IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 5, 2021, accepted March 24, 2021, date of publication April 1, 2021, date of current version April 12, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3070510

Towards Automated Assessment Generation in
e-Learning Systems Using Combinatorial
Testing and Formal Concept Analysis

FRANO SKOPLIANAC-MACINA®, (Member, IEEE), IVONA ZAKARUA 2, (Member, IEEE),

AND BRUNO BLASKOVIC”!, (Member, IEEE)

!Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

2Department of Electrical Engineering and Computing, University of Dubrovnik, 20000 Dubrovnik, Croatia

Corresponding author: Frano §k0pljanac—Maéina (frano.skopljanac-macina@fer.hr)

This work was supported by the European Regional Development Fund through the Operational Programme Competitiveness and
Cohesion 2014-2020, through the Project System for Real-Time Monitoring and Control of Distributed Processes, Anomaly Detection,
Early Warning, and Forensic Transaction Analysis—PCC under Grant KK.01.2.1.02.0097.

ABSTRACT In this paper, we research the use of software combinatorial testing techniques and the Formal
Concept Analysis method for preparing sets of questions for student assessment in e-learning systems.
Utilizing these techniques and methods, we ensure that the selected questions optimally cover the course
material and that each question combines multiple topics. Therefore, in this paper we introduce our method
for preparing student assessments that performs automated combinatorial testing and selection of questions,
as well as automated generation of appropriate sequences of questions. The input for our method is a set of
questions labelled with attributes or features. This set of questions is pre-processed using the Formal Concept
Analysis method, and then the combinatorial testing of question features is performed, which generates a
concise list of test-cases covering all pairs or triples of question features. Correspondingly, our method helps
in identifying and selecting a subset of questions that covers all generated test-cases. Afterwards, the Formal
Concept Analysis method automatically generates suitable sequences of selected questions for formative
student assessments in e-learning systems. In this paper we implemented the proposed combinatorial testing
method, and also demonstrated the feasibility of the proposed method on a use-case from an actual e-learning
system.

INDEX TERMS Combinatorial testing, pairwise testing, formal concept analysis, e-learning systems,

automated test generation, process mining.

I. INTRODUCTION

A central part of an e-learning system is its knowledge
base, usually a database that contains various questions used
for quizzes and assessments, or also practice exercises that
the student solves along different learning paths in adaptive
e-learning systems. One of the main issues in developing and
maintaining an e-learning system is the effective management
and organization of the knowledge stored in its database. This
is especially important when teachers add new questions to
the shared repository of questions. The e-learning system
should provide them with a simple and reliable way for
retrieving questions from the shared repository, so that the

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Cassano.

VOLUME 9, 2021

existing questions can be easily found and inspected before
adding any new questions. A keyword search of the ques-
tion texts will not always return all results, because valuable
additional information can be conveyed through the question
figures, as is often the case in STEM courses. One formal way
of organizing domain knowledge is by manually building its
ontology. Afterwards, questions can be added as new objects
to the ontology. This can be time-consuming and laborious,
even when organizing domain knowledge of smaller intro-
ductory courses. Moreover, this approach requires that the
teachers are well acquainted with the querying and mod-
ifying of the ontology. Recently, there are also advanced
deep learning techniques for automated recognition of the
question figures, such as convolutional neural networks that
analyze and classify images based on an initial training set

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 52957

https://orcid.org/0000-0003-2107-8870
https://orcid.org/0000-0003-0156-4329
https://orcid.org/0000-0001-9612-4769

IEEE Access

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

of manually labelled images. Again, this approach requires a
lot of work to efficiently incorporate into existing e-learning
systems.

Therefore, in this paper we propose a simple way of
describing each question in the shared questions’ reposi-
tory that can facilitate reliable identification and selection
of questions. First, we need to compile a concise set of
labels that describes the course material. Then, we require
that each question (including its text and figure) is described
by a subset of those labels. Furthermore, we use machine
learning method called Formal Concept Analysis (FCA) to
automatically generate a corresponding formal description
of the questions’ set and to store it in a relational database.
Afterwards, we can use standard SQL commands to query
questions based on their labels. Moreover, we propose using
combinatorial testing techniques to identify a subset of ques-
tions that combine multiple topics, e.g. we can find an almost
minimal subset of questions that covers all meaningful pairs
of labels at least once. Proposed combinatorial testing pro-
cedure can also recommend new questions, by providing a
labelled description of questions that could to be added to
the questions’ set, so that it covers the course material more
thoroughly. After a suitable subset of questions is identified
using the combinatorial testing method, we again use the FCA
method, this time to automatically create a basic ontology
of the course material covered by the selected subset of
questions. Finally, that ontology is used to generate sequences
of questions that can be used primarily for formative student
assessments. Generated sequences of questions are ordered
by their generality, from the more general ones (described by
fewer labels) to the more specific ones (described by more
labels).

