Based on frequency
characteristics and our experiment on FH signals of UAV,
the function can be shown in Figure 6, and signal threshold
θ can be obtain in the function, i.e., θ is the minimum of the
function. Algorithm 1 can be designed to obtain threshold θ
of FH signals of UAV.

Algorithm 1 Obtaining Threshold θ of FH Signals UAV
Input: Spectrum data in open ISM band
Output: Threshold θ
1) let a frame of spectrum data: St = {s1, s2, · · · , sn},
level scope: [Smin, Smax].

2) m = Smax−Smin
2 sub-intervals denote as

Si = {[Smin, S1],[S1, S2],[S2, S3],
· · · ,[Sm-1, Sm(= Smax)]}.

3) for [Sk , Sk+1] in Si do
4) Count sampling points as Ck ,
5) if k == 0 or Cmax < Ck
6) Cmax = Ck ;
7) q = k;
8) end
9) for [Sq, Sq+1] in Si do
10) Count sampling points as Cq,
11) if Cq−2 > Cq−1 > Cq < Cq+1 < Cq+2
12) Cmin = Cq;
13) θ = Sq+1;
14) break;
15) end
16) return θ

Signal extraction: spectrum signals, and uav signals in
special have the statistical characteristics of spectrum data as
shown in the figure 5, except signals submerged in the noise,
we can get a better adaptive threshold θ by Algorithm in
a lower SNR environment, then the spectrum data is repro-
cessed based on this threshold, and signals list is obtained,
then cluster analysis algorithm is carried out.

B. AN IMPROVED K-MEANS CLUSTERING ALGORITHM
Unlike the traditional K-means algorithm, in which the num-
ber of clusters need to be fixed and initial clustering centers
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are randomly selected, in this paper, an improved K-means
clustering algorithm is proposed, in which the number of
clusters are decided by density characterization of objects
and clustering centers are selected as objects with maximum
density.

Step 1: Given m data objects � = {o1, o2, · · · , om},
in which oi = (ai1, ai2, · · · , ain), i = 1, 2, · · · ,m, n is the
attribute dimension of the data, the Euclidean distance of any
two objects oi and oj is as follows:

dij(oi, oj) = ||oi − oj|| =
√∑n

q=1
(aiq − ajq)2 (1)

For object oi, denote the following distances:

dimin = min{dij|j ∈ {1, 2, 3, · · · ,m}, j 6= i} (2)

d1 = min{dimin|i ∈ {1, 2, 3, · · · ,m}} (3)

d2 = max{dimin|i ∈ {1, 2, 3, · · · ,m}} (4)

Intuitively, dimin is the minimum distance from all objects
oj(j 6= i) to object oi, d1 and d2 are the minimum and
maximum values of {dimin|i ∈ {1, 2, · · · ,m}}. Based on d1
and d2, the clustering radius R is calculated as follows:

R = w× d1 + (1− w)× d2, w ∈ [0, 1] (5)

in which w ∈ [0, 1], if w = 1, then R = d1, it means that each
object of � is a cluster. If w = 0, then R = d2, it means that
there is at least a cluster with only one object. In real world
applications, w is often in (0, 1). Obviously, the clustering
radius R directly affects the result of data classification. The
smaller clustering radius R is, the fewer number of elements
in each cluster will be, and the greater number of clusters
is. The result of rough clustering and excessive clustering
is unreasonable. Therefore, we need to analyze the actual
data characteristics and the distribution characteristics of the
data, then select a suitable weight w and obtain the clustering
results, in this paper, take w = 0.5, which get a better signal
detect accuracy performance in experiment environment as
shown in Figure 7.

FIGURE 7. w performance analysis in experiments.

In Figure 7, w performance in experiments is trend to be
stable above 80% when the value is less than 0.9, more than
0.9 decline to 75%, which may be related to the current

density of spectrum data of itself, and get the best signal
detect accuracy about 0.5 reach 92%.

Step 2: Calculate the density of every object in � accord-
ing to the clustering radius R. Formally, the density of
objects oi is calculated by c1.

