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ABSTRACT Chaos has unpredictability and initial condition sensitivity, which known as a best candidate for
cryptography application. However, there are many defects for the existing chaotic cryptography systems due
to the use of chaotic maps that without complexity dynamic properties. To overcome these weaknesses, this
work designed a 2D-SCMCI hyperchaotic map based on Cascade Modulation Couple (CMC) and two 1D-
chaotic map. The dynamic characteristics of the 2D-SCMCI hyperchaotic map are analyzed through attractor
trajectory, 0-1 test, bifurcation diagram, Lyapunov exponents and spectrum entropy (SE) complexity. The
results of analysis indicate that 2D-SCMCI hyperchaotic map has rich dynamic performance and random-
ness, which illustrates that it is more suitable for image encryption algorithm. Therefore, an image encryption
algorithm is proposed by 2D-SCMCI hyperchaotic map. In encryption algorithm, the image is scrambled
by row and column, forward and backward diffusion are used to diffuse image pixel values. The security
performances analysis results indicate that the introduced algorithm has better security characteristics.

INDEX TERMS 2D-SCMCI hyperchaotic map, image encryption algorithm, dynamic characteristic,
cryptographic analysis.

I. INTRODUCTION
At present, the digital information is transmitted and gener-
ated by all kinds of different network [1]. Digital image is
an important information carrier and it is widely used as a
data model. However, there are some national secrets and per-
sonal privacy in a large amount of digital images. Therefore,
the protection of the image information security becomes an
important research topic. To maintain the security of image
information, the scholars have proposed many technologies,
for instance, data hiding [2], encryption [3] and watermarking
[4]. For these technologies, image encryption technology is
themost direct methods to convert a visual original image into
a noise image [5]. For an image encryption algorithm, it con-
tains scrambling and diffusion parts [6]–[8]. The scrambling
is a change in pixel position, while diffusion is a change in
pixel value [9], [10].

So far, the use of chaotic image encryption algorithms have
attracted more and more attentions. Chaotic is nonlinear, ran-
dom, unpredictable. There are some special characteristics,
for example, dense periodic orbits, initial value sensitivity
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and unpredictability [11]–[13]. So chaotic is more suitable for
image encryption algorithm. Ever since an image encryption
algorithm by 2D chaotic map was first designed by Fridrich
[14], researchers have introduced various image encryption
algorithms through chaotic system [15], [16], [16]–[33].

For the image encryption algorithm using chaotic maps,
their security mainly depends on the complexity of chaotic
system. For the existing chaotic maps, they have some
defects, such as, chaotic degradation may occur on a platform
with limited precision, whose output distribution is not uni-
form. Then they have not complexity dynamic, which their
trajectories are estimated [34]. In addition, their range of
chaotic is small, which will be subject to external interfer-
ence and destroy chaotic characteristic [35]. What’s more,
researches indicate that some encryption schemes by existing
chaotic maps are likely to be easily attacked [36].

Recently, some new chaotic maps are used in image
encryption algorithm, their output trajectories are not dis-
tributed throughout the phase space and they have not com-
plexity dynamic behaviors, which they generated chaotic
sequences have not better randomness. To address this
weakness, this study designed an 2D-SCMCI hyperchaotic
map based on Cascade Modulation Couple (CMC) and two
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FIGURE 1. Schematic diagram of cascade modulation couple.

1D-chaotic map. And compared with complexity of the
chaotic maps available today. In addition, using the 2D-
SCMCI hyperchaotic map to introduced an image encryption
algorithm.

This work is organized in the following. In section 2,
the model of the 2D-SCMCI hyperchaotic map is introduced.
The complexity dynamic behaviors of the 2D-SCMCI hyper-
chaotic map are analyzed in section 3. In section 4, image
encryption algorithm using the 2D-SCMCI hyperchaotic map
is described. The security characteristics of the algorithm are
researched in section 5. In section 6, some conclusions are
given.