By monitoring the formative assessment process teachers
can closely follow the progress of each student at the course.
They could detect early warning signs that the students did not
fully understand certain topics, or that they are losing interest
in the course. In such cases teachers can offer students help
and motivation for successful completion of the course.

The focus of this paper will be on the initial preparation of
the questions’ descriptions using the FCA method and on the
proposed combinatorial testing method for identifying and
selecting questions that combine knowledge from multiple
topics in the course material.

The rest of the paper is organized as follows: Section II
offers an overview of the related research concerning combi-
natorial testing and the FCA method, especially their appli-
cations in the e-learning domain. Afterwards, Sections III
and IV provide brief theoretical introduction to the combina-
torial testing and the FCA method, respectively. In Section V
we propose our method for automated assessment generation
in e-learning systems. Next, in Section VI we focus in detail
on the combinatorial testing module that is used for selecting
questions for student assessments. Section VII provides a
use case, where our proposed method is applied to the set
of labelled questions from our e-learning system database.
Subsequently, in Section VIII we present and discuss the

52958

results of the combinatorial testing experiments. Finally,
in Section IX we conclude our paper and discuss areas for
future work.

Il. RELATED RESEARCH

Combinatorial testing [1] can detect failures in the soft-
ware that occur when multiple components interact, and it
is designed to detect complex faults with relatively small
number of tests. Since pairwise testing is computationally
tractable and effective it is the most common approach to
combinatorial testing. In pairwise testing, all feasible pairs
of parameter values are covered by at least one test, and
there are algorithms and tools to generate arrays with the
value pairs. By extending combinatorial testing with model
checking approaches it is possible to automatically generate
test oracles by converting covering arrays into executable
tests [2].

In study [3] a set of combinatorial testing criteria special-
ized for deep learning systems is proposed, as well as the
guided test generation technique. It is demonstrated that com-
binatorial testing provides a promising approach for testing
deep learning systems.

Since the combinatorial testing was proved as an effec-
tive strategy for software testing, in [4] a fault localization
approach, called BEN, is presented. BEN produces a ranking
of statements in terms of their probability of being faulty
using the results of combinatorial testing.

Authors in [5] give an overview of the combinatorial test-
ing research field. Basic concepts and notations of combi-
natorial testing are presented, the research in this field is
classified into categories, and important issues, methods, and
applications of combinatorial testing are identified.

The available algorithms and tools for generating a com-
binatorial test suite are identified and categorized in [6].
The results may be useful when searching for an appropriate
combinatorial algorithm or tool.

The research [7] provides a systematic survey for
cloud-based e-learning Critical Success Factors (CSFs) of
teaching-learning process. Moreover, it utilizes the combina-
torial approach for evaluation and prioritization of the various
dimensions and CSFs of cloud-based e-learning. It is demon-
strated that the combinatorial approach of AHP-GDM! and
FAHP? methodology could be prosperous in classifying the
CSFs in various grades of influence. The influence of such
dimensions and factors could be useful in planning the strat-
egy and resources for improving the knowledge transfer
through cloud-based e-learning.

An algorithm for generation of questions for tests with
different complexity levels using mathematical combinatorial
optimization model is proposed in [8]. Furthermore, in a case
study authors experimentally demonstrated application of the
proposed algorithm, as well as that it could be applied in
diverse learning contents.

1 AHP-GDM: Analytic Hierarchy Process Group Decision Making
2FAHP: Fuzzy Analytic Hierarchy Process

VOLUME 9, 2021

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

IEEE Access

In [9] model learning is considered as an effective method
for building black-box state machine models of complex
software systems. Applications of model learning for testing
software systems in several domains are presented on use
cases. Special attention was paid to Angluin’s L* algorithm
for learning deterministic finite-state automata (DFA) [10].
We also used Angluin’s L* algorithm in our previous
work [11] to generate DFAs that simulate student assessment
based on the sequences of questions extracted from the ontol-
ogy of questions built using FCA.