Step 3: clustering centers and Clustering results. Formally,
1) The first clustering center c1 is selected according to the

maximum density, i.e., c1 = ol if ol is such that

ρl = max{ρj|j = 1, 2, · · · ,m}

the cluster C1 = {oj|||oj − ol || ≤ R, j = 1, 2, · · ·m}.
2) Suppose k-th clustering center ck and k-th cluster Ck are

selected.
3) Then (k+1)-th clustering center ck+1 and (k+1)-th clus-

ter Ck+1 are Ck+1 = ol′ , if ol′ is such that

ρl′ = max{ρj|oj ∈ �− ∪kk ′=1Ck ′}

Ck+1 = {oj|||oj − ol′ || ≤ R, oj ∈ �− ∪
k
k ′=1Ck ′}

Step 4: In addition to all the element objects that have been
classified, repeat the above steps for the remaining data until
all the data element objects are classified.

IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL ENVIRONMENT
In the experiments, three different of UAVs and their remote
controllers: UAV-A: DJI/PHANTOM/4/PRO/v2.0 (2.4GHz,
FH), UAV-B:DJI/MAVIC/AIR (5.8 GHz, constant frequency,
2.4G, FH), UAV-C: DJI/MATRICE/600/PRO (2.4G, FH),
ZX219 radio receiver (20MHz-8GHz) and antenna TN341
(20MHz-6GHz) are used to collect data in an opening envi-
ronment., which are shown in Figure 8.

FIGURE 8. Experimental equipment and devices.
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B. EXPERIMENTAL PROCESS
1) CALCULATION OF ADAPTIVE THRESHOLD
1) Calculate the maximum level Lmax and minimum level
Lmin of the spectrum data frame. The level values are seg-
mented by 2dBµV in interval [Lmin,Lmax], the continuous
dk ∈ D, k = 1, 2, · · ·m frames data are segmented in turn.
The number of data points of dk in each segment is counted as
{ck1, ck2, · · · , ckp} respectively, where p is the total number
of segments dk , and the segment of the maximum number of
data points is obtained;

2) Find the θ position in the interval obtained in step 1) as
shown in Figure 5. If the number of data points in the interval
is continuously less than the number of points in the two
adjacent intervals, the upper boundary value of the interval
is the signal threshold of the current frame data.

FIGURE 9. Spectrum waterfall map after threshold processing.

As shown in Figure 9, it is a waterfall map of 1442 frames
of spectrum, in which the left is the original spectrum and the
right is the spectrum data of extracted signals through thresh-
old processing and noise be cleared. The signal frequency
band is 2.4GHz-2.48GHz, and the sampling time is 1s.
The color changes from red RGB (255,0,0) to green RGB
(0,255,0), corresponding to the maximum andminimum level
value range of 1442 frames.

For FH signal detection of UAV, generally, the electromag-
netic environment in a short time period will not change too
much, then the initial threshold value can be used as the signal
judgment for the monitoring process.

2) A SINGLE FREQUENCY SIGNAL DETECTION
1) The threshold is used to compare the level of the spec-

trum frame by frame. When the level is greater than the
threshold, indicate signal present, otherwise no signal.

2) Continuously compare the data frame of the current
frequency. When the signal exists continuously, count the
start time and end time of the signal: the start time is the
first time that the frequency point level is greater than the
threshold, and the level first time less than the threshold as
the end time of the signal after appears continuously. Denote
the signal of this frequency point as si.
3)When processing data at the last frame of the sampled

data and the signal of the current frequency point still exists,
the signal is discarded directly which purpose is to avoid
parameter estimation error.

TABLE 1. The signal detection schematic.

The signal information of a single frequency expressed
as Si = {S1, S2, · · · , Sn} is shown in Table 1. The data
filled with a blue background show that the frequency point
level is greater than the threshold at the corresponding time.
Each row represents a frame of data. Columns fi(MHz) indi-
cates whether the frequency point presence signal at different
times, 1 is present, and 0 indicates disappear. Frequency fi
can calculated by subject: fi = 2400 + i × 0.025, of which i
is serial number of fi.

3) TIME CONTINUITY DETECTION
In general, the single-hop FH signal has a certain dwell time.
Intuitively expressed as at least two consecutive frames of
spectrum data. For 10000 values at each frequency point,
we eliminate these abnormal values whose current value
is 1 and its adjacent values are 0. And the signal frame is
eliminated which the end time is the last frame of sampling
data. This method of time continuity detection can eliminate
noise or interference to a large extent, but the low SNR signal
is not eliminated. For the data in Table 1, to be eliminated is
shown in the gray background, and the blue background is the
reserved signal after elimination, as shown in Table 2.