II. THE MODEL OF THE 2D-SCMCI HYPERCHAOTIC MAP
A. THE PRINCIPLE CASCADE MODULATION COUPLE
Assuming that f is a linear function, and F and G denote
two 1D chaotic maps, respectively, based on 1D cascade
model [37] and closed-loop modulation couple model [38],
Cascade Modulation Couple is proposed. The corresponding
definition is{

x(n+ 1) = F(f (y(n))× G(kx(n)))
x(n+ 1) = F(f (kx(n+ 1))× G(y(n)))

(1)

where x and y mean that system variables, k represents mod-
ulation parameter. The schematic diagram of model as Fig. 1.
In the Fig. 1, firstly, chaotic map G is modulated by linear
function f , then the serves as input of chaotic map F , G and
F are cascaded. In addition, system variables x and y are
coupled 2D chaotic system through function f . The function
f is named coupling function.

B. THE MODEL OF THE 2D-SCMCI HYPERCHAOTIC MAP
Based on the principle cascade modulation couple, setting the
f (x) = x + h, chaotic map F is 1D-Sine chaotic map [39],
G is 1D-Iterative chaotic map [40], then a 2D-SCMCI map is
obtained, and its system equation is expressed by

x(n+ 1) = rsin(π((y(n)+h)k sin(
aπ
x(n)

)))

y(n+ 1) = rsin(π((kx(n+1)+h) sin(
aπ
x(n)

)))
(2)

where k is modulation parameter, h, r and a represent the
system parameters. x(n) and y(n) means that two values at
step n.

FIGURE 2. Attractor phase diagram of 2D-SCMC hyperchaotic map.

III. THE DYNAMIC ANALYSIS OF THE 2D-SCMCI
HYPERCHAOTIC MAP
A. ATTRACTOR PHASE DIAGRAM
Setting the modulation parameters k = 1, system parameters
h = 2, r = 1 and a = 1, initial value x0 = 0.3, y0 = 0.4.
In this case, Lyapunov exponents of the 2D-SCMCI map
are calculated as 3.7547 and 2.4832. The 2D-SCMCI map
is hyperchaotic map due to it has two positive Lyapunov
exponents. The attractor phase diagram of 2D-SCMCI hyper-
chaotic map is Fig. 2. As we can be seen in Fig. 2, the system
is a universal attractor, which indicates that the 2D-SCMCI
hyperchaotic map has good ergodicity. In addition, the attrac-
tors are relatively evenly distributed, which illustrate that the
2D-SCMCI hyperchaotic sequence has good randomness.

B. 0-1 TEST
0-1 test is proposed by Gottwald and Melbourne [41], it is an
effective and reliable binary algorithm to check whether the
system is chaos, its algorithm is described as follows:

For a discrete set of data x(h), here, the sampling time is
(h = 1, 2, 3, . . . .), which is the observable data of a one-
dimensional dynamic system. Choosing an arbitrary constant
c ∈ R+, and the definition is

p(h) =
h∑
j=1

x(j) cos(θ(j)), h = 1, 2, 3, . . . (3)

s(h) =
h∑
j=1

x(j) cos(θ(j)), h = 1, 2, 3, . . . (4)

where

θ (j) = jc+
h∑
j=1

x(j), j = 1, 2, 3, . . . n (5)

According to the function p(h) or s(h), the root mean square
displacement is defined by

M (h) = lim
N→∞

1
N

N∑
j=1

[p(j+ j− p(j))]2 (6)

where h = 1, 2, 3, . . .
Obviously, it’s bounded or linearly increasing over time,

and in particular, if p(h) (s(h)) is Brownian motion, which
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FIGURE 3. 0-1 test results, (a) x sequence, (b) y sequences.