FCA is a machine learning method for data representa-
tion and for automated building of ontologies in a form
of concept lattices. It is the applied in diverse fields, from
software engineering, data mining to linguistics [12]. Authors
in [13] conducted a systematic survey of over 350 recent
research papers involving FCA. They also gave a thorough
overview of the mathematical foundations of FCA and also
presented various extensions of FCA. One of the identi-
fied research issues is the handling of large sets of input
data and complex and impractical concept lattices. In [14]
authors use FCA to represent behavior of industrial processes.
A concept lattice reduction method is proposed that suc-
cessfully preserves minimum representation of the process
data. An interactive process or building concept lattices called
attribute exploration is discussed in [15]. Authors used exist-
ing domain experts’ knowledge during the attribute explo-
ration and demonstrated the process on two use-cases form
healthcare domain. In e-learning domain FCA was used to
model and analyze student performance, and to help students
in learning new concepts [16]. Also, FCA was used to identify
how students search through the course material [17], [18],
and to detect conceptual difficulties students encounter when
learning new lessons [19].

Model checking [20] based method for process analysis
is presented in [21]. This method can be utilized for the
detection and analysis of expected and unexpected patterns in
the software system behavior. Furthermore, proposed process
mining [22] method can be used to analyze the usage of
e-learning systems, especially students’ activity during the
formative assessments that students solve incrementally over
a longer time period. This allows instructors and teachers to
monitor students’ progress and detect any anomalies that can
be early warning signs that a student could fail the course.

The study in [23] identifies the main factors that influence
the usage and acceptance of e-learning systems. Accordingly,
it provides valuable insights into e-learning system usability
that may be beneficial to universities worldwide.

lIl. COMBINATORIAL TESTING

Combinatorial testing is a software testing technique that
aims to reduce the number of tests that need to be performed,
while ensuring that most of the software system faults are
detected. Kuhn ef al. in [24] analyzed software system faults
and observed that almost all system failures are triggered
through interaction of maximum 4 to 6 different parameters.
Also, they concluded that in various domains up to 90% of

VOLUME 9, 2021

0: [0, 0, 0]
1: [1, 1, 0]
2: [1, 0, 1]
3: [0, 1, 1]

FIGURE 1. An example of a trivial orthogonal array OA, (4, 2, 3, 2).

software system faults are caused by a single parameter value
or by an interaction of two different parameters. Therefore,
combinatorial testing technique focuses on the interactions
between the software system input parameters. The goal of
this technique is to generate an almost minimal number of
test-cases, so that each possible parameter value tuple of
predefined size is covered by at least one test-case. If the size
of parameter value tuples is set to 2, then the combinatorial
testing procedure will generate test-cases that cover all pairs
of parameter values at least once. This variant of combinato-
rial testing is the most prevalent, and it is also known as the
pairwise testing.

Combinatorial testing was developed from the work in
statistical field called Design of Experiments, that is used
to improve industrial or agricultural production and medical
treatments by measuring how combinations of input factors
affect the response variable. Mathematically, combinatorial
testing is based on the notion of orthogonal arrays and cover-
ing arrays [25], [26].

Definition 1: An orthogonal array, OA,(N,t, k,v) is an
N X k array, where N is the number of rows (tests), k is
the number of columns (parameters), v is the number of
values for each parameter and t is the interaction coverage
strength. In every N X t subarray of the orthogonal array
OA, (N, t, k,v) each tuple of size t occurs exactly)\ times.

If is set to 2 and X is set to 1, then the resulting orthogonal
array will contain every pair of parameter values exactly once.
Fig. 1 shows an example of a such simple orthogonal array
(t = 2, A = 1), with three parameters (k¢ = 3) and two
parameter values (v = 2, values: 0 and 1). This orthogonal
array was generated using the combinatorial testing program
AllPairs [27]. The orthogonal array OA1(4, 2, 3, 2) has four
rows, and it can be easily checked that for any two selected
columns (1-2, 2-3, 1-3) all four pairs of possible parameter
values (00, 01, 10, 11) appear exactly once.