TABLE 2. Elimination noise interference data.
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The waterfall map of spectrum and after eliminating noise
is shown in Figure 10, with the same color mark as above.

FIGURE 10. Noise and interference processing.

4) MERGE OF CONNECTED REGION
For S = {S1, S2, S3, · · · , Si, · · · , S3200}, from S1 to Sk , k ∈
[1, 3200], judge whether signals Sk and Sk+1 are overlapping
in their time intervals [t1, t2]Sk and [t1, t2]Sk+1 in turn. If so,
merge the two signals in the way of maximizing the time
gap between starting and ending. As shown in Table 3, all
signals in each frequency point are combined, including two
connected regions: the first connected region is a signal with
dwell time of [t2, t8] and frequency of [f1, f4], the second
connected region is another signal with dwell time of [t11, t13]
and frequency of [f3, f5]. All the connected regions constitute
a set of signals: �.

TABLE 3. The connected regions after merging.

5) SIGNAL BANDWIDTH DETECTION
Signal bandwidth detection steps are as follows:

1) For each signal S ′ in the set �, Bandwidth B = fe − fs,
fs and fe are the starting and ending frequencies of the S ′,
respectively.

2) If the signal bandwidth is outside the range of 0.5 MHz-
10MHz, the signal is discarded, and only the signal within
the range of 0.5 MHz-10MHz is retained for further feature
detection.

3) The improved clustering algorithm is used for clustering
and sorting, and the signal bandwidth is taken as input data.

4) Discard the classification with less than 5 elements in
the result of clustering.

FIGURE 11. Detection and sorting with signal bandwidth.

Figure 11 shows the results of signal bandwidth clustering
and sorting. The signal bandwidths are extremely close to
the same category, and the signal bandwidth has a certain
gap to the different categories. The signal bandwidth detec-
tion method can effectively divide the signal data of fixed
bandwidth into one category, and different bandwidth into
different categories. A total of 4 categories are obtained,
as shown in Figure 12, all signals of the same category are
marked by the same color.

FIGURE 12. Classification based on signal bandwidth.

From Figure 12, we can see that the first category (a) has
the largest number of data elements, in fact, the signal thresh-
old is almost close to the base of the noise, so it contains short
noises. Some signals in the second category (b) can be clearly
seen appear regularly, that is, there are FH signals and some
interference signals. The signals in the third classification
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(c) have no obvious regularity, some may be burst signals,
frequency hopping signals or noise data. A small number
of signals in the fourth classification (d) may be signal or
interference data. In subsequent clustering and parameter
estimation, the classification (d) that does not have obvious
FH signal characteristics and the number of elements in the
category is less than 5 will be eliminated.

6) SIGNAL WAVEFORM DETECTION
The waveform characteristic value is calculated as follows:

1) ∀S ′ ∈ �, Divide the bandwidth B of S ′ into 8 segments
as Fi = {[fs, f1], [f1, f2], · · · , [f7, fe]}.
2) Calculate the mean of level value in each segment in Fi

one by one, get set Vi = {v1, v2, · · · , v8}, that is, the wave-
form characteristic value of the signal.

3) The improved clustering algorithm is used for input
parameters of all categories of signals waveform, and the
results are shown in Figure 13.

FIGURE 13. Process of signal waveform characteristics.

Specifically, for each category in Figure 13. Clustering
detection result of class (a) in Figure 12 based on waveform
similarity is shown in Figure 14(a1). The result of eliminating
classes with elements lower than 5 is shown in Figure 14 (a2).
Accordingly, the results of class (b-c) of clustering and results
of eliminating the number of elements below the threshold are
shown in Figure 14(b1-b2) and (c1-c2). After eliminating part
of the interference, we can from the following figures intu-
itively find the signals in each class are further divided after
some of the interference signals are eliminated. Class (c2)
has no signal information after processing, and will not be
processed later.