FIGURE 4. Bifurcation diagram, (a) r ∈ [0.1, 1], (b) a ∈ [0.1, 1].

means M (h) is linearly increasing over time. If p(h) (s(h))
is bounded, which means M (h) is also bounded. Finally, its
asynchronous growth rate should be examined by

K = lim
h→∞

logM (h)
log h

(7)

If K is close to 0, which means the motion is regular
(periodic or quasi-periodic). If K is close to 1, which means
the motion is chaos.

For the sequences of the 2D-SCMCI hyperchaotic map,
when the modulation parameters k = 1, system parameters
h = 2, r = 1 and a = 1, initial value x0 = 0.3, y0 = 0.4,
the sequences are generated by the 2D-SCMCI hyperchaotic
map to 0-1 test, and then we obtained test result of (p, s)
diagram as Fig. 3. The result indicates that the sequence
trajectories are similar to Brownian motion. Therefore, the
2D-SCMCI map is chaotic map.

C. BIFURCATION DIAGRAM
Bifurcation diagram is an intuitive and visual observa-
tion method to analyze the dynamic characteristic of
chaotic systems. It is also a widely used method to
evaluate chaotic system dynamics. Bifurcation diagrams
of 2D-SCMCI hyperchaotic map with the parameters r
and a are shown in Fig. 4. The Bifurcation diagrams

indicate that the chaotic states of the 2D-SCMCI hyper-
chaotic map are distributed over large parameter range,
and periodic states are distributed over a very small range.
Therefore, the 2D-SCMCI hyperchaotic map has robust
chaotic performance and the outputs of the system are more
randomness.

D. LYAPUNOV EXPONENT
For the chaotic behaviors, the researchers have different
views in different fields. However, Lyapunov exponent (LE)
is generally accepted method for chaotic behavior analysis.
The QR decomposition algorithm [42] is used to calculate the
LE of the 2D-SCMCI hyperchaotic map, the corresponding
definition is introduced in the following.

For the chaotic map Hy(n), where

Hy(h) =


H1y1(h)
H1y2(h)
...

Hnyh(h)

(8)

where h represents the number of the chaotic map equa-
tions. Then, the Jacobian matrix of the chaotic map Hy(h) is

VOLUME 9, 2021 59315



J. Sun: 2D-SCMCI Hyperchaotic Map for Image Encryption Algorithm

FIGURE 5. Lyapunov exponent, (a) r ∈ [0.1, 1], (b) a ∈ [0.1, 1].

TABLE 1. Dynamical behavior of the different parameter values.

obtained by

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1y1(h)
dy1

∂H1y1(h)
dy2

· · ·
∂H1y1(h)
dyh

∂H1y2(h)
dy2

∂H2y2(h)
dy2

· · ·
∂H2y2(h)
dyh

...
...

. . .
...

∂Hhy(h)
dy2

∂H1y(h)
dy2

· · ·
∂Hnyh(h)
dyh

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(9)

Then, the results of Jacobian matrix J and QR decomposi-
tion algorithm is

qr(JmJm−1 · · · J1) = qr(JmJm−1 · · · J2(J1Q0))

= qr(JmJm−1 · · · J3(J2Q1))R1
= · · ·

= qr(JmJm−1 · · · Ji(Ji−1Qi−2))

Ri−2 · · ·R1
= · · ·

= QmRm · · ·Q1R1 (10)

where qr(.) indicates the QR decomposition function,m is the
number of iteration. Then LE of the chaotic map is calculated
by

LEk =
1
m

m∑
i

ln |Ri(k, k)| (11)

The LE of 2D-SCMCI hyperchaotic map is calculated
by QR decomposition algorithm, the LE results as Fig. 5.

The results in Fig. 5 indicate that the 2D-SCMCI hyper-
chaotic map has two positive LE values in large parameter
rang, only has a few parameter range is periodic states. There-
fore, the 2D-SCMCI hyperchaotic map has more complex-
ity dynamic behavior. The corresponding results are listed
in Table. 1

E. COMPLEXITY ANALYSIS
Complexity is a measure to analyze randomness of the
chaotic sequence. The higher complexity value, means that
the sequence is closer to a random sequence, and application
system security is also higher. In this experiments, Spec-
tral Entropy (SE) complexity algorithm is used to calculate
complexity of the 2D-SCMCI hyperchaotic sequence. The
SE value is obtained through the energy distribution in the
Fourier transform domain and Shannon entropy. The algo-
rithm process is given in the following.