Sometimes it is very hard or even impossible to construct
an orthogonal array that satisfies this strict requirement (e.g.
A = 1). Therefore, an extension of orthogonal arrays was
developed called covering arrays that loosened this provision.

Definition 2: A covering array, CA(N, t,k,v)isan N x k
array, where N is the number of rows (tests), k is the number
of columns (parameters), v is the number of values for each
parameter and t is the interaction coverage strength. In every
N xt subarray of the covering array CA(N, t, k, v) each tuple
of size t occurs at least once.

It can be seen that the pairwise testing (= 2) conforms
to the definition of the covering array. Moreover, observe that
every orthogonal array is also a covering array, but not vice
versa. Further extensions of orthogonal arrays and covering
arrays allow mixed parameter values, i.e. every parameter

52959

IEEE Access

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

can have a different number of parameter values. Lastly,
it must be noted that not all parameter values combinations
are always valid. Therefore, in orthogonal arrays there can be
test-cases (rows) that are not feasible or not meaningful. Nev-
ertheless, a further extension of covering arrays introduces
constraints on parameter values, so that unwanted parameter
value combinations do not appear in the resulting covering
array. In this paper, our combinatorial testing method is based
on mixed values covering arrays with and without parameter
value constraints.

We analyzed a comprehensive list of available combinato-
rial testing tools.> We wanted to find a free and convenient
command-line tool that supports parameter value constraints.
However, most of the available tools are commercial or web-
based. Some of the command-line tools we identified were
the before mentioned AllPairs, Pict from Microsoft [28],
Tcases [29], Jenny [30], and ACTS from NIST [31] that
has both a GUI and a command-line interface. The AllPairs
program does not support parameter value contraints, so it is
not suitable for our research. On the other hand, ACTS, Pict
and Tcases allow complex constraints declarations. However,
they are all quite advanced tools that require special care
with input preparation, as well as with output processing.
Therefore, we opted for the combinatorial testing tool Jenny
as the most feasible tool for our purpose. It has an intuitive
user interface, supports basic constraints declarations, and its
testing generation efficiency is comparable to other estab-
lished tools.*

Jenny is a free, public domain command-line program writ-
ten in C for generating regression tests that contain various
parameter value (feature) combinations from defined param-
eters (feature dimensions). Instead of an exhaustive search for
every feature combination, Jenny generates an almost mini-
mal number of test-cases that cover each possible tuple of fea-
tures (usually pairs or triples of features). Before running the
Jenny program, we need to set following program parameters:
define the size of the feature tuples (flag “-n”’, default size is
2) and list number of features in each dimension. Optionally,
we can declare forbidden combinations of features (flag *“-
w’”) that should not appear together in generated test-cases.

An example of a Jenny program run can be seen in Fig. 2.
The size of the feature tuples is set to 2 and there are three
dimensions declared, with 2, 3 and 4 features, respectively.
Additionally, there is one forbidden feature combination (/a,
2a): first dimension’s (named 1) first feature (named a)
cannot appear in a test-case alongside second dimension’s
(named 2) first feature (named a).

After running the program with these parameters, it returns
a list of 12 test-cases that cover all possible pairs of features
excluding the pair (/a, 2a). For example, we can easily check
that the pair (/a, 3d) is covered by the 8th test case: (/a,
2c, 3d). It should be noted that the Jenny program generated
only 12 test-cases and by performing exhaustive search for all

3 https://jaccz.github.io/pairwise/tools.html
4https:// jaccz.github.io/pairwise/efticiency.html

52960

la 2c 3a
1b 2b 3d
1b 2a 3c
1b 2c 3b
la 2b 3c
1b 2a 3a
la 2b 3b
la 2c 3d
1b 2a 3d
1b 2a 3b
la 2b 3a
1b 2c 3c

FIGURE 2. An example run of the program Jenny.

feature combinations there would be 2 - 3 - 4 = 24 test-cases,
or 20 test-cases if we exclude the forbidden combination (/a,
2a). Observe that the output of the Jenny program in Fig. 2
is a covering array with constraints and not an orthogonal
array, because it does not have one combination — excluded
forbidden combination (/a, 2a), and e.g. a pair (la, 2c)
appears in two test-cases and a pair (/b, 2b) appears in only
one test-case.