7) SIGNAL ENERGY DETECTION
Generally, during sampling, the peak energy of FH signals
is relatively stable, and its energy value of is often larger in
the central frequency of the signal. The further away from the
central frequency of the signal, the overall trend of the level
value decreases rapidly. The energy distribution diagram of
FH signal is shown in Figure 15.

Signal energy detection steps are as follows:
1) ∀S ′ ∈ �, let the starting frequency of S as fs,the ending

frequency of S as fe, the center frequency fc can be calculate
by formula: fc = (fe − fs)/2.
2) Calculate the center frequency of [fs, fc], [fc, fe] as

f1, f2, respectively. In the same way, the center frequencies of

FIGURE 14. Clustering based on waveform characteristics.

FIGURE 15. Schematic diagram of energy distribution of signal.

[fs, f1], [f1, fc], [fc, f2] and [f2, fe] are calculated as f5, f3, f4, f6,
as shown in Figure 15.

3) According to the energy peak characteristics of fre-
quency hopping signal, the interval [f3, f4] is high-level value
area, [fs, f5] and [f6, fe] are low-level areas, calculate the
mean of level values in high-level area as lhigh, the mean of
level values in two low-level area as llow, then the energy
eigenvalue of signal is obtained by h = lhigh − llow.

4) Calculate the energy detection eigenvalues for all sig-
nals in � according to above steps, and get set H = {h1,
h2, · · · , hk}.
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FIGURE 16. Clustering detection based on energy eigenvalues.

5) The characteristic value of signal energy is used
as input parameter for clustering, and the results are
shown in Figure 16, 16-(a) is correspond to Figure 14-(a2),
Figure 16-(b) is refer to Figure 14-(b2).

8) SIGNAL DWELL TIME DETECTION
Signal dwell time detection steps are as follows:

1) ∀S ′ ∈ �, set the starting time as ts, the ending time as
te, and calculate the dwell time d = te − ts.
2) Calculate all signals in � according to the step 1),

and get the signal dwell time set: D = {d1, d2, · · · , dk},
Diagram of signal dwell time is shown in Figure 17.

FIGURE 17. Schematic diagram of signal dwell time.

The results of dwell time clustering for the data processed
after energy detection are shown in Figure 18. Three classes
with the number of objects satisfying the condition are shown
in Figure 19.

It can be seen from the diagram, the objects in their respec-
tive class (a), (b) and (c) are extremely similar. However,
in the actual electromagnetic environment, there may be
many FH signals of the same type of UAV at the same time.
Therefore, it is necessary to classify the two types of hop
signals according to the time sequence and the time gap
stability characteristics.

FIGURE 18. Detection based on dwell time with clustering.

FIGURE 19. Clustering detection results based on dwell time.

9) CHRONOLOGICAL SORTING
The FH signals generated by UAV do not overlap in time
series of each FH signal, so the possible situation in the
detection environment is analyzed as follows:

1) If the time gap between all signals is stable or integer
times of the minimum time period, there is only one UAV.

2) If multiple signals are crossed in time and spaced at a
certain distance in frequency, two or more UAVs exist.

The characteristics of FH signal time sequence is shown
in Figure 20, Frequency hopping signals with the same tag
values (such as 1-7) but different background colors are over-
lapped in time.

FIGURE 20. Schematic diagram of FH signal time sequence.

Specifically, the sorting operation steps of the time
sequence characteristics are as follows:

1) Sort the signal objects in the order of their appearance
at every category after clustering according to dwell time.

2) For each of the above categories, mark the original
category as O. Divide the first element of O to a new cate-
gory O′, and taking out of element from O in turn, and judge
whether it is continuous with the last element of O′, if so,
add it to the category O′, else keeping forward judge whether

FIGURE 21. Waterfall map after threshold processed of UAV-A signals.
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FIGURE 22. Detection results for UAV-A.

it is continuous with the other element of O′, if continuous
then make elements of O′ from the first to current element
to a new category O′′, else continue to find forward, until
the second element of O′ is not continuous with the element,

FIGURE 23. Waterfall map after threshold processed of UAV-B signals.

then set the first element of O′ and the object to a new
category O′′.

3) Process all elements ofO until each element is classified,
and all signals in these categories do not overlap in time.

4) The categories in which the total number of elements
less than 5 are eliminated, and the rest is the detection result
of UAV FH signal.