For the chaotic pseudo-random sequence y(n), n =

0, 1, 2, . . . ,M − 1 with the length of M , it is calculated
through

y(n) = y(n)−
1
M

M−1∑
n=0

y(n) (12)

Then the sequence y(n) is discrete fourier calculated by

Y (h) =
N−1∑
n=0

y(n)−j
2π
M nh
=

M−1∑
n=0

y(n)W nh
M (13)

where h = 0, 1, 2, . . . ,M − 1.
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FIGURE 6. The flowchart of the proposed encryption algorithm.

TABLE 2. SE complexity values of the different chaotic maps.

TABLE 3. PE complexity values of the different chaotic maps.

Based on Paserval theorem, for the sequence Y (h), its half
is selected to calculate the relative power spectrum. Then
power spectrum value of the frequency point is

p(h) =
1
M
|Y (h)|2 (14)

where h = 0, 1, 2, . . . ,M/2− 1. The all power is

ptot (h) =
1
M

M/2−1∑
h=0

|Y (h)|2 (15)

Then the relative power spectrum probability Ph is calcu-
lated by

Ph =
p(h)
ptot
=

1
M |Y (h)|

2

1
M

M/2−1∑
h=0
|Y (h)|2

=
|Y (h)|2

M/2−1∑
h=0
|Y (h)|2

(16)

The se of signal can be calculated by the relative power
spectrum probability Ph and Shannon entropy.

se = −
M/2−1∑
h=0

Ph lnPh (17)

Finally, the se is normalized, and then SE complexity is

SE(N ) =
se

ln(M/2)
(18)

For the different initial values, SE complexity values of
the others chaotic maps are listed in Table. 2. In addition,
PE complexity values of the others chaotic maps are listed
in Table. 3. The complexity results in Table indicate that
the complexity value of the 2D-SCMCI hyperchaotic map

is the largest. Therefore, the sequence of the 2D-SCMCI
hyperchaotic map has better randomness.

IV. IMAGE ENCRYPTION AND DECRYPTION ALGORITHM
A. ENCRYPTION ALGORITHM
An image encryption algorithm is introduced by 2D-SCMCI
hyperchaotic map. The flowchart of the designed encryption
algorithm as Fig.6. The process of encryption is described in
the following.

• Step 1: A plain-image I of sizeM × N is read.
• Step 2: Giving the initial and parameter values of the
2D-SCMCI hyperchaotic map, then the 2D-SCMCI
hyperchaotic map is iterated (m + H ) times, here
H = max(M ,N ). Two chaotic sequences x and y of
length (m+ H ) are obtained.

• Step 3: To get the more stable chaotic sequences, for the
sequences x and y, theirs the firstm values are discarded.
Two chaotic sequences X and Y of length M and N are
obtained.

• Step 4: Based on chaotic sequences x and y, two vectors
r and c are obtained by

r = mod(floor(|x(i)| × 1016),
M
2
)

c = mod(floor(|y(i)| × 1016),
N
2
)

(19)

• Step 5: Using chaotic sequences X and vector r , The
image I is row scrambled. The scrambling principle as
Fig. 7. Here, the row length of the image is 8, r = 3,
the row is divided into red and green, if X > 0,
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FIGURE 7. The principle of the scrambling algorithm.

the scrambling is Fig. 7 a, if X < 0, the scrambling is
Fig. 7 b.

• Step 6: According to the scrambling principle in Fig. 7,
chaotic sequences Y and vector c, the scrambled result
is column scrambled.