IV. FORMAL CONCEPT ANALYSIS

Formal Concept Analysis (FCA) is an unsupervised machine
learning method for data analysis and data representa-
tion [32], [33]. From the prepared input data, the FCA method
automatically identifies formal concepts (groups of objects
with shared attributes) and creates their hierarchy that is
visualized as a directed acyclic graph called a concept lattice.
The concept lattice can be considered as a simple ontology
of the objects and their attributes from the input domain. The
FCA method was developed by Rudolf Wille in early 1980s,
and it is built on the mathematical foundations of lattice
theory and set theory [34], [35]. To use the FCA method
we first need to prepare the input data from our domain of
interest. We create a list of objects from that domain, and
define a set of attributes that will be used to describe those
objects. Afterwards, we need to prepare input data in a form
of a two-dimensional binary matrix of objects (matrix rows)
and attributes (matrix columns). If an object has a certain
attribute, we need to place a mark “X”’ (or number 1) on the
intersection of that object’s row and that attribute’s column.
This input data matrix is called a formal context.

Definition 3: A formal context is a triple (X, Y, I), where
X is a set of objects, Y is a set of attributes, and I is a binary
relation between the elements of sets X and Y.

FCA automatically analyses formal context to detect two
types of output data. Firstly, FCA builds a concept lattice,
a directed acyclic graph (line diagram) with all identified
formal concepts. Secondly, FCA generates a list of attribute
implications, i.e. a list of association rules between the
attributes that are inferred from the concept lattice. FCA uses
concept forming operators to find groups of objects that share
attributes and vice versa.

Definition 4: Concept forming operators over the for-
mal context (X,Y,I) are functions t: 2X — 2Y and

VOLUME 9, 2021

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

IEEE Access

TABLE 1. A formal context example.

Y v
NS
NEREE
AHERE
NSRS
S|S|2[S| >
=2 L)l l.)‘ § S
5 =
NI EE
Questionl | X X
Question2 | X | X | X | X
Question3 X| X
Questiond | X | X | X
Question5 | X | X | X X
Question6 | X XX

1o 2Y — 2X. For each subset of objects A € X and
for each subset of attributes B C Y they are defined
as A 1= {yeY|foreachx € A:{x,y)el} and B |=
{x € X| foreachy € B : (x,y) € I}, respectively.

Therefore, A 1 finds a set of attributes that are shared by
all objects from A. Similarly, with B | we get a set of objects
that have all attributes form B. Formal concepts are maximal
segments of the formal context that include all objects that
share same attributes.

Definition 5: A formal concept in a formal context (X, Y, I)
is a pair (A, B), where ACX,BCY,At=BandB |=A.

A hierarchical operator < is used to denote a super-concept
— sub-concept relationship between the formal concepts. E.g.,
(A1, B1) < (A3, B>) means that the formal concept (A2, By)
is a super-concept of the formal concept (A1, By). This is true
if and only if the set of objects A; is a subset of the set of
objects A> (A1 € Aj3) and the set of attributes B, is a subset
of the set of attributes B| (B, C Bj).

Definition 6: For a given formal context (X,Y,I),
a collection of all its formal concepts is defined as:
BX,Y,I)= {(A,B) € 2¥ x2V|A 1= B, B |=A}. A con-
cept lattice (B(X,Y,I), <) of a formal context (X,Y,I)
includes a collection of all formal concepts B(X, Y, I) and
a hierarchical operator <.

Concept lattice is a partially ordered set in which any two
formal concepts have a shared supremum (least common
super-concept) and a shared infimum (greatest common sub-
concept) [36].

As an example of the FCA method, Table 1 shows a simple
formal context that contains 6 objects (each row denotes a
question from the course Fundamentals of Electrical Engi-
neering) and 5 attributes (each column denotes a question
description). A marking “X” in a cell of the formal context
states that the question in that cell’s row has the attribute from
its column.

We used one of available FCA tools, ConExp 1.3 [39]
to automatically produce a concept lattice for the formal
context in Table 1. The resulting concept lattice is shown
in Fig. 3, and it contains 12 formal concepts. Top formal
concept includes a set of all questions and an empty set of
their shared attributes (observe from Table 1 that no attribute
is shared by all objects). Bottom formal concept includes a
set of all attributes and an empty set of objects that have

VOLUME 9, 2021

s

Questiong‘ | Questionlf':“

FIGURE 3. Concept lattice for the formal context in Table 1.

all attributes (again, from Table 1 we see there are no such
objects).