In addition, two UAVs of the same model can be classified
into a category, we can continue determine each category
whether have two or more uavs by the common-sense knowl-
edge which is that a single uav always can’t appear two FH
signals at a time, and then get the final results of uav FH
signals detection.

C. EXPERIMENTAL RESULTS
The experiment in this paper mainly aims at the situation that
there is only one UAV or two types of UAVs coexist. The
proposed algorithm is applied to signal detection and veri-
fication, and the detection effect is compared with K-means
and other methods.

1) ONLY UAV-A EXIST
Turn on the remote control of UAV-A, and use the radio
receiver to scan the frequency band of 2.4GHz to monitor
the signal. In the experiment, the spectrum (Figure 21, left)
and processed signal (Figure 21, right) are presented by
waterfall diagram. Different types of signals are distinguished
by different colors, and the number of color types repre-
sents the number of UAVs. The waterfall map after threshold
preprocessing of spectrum data is shown in Figure 21.

The processed results of the improved clustering
algorithm, K -means (k = 2), K -means++(k = 2), DBSCAN
and Multi-hop Auto-correlation algorithm on frequency-
sweep spectrum data of only existing UAV-A are shown
in Figure 22. The results are shown in Figure 22(a-e), in which
using K -means the algorithm doesn’t detect the signal of
UAV. Other methods all show that there is a UAV FH at least.

Through an in-depth analysis, the reason of K -means
algorithm can’t detect the signal is that the bandwidth (about
1MHz) of FH signal of this type of UAV is extremely close,
which makes it unable to be divided into preset K (k = 2)
categories. K -means++ method also has the problem of
pre-set K (k= 2), but when selecting the initial cluster center,
starting from the second cluster center, the object farthest
from the first cluster center is selected as the candidate cluster
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FIGURE 24. Detection results for UAV-B.

center, that is, when the clustering elements are extremely
close, at least one classification can be obtained, and the result
is different from K -means.

FIGURE 25. Spectrum waterfall after threshold processing.

2) ONLY UAV-B EXIST
Turn on the UAV-B remote control to test and verify
only this UAV activity within the 2.4GHz frequency band.
The spectrum data and the results after threshold processed
of UAV-B signals are shown in Figure 23, the signal detection
results shown in Figure 24.

As shown in Figure 24(a-e), the FH signal of UAV-B in
current electromagnetic environment can be detected effec-
tively by using improved clustering algorithm, and only one
UAV signal be found. Although K -means (k = 2) algo-
rithm can detect most FH signals, some interference signals
cannot be removed in the classification results. Similarly,
the detection results ofK -means++ andDBSCANalgorithms
contain some interference signals. The detection algorithm
of Multi-hop Auto-correlation can retain all the undisturbed
FH signals, but the detection results contain a large number
of noise signals due to its strong correlation with unknown
noise.

3) UAV-A AND UAV-C COEXISTENCE
In order to test the ability of these algorithms to detect FH
signals of multiple UAVs, the remote controllers of twoUAVs
(A and C) are turned on at the same time. The spectrum data
threshold preprocessing results are shown in Figure 25.

As shown in Figure 26 (a-e), different colors indicate the
types of signals detected (i.e. the number of UAVs). Two
types of FH signals are detected by improved clustering and
Multi-hopAuto-correlation algorithm.K -means (k= 2) algo-
rithm only detects one type of FH signal of UAV. Although
K -means++ (k = 2) algorithm and DBSCAN detect two
types of FH signals of UAV, a large number of noise and
interference data need to be processed in the later parameter
estimation stage.

V. EXPERIMENTAL ANALYSIS
A. ANALYSIS OF RESULTS
The UAV signals under different conditions are detected
by improved clustering algorithm, K -means, K -means++,
DBSCAN and Multi-hop Auto-correlation. The number of
detected UAV signals, the number of error detections, accu-
racy rate, error rate, running time and number of detected
UAVs are shown in Table 4. Using the error detection rate
and accuracy rate to analyze the performance of each algo-
rithm under different experimental conditions, as shown
in Figure 27 and Figure 28.
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FIGURE 26. Detection results for UAV-A and UAV-C Coexistence.