• Step 7: The parameter values and initial values of the
2D-SCMCI hyperchaotic map are given, then the 2D-
SCMCI hyperchaotic map is iterated (n+M×N ) times.
We obtained the sequences x and y of length (n+M×N ).

• Step 8: To get the more stable chaotic sequences, for the
chaotic sequences x and y, theirs the first n values are
discarded. Two sequences x and y are operated by

xg(i) = mod(round(1000(
∣∣x(i)× 1016

∣∣
−floor(|x(i)| × 1016))), 256)
yg(i) = mod(round(1000(

∣∣y(i)× 1016
∣∣

−floor(|y(i)| × 1016))), 256)

(20)

• Step 9: Based on chaotic sequences xg and yg, two
matrixes S1 and S2 are obtained. And then the scrambled
result is diffused.

• Step 10: Forward diffusion:

F(1, 1) = mod(D(1, 1)+ S1(1, 1), 256)
F(1, j) = mod(D(1, j)+ S1(1, j)
+F(1, j− 1), 256)
F(i, 1) = mod(D(i, 1)+ S1(i, 1)
+F(i− 1, 1), 256)
F(i, j) = mod(D(i, j)+ S1(i, j)
+F(i, j− 1)+ A(i− 1, j), 256)

(21)

where F means diffusion result, D is scrambled result in
step 6, i = 2, 3, 4, . . .M , j = 2, 3, 4, . . .N .

• Step 11: Backward diffusion:

C(M ,N ) = mod(F(M ,N )+ S2(M ,N ), 256)
C(M , j) = mod(F(M , j)+ S2(M , j)
+C(M , j+ 1), 256)
C(i,N ) = mod(F(i,N )+ S2(i,N )
+C(i+ 1,N ), 256)
C(i, j) = mod(F(i, j)+ S2(i, j)
+C(i, j+ 1)+ C(i+ 1, j), 256)

(22)

where F is forward diffusion result, C represents back-
ward diffusion result, i = M ,M − 1,M − 2, . . . 2,
j = N ,N − 1,N − 2, . . . 2.

• Step 12: The final diffusion matrix C obtained by the
above operation is cipher image.

FIGURE 8. The inverse of scrambling principle.

B. DECRYPTION ALGORITHM
The decryption process refers to the inverse of the encryption
process, its main process is described in the following.
• Step 1: Inputting the cipher image.
• Step 2: The matrixes S1 and S2 are obtained as in step
6∼9 in encryption algorithm.

• Step 3: Inverse of backward diffusion:

C(M ,N )=mod(768+T (M ,N )−S2(M ,N ), 256)
C(M , j) = mod(512+ T (M , j)− S2(M , j)
−C(M , j+ 1), 256)
C(i,N ) = mod(512+ T (i,N )− S2(i,N )
−C(i+ 1,N ), 256)
C(i, j) = mod(768+ T (i, j)− S2(i, j)
−C(i, j+ 1)− C(i+ 1, j), 256)

(23)

where T is cipher image, C means inverse backward
diffusion result, i = M ,M − 1,M − 2, . . . 2, j = N ,
N − 1,N − 2, . . . 2.

• Step 4: Inverse of forward diffusion:

A(1, 1) = mod(768+ C(1, 1)− S1(1, 1), 256)
A(1, j) = mod(512+ C(1, j)− S1(1, j)
−A(1, j− 1), 256)
A(i, 1) = mod(512+ C(i, 1)− S1(i, 1)
−A(i− 1, 1), 256)
A(i, j) = mod(768+ C(i, j)− S1(i, j)
−A(i, j− 1)− A(i− 1, j), 256)

(24)

where A is inverse of forward diffusion result,
i = 2, 3, 4, . . .M , j = 2, 3, 4, . . .N .

• Step 5: The vectors r and c, chaotic sequences XX
and YY are generated as step 2∼4 of the encryption
algorithm.

• Step 6: Using chaotic sequencesXX and vector r , inverse
of row scrambling is operated. The scrambling princi-
ple as Fig. 8. Here, the row length of the image is 8,
r = 3, the row is divided into red and green, if XX < 0,
the inverse of row scrambling is Fig. 8 a, if XX > 0,
the inverse of row scrambling is Fig. 8 b.

• Step 7: Inverse of scrambling is operated, and then the
decryption image is obtained.

V. SIMULATION AND SECURITY ANALYSIS OF
ENCRYPTION ALGORITHM
In the experiment, to confirm the security of the designed
encryption algorithm, using MATLAB R2018a software
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FIGURE 9. Simulation results, (a) Original images 5.1.09 ∼ 5.1.12, (b) Cipher images 5.1.09 ∼ 5.1.12, (c) Decryption
images 5.1.09 ∼ 5.1.12.

platform, the introduced algorithm is simulated numerically.
The original images use the size of 256 × 256 and 8-bit
standard 5.1.09 ∼ 5.1.12 images.

A. SIMULATION RESULTS
Setting the parameters and initial values of the 2D-SCMCI
hyperchaotic map k = 1, h = 2, r = 1 and a = 1,
initial value x0 = 0.3, y0 = 0.4, the number of iterations
m = 5000, n = 4000. Then the image encryption algorithm
is operated on MATLAB software, the corresponding results
are Fig. 9. The original images 5.1.09 ∼ 5.1.12 as Fig. 9
(a), the corresponding cipher image as Fig. 9 (b), decryption
image as Fig. 9 (c). The results in Fig. 9 indicate that all the
cipher images are disorganized and have no obvious texture,
which illustrates that the designed encryption algorithm is
feasible.

B. KEY SPACE
For the encryption system, it should have enough secret key
space to effective against exhaustive attacks. In particular,
encryption and decryption is very fast cryptographic sys-
tem, the key space is greater than 128b. In our algorithm,
the key has parameters of the 2D-SCMCI hyperchaotic map
k , h, r and a, initial values x0 and y0. The experiment
shows that the parameter effective range is 10−15, initial
value effective range is 10−16. Therefore, the key space is

log10
60
+1032

2 ≈ 199b, it is greater than 128b, whichmeans that
the designed algorithm can resist exhaustive attacks.

C. KEY SENSITIVITY
Key sensitivity means that if the encryption key is different,
it will produce different cipher image, similarly, if the decryp-
tion key is different, decrypted results of the same cipher
image will also different. A good encryption algorithm for the
sensitivity of key is very important. The key sensitivity shows
that the algorithm resist choose plaintext or ciphertext attacks.
The smaller the key sensitivity is, the better the algorithm is
against select plaintext or ciphertext attacks. To test the key
sensitivity of the designed algorithm, the encryption key and
decryption key are changed 10−15, 5.1.09 image is used to
test, the corresponding result is shown in Fig. 10. The result
illustrates that the designed encryption scheme is very sensi-
tivity for its key, and it can against select plaintext or cipher-
text attacks.

D. INFORMATION ENTROPY
Information entropy main reflects uncertainty of image infor-
mation, it reflects pixel value distribution of image. The
greater the value of image information entropy, the more
uniform the distribution of image gray value is. The less
visible the relationship between pixels, the less easily the
image information can be deciphered. According to Shannon
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FIGURE 10. Key sensitivity, (a) Encryption key changed 10−15, (b) Decryption key changed 10−15.

TABLE 4. Information entropy values of images.

TABLE 5. Comparison of information entropy with existing algorithms.

principle, the information entropy is calculated by

H = −
n∑
i=0

p(xi) log
p(xi)
2 (25)

where n represents image gray level number, p(xi) is the
number of the gray value (xi). If the probability of all gray
values is exactly the same, the maximum value of information
entropy reaches 8. In this experiment, the information entropy
of 5.1.09 ∼ 5.1.12 images and cipher images are calculated,
the results are listed in Table. 4. The data in Table. 4 illustrate
that information entropy values of cipher image are close to 8,
so the cipher images have better randomness. In addition,
information entropy of Couple, Camera, Lake and Boat are
calculated, and compared results with existing algorithms
[16]–[18] are shown in Table. 5. The results in Table. 5
indicate that the designed scheme encrypts cipher images
with more randomness.