Among these algorithms, the number of detected signals is
the number of UAVFH signals by each algorithm, the number
of error detection signals is the number of detected signals

TABLE 4. Experimental results of each algorithm under different
experimental conditions.

FIGURE 27. Comparison and analysis of error rate of detection.

that are not UAV FH signals. The accuracy rate is the pro-
portion of the number of detected correct FH signals and the
actual number of received FH signals. The error detection rate
is the ratio between the number of non-UAV FH signals and
the number of signals received from UAV. The running time
is the total time from the beginning of algorithm running to
the result output. The number of UAVs detected is the number
of UAVs determined.

Basically, table 4 shows that algorithm of this paper
has a lower error detection rate and accuracy performance
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FIGURE 28. Comparison and analysis of accuracy of detection.

advantage when UAV-A FH signal activity only, the density-
based DBSCAN clustering method has the highest accuracy,
to some extent, it confirms that UAV FH signal has the advan-
tage of density analysis, and on the contrary the traditional
K -meansmethod has a bad accuracy performance. On the one
hand, the accuracy rate of the paper algorithm proposed in
this paper is higher than most of the other four algorithms,
whether there is only one FH signal activity of UAV-A or
UAV-B, or when UAV-A and C coexist, indicating that the
algorithm has certain stability, as shown in Figure 28. It has
significant adaptability to detect UAV FH signals in different
environments. On the other hand, the error detection rate of
this algorithm is far lower than other algorithms in different
cases, as shown in Figure 27, which improve the efficiency
for further analysis and processing of UAV signals.

In short, through a variety of different tests, the algorithm
in this paper has obvious advantages in signal detection accu-
racy and error detection rate on FH signal detection, and can
be applied to the detection of UAV FH signal in the actual
electromagnetic environment.

B. ANALYSIS OF PARAMETERS ESTIMATION
The following parameters are estimated by the results of
those algorithms: dwell time, bandwidth, duration and span.
As shown in Figure 29 and Figure 30, it is easy to find that
when only UAV-A and UAV-B exist, the four parameters are
obtained by the algorithm proposed in this paper are closer
to the parameters of actual UAV. As shown in Figure 31 and
Figure 32, when UAV-A and UAV-C exist at the same time,

FIGURE 29. Comparison and Analysis of UAV-A parameter estimation.

FIGURE 30. Comparison and Analysis of UAV-B parameter estimation.

FIGURE 31. Parameter estimation of UAV-A under different algorithms.

FIGURE 32. Parameter estimation of UAV-C under different algorithms.

the parameters obtained by the algorithm in this paper are also
closer to the actual UAVparameters respectively. The detailed
data are shown in Table 5, Table 6 and Table 7.

In the parameter estimation of UAV-A, due to the very short
dwell time characteristics and maybe the limited amount of
sampling data, it is impossible to detect and estimate the
signal data of UAV-A using K -means.
When UAV-A and UAV-C exist at the same time,

the parameter estimation of UAV-A after DBSCAN algorithm
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TABLE 5. The performance analysis of UAV-A working parameter
estimation.

TABLE 6. The performance analysis of UAV-B working parameter
estimation.

TABLE 7. The performance analysis of UAV-A and UAV-C working
parameter estimation.

is almost consistent with the actual parameters, which play
a good performance. But when estimating the parameters of
UAV-C, the proposed algorithm in this paper has a better
estimation characteristic. In summary, the algorithm in this
paper has a good and stable ability for FH signal analysis.

VI. CONCLUSION
In this paper, through adaptive noise threshold calculation,
FH signal waveform characteristics and peak characteris-
tics are developed. In different experimental environments,
according to the pre-designed UAV signal detection pro-
cess, the improved clustering analysis algorithm is used
to detect, analyze and estimate the parameters of UAV
FH signal in electromagnetic environment with low SNR.
Compared with K -means, K -means++, DBSCAN and
Multi-hop Auto-correlation algorithm, the experimental
results show that the proposed method can be used to quickly
and effectively detect the FH signal of UAV, in addition,
the estimated parameters are closer to the actual value.
It seems that the proposed method is useful and alternative
tool to study UAV signal detection and real-time tracking.

In experimental analysis, the proposed method and algo-
rithm are suitable for detection and parameter estimation of
the FH signal. Our future works will be focused on UAV
signal source location and tracking.
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