E. GRAY HISTOGRAM
Gray histogram reflects the distribution of image gray values.
For cipher image, its distribution of gray histogram should
be uniform, and compared with the histogram distribution of
the original image, there are significant differences. Fig. 11
means that gray histogram of plaintext image, gray histogram
of cipher image and gray histogram of decryption image. The
result indicates that the gray histogram distribution of cipher

image is almost uniform, which illustrates that the designed
algorithm can resist powerful attack of statistical analysis.

F. CORRELATION OF ADJACENT PIXELS
Correlation of adjacent pixels is an important method to
measure encryption algorithm. First, 2000 pairs of adjacent
pixels are randomly selected from the original and cipher
images to analyze the correlation, and then the correlation
coefficients were calculated from horizontal (H), vertical
(V) and diagonal (D) directions. The calculation formula of
correlation coefficient as

E(x) =
1
N

N∑
i=1

xi

D(x) =
1
N

N∑
i=1

[xi − E(x)]2

Conv(x, y) =
1
N

N∑
i=1

[xi − E(x)][yi − E(y)]

Rxy =
Conv(x, y)
√
D(x)
√
D(y)

(26)

where x and y represent the gray value of adjacent pixels in
image.

Correlation coefficients distributions between adjacent
pixels of the plaintext images and encrypted images in
H, V and D directions are Fig. 12 and Fig. 13. The
results indicate that the correlations between adjacent pix-
els of plaintext image in all directions have certain rela-
tionship, the correlations between adjacent pixels of cipher
images are evenly distributed across the entire pixel space,
so between adjacent pixels of cipher image in all direc-
tions are no correlations. In addition, Table. 6 indicates
that correlation coefficients of the original images are close
to 1, correlation coefficients of the cipher images are close
to 0, which further demonstrates that the designed algo-
rithm destroys the correlation between adjacent pixels of
original images. In addition, the correlation coefficients of

59320 VOLUME 9, 2021



J. Sun: 2D-SCMCI Hyperchaotic Map for Image Encryption Algorithm

FIGURE 11. Gray histogram, (a) 5.1.09 image, (b) 5.1.10 image, (c) 5.1.11 image, (d) 5.1.12 image.

the Couple, Camera, Lake and Boat images are compared
with other algorithms [15]–[20], [45], [46] in Table. 7. The
results show that the designed algorithm has better encryption
effect.

G. DIFFERENTIAL ATTACKS
The ability of the differential attack is tested through uni-
fied average changing intensity (UACI) and the number
of pixels change rate (NPCR), their calculation formula is

VOLUME 9, 2021 59321



J. Sun: 2D-SCMCI Hyperchaotic Map for Image Encryption Algorithm

TABLE 6. Correlation coefficients of different images.

FIGURE 12. Correlation coefficients distribution between adjacent pixels in horizontal, vertical and diagonal directions
of the original images, (a) 5.1.09 image, (b) 5.1.10 image, (c) 5.1.11 image, (d) 5.1.12 image.
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FIGURE 13. Correlation coefficients distributions between adjacent pixels in horizontal, vertical and diagonal directions
of the cipher images, (a) 5.1.09 image, (b) 5.1.10 image, (c) 5.1.11 image, (d) 5.1.12 image.

described by


UPCR =

∑
i,j

D(i, j)
M × N

× 100%

UACI =
∑

i,j

∣∣C(i, j)− C ′(i, j)∣∣
255×M × N

× 100%
(27)

D(i, j) =

{
0,C(i, j) = C ′(i, j)
1,C(i, j) 6= C ′(i, j)

(28)

where the pixel value of the cipher image is C(i, j). The pixel
value of the cipher image in which the original image changes
the pixel value is C ′(i, j).
Recently, the ideal values of NPCR andUACI are proposed

by Wu and Noonan [47]. For a significance level is α, its
critical NPCR value N ∗α is

N ∗α =
F −8−1(α)

√
F/L

F + 1
(29)
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FIGURE 14. Data loss analysis, (a), (c) and (e) are cipher image of lost date, (b), (d) and (f) are restored
cipher image of lost date.

In general, when the NPCR > N ∗α , which show that it
can prevent differential attack. If the significance level is α,
the critical UACI values (U∗α−, U

∗
α+) are calculated by{

U∗−α = µu −8
−1(α/2)σu

U∗+α = µu +8
−1(α/2)σu

(30)

where
µu =

F + 2
3F + 3

(31)

and

σu =
(F + 2)(F2

+ 2F + 3)

18(F + 1)2FL
(32)
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FIGURE 15. Noise test results, (a) Gaussian noise test results with mean 0.01, variance 0.001, (b) Gaussian noise test
results with mean 0.01, variance 0.002, (c) The test results of Pepper and Salt noise with intensity of 0.01, (d) The test
results of Pepper and Salt noise with intensity of 0.05.

TABLE 7. Correlation coefficients of the existing algorithms.

If U∗−α < UACItest < U∗+α , which indicates that algo-
rithm pass test and prevent differential attack. The ideal

values of the different size of image [47] are obtained
in Table 8.

In this test, we randomly changed and selected the pixel
of original image. For the ‘‘5.1.09 5.1.14’’ of images are
calculated 200 times, the mean values of NPCR and UACI are
listed in Table 9 and Table 10. For the ‘‘Couple’’, ‘‘Camera’’,
‘‘Lake’’ and ‘‘Boat’’, the comparison results between them
and existing encryption schemes [16], [17], [19], [21] as
Table 11 and Table 12. The results indicate that the designed
algorithm has ability to resist differential attacks.

H. DATA LOSS
Information is vulnerable to data loss during transmis-
sion or storage, so it is very important that analysis algo-
rithm to resist the ability of data loss. For this experimental,
the cipher image is lost to different degrees of data, and then
the decryption algorithm is used to restore the operation. The
test results are Fig. 14. The results indicate that the designed
algorithm can prevent data loss to some extent.
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TABLE 8. The ideal values of NPCR and UACI.

TABLE 9. NPCR test value.

TABLE 10. UACI test value.

TABLE 11. NPCR with existing algorithms.

TABLE 12. UACI with existing algorithms.

I. NOISE ATTACK
Noise attack is common attack method. To test the ability of
the proposed algorithm to resist noise attack, Gaussian noise
and Pepper and Salt noise are used to test experiment. The test
results as Fig. 15. The Gaussian noise test results with mean
0.01, variance 0.001 and 0.002 are Fig. 15 (a) and (b). The test
results of Pepper and Salt noise with intensity of 0.01 and
0.05 as Fig. 15 (c) and (d). The results in Fig. 15 indicate
that the designed algorithm can prevent noise attack to some
degree.

VI. CONCLUSION
This paper firstly designed a 2D-SCMCI hyperchaotic
map by Cascade Modulation Couple, 1D-Sine chaotic map
and 1D-Iterative chaotic map. The dynamic performances
analysis of the 2D-SCMCI hyperchaotic map indicate that
2D-SCMCI hyperchaotic map has universal attractor, good
randomness and ergodicity, and the valve of complexity
is higher. In addition, using 2D-SCMCI hyperchaotic map,
we designed an image encryption algorithm, and security of

the proposed encryption algorithm is analyzed. And com-
pared with the security of existing image encryption algo-
rithms. Results illustrate that the designed encryption scheme
has better key sensitivity and it can resist violent attack, differ-
ential attack, noise attack and so on. Therefore, we proposed
algorithm has better security performances in digital image
encryption.
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