Note that in Fig. 3 the edges are not drawn as directed
arrows, instead they are implicitly directed from top to bottom
(from super-concepts to sub-concepts).

Observe that each sub-concept has all attributes from its
super-concepts, e.g. rightmost formal concept in Fig. 3 that
contains Question4 has attributes DC_current, DC_voltage,
and also resistance (from its immediate super-concept).
This can be stated as an association rule {resistance} —
{DC_current, DC_voltage}. This association rule has a sup-
port of 50% (it is true for 3/6 objects in the formal context)
and a confidence of 60% (it is true for 3/5 objects that have the
attribute resistance). An attribute implication is a stricter form
of association rule that has a confidence of 100%. E.g., in this
formal context one attribute implication is { DC_current} =
{DC_voltage, resistance}. It has a support of 3/6 (it is true for
3/6 objects in the formal context) and a confidence of 100% (it
is true for all 3/3 objects that have the attribute DC_current).

V. OVERVIEW OF THE PROPOSED METHOD FOR
AUTOMATED ASSESSMENT GENERATION

In this section we introduce our method for automated gener-
ation of assessments in e-learning systems. Our method first
identifies an appropriate set of labelled questions, and then it
prepares sequences of questions that will be used primarily
for formative student assessments in e-learning systems. Pro-
posed method utilizes combinatorial testing techniques and
the FCA method. An overview of our proposed method is
given in Fig. 4.

52961

IEEE Access

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

1. DATA PREPARATION W

DESCRIBE
QUESTIONS
WITH
ATTRIBUTES

OPTIONALLY:
DECLARING
FORBIDDEN

COMBINATIONS

OF ATTRIBUTES

DEFINING
DIMENSIONS
(SUBSETS OF
ATTRIBUTES)

SETTING THE
SIZE OF
ATTRIBUTES
TUPLES

} 3. GENERATING TEST-CASESW

[

\

L PRJEEP’\’:’E'YNG RUNNING

INPUTS JENNY TOOL

GENERATED TEST-
PROCESSING

CASES (QUESTION RESULTS
CANDIDATE
QUESTIONS

DESCRIPTIONS)

4. PREPARING QUESTIONS W

QUESTION
FOUND
QUESTION
NOT FOUND

END —ALL
QUESTIONS
FOUND

QUESTION
SEARCH

ADD NEW
QUESTION
OR SKIP

FINAL FORMAL
CONTEXT

TOPOLOGICAL
SORT OF
FORMAL

CONCEPTS

RUNNING
THE FCA
METHOD

GET
SEQUENCES OF
QUESTIONS

RANDOMLY
CHOOSE QUESTION
SEQUENCE

RETURN TO
PREVIOUS
QUESTION

ANSWERED
CORRECTLY TO
ALL QUESTIONS
OR TEST END

GIVE FINAL
GRADE, FEED-
BACK AND ADVICE

FIGURE 4. An overview of the proposed method for automated assessment generation.

Our method requires that the questions in the e-learning
system’s database are labelled with subsets of predefined
attributes that adequately describe the course material. There-
fore, if this requirement is not already met, in Step 1 of our
method we first need to define a set of attributes that will
be used to describe the questions. Afterwards, we extract the
questions from the e-learning system’s database and label
each question with a subset of predefined attributes. This
input data is used to build an initial formal context of the
database questions, which is the first step of the FCA method
as described in Section IV.

In the Step 2 and Step 3 we perform the combinatorial
testing of the questions in the initial formal context. Attributes
from the formal context can be considered as questions’ fea-
tures. Before starting with the combinatorial testing, we need
to organize features in dimensions. Also, we can declare
which feature combinations are not allowed, and we must set
the size of the feature tuples that need to be completely cov-
ered by generated test-cases. Combinatorial testing is done
using the Jenny tool, described in Section III. We consider
each test-case generated by the Jenny tool as a question
description.

In Step 4 we need to search formal context for questions
that match each generated test-case. If a test-case is not
completely matched by any existing questions, we should
consider implementing it as a new question and adding it to
the database and the initial formal context. Next, we add all

52962

found questions to the final formal context which will be used
for student assessment.

In Step 5 the final formal context is automatically trans-
formed into a concept lattice using the FCA method.
We apply topological sorting algorithm to the formal concepts
in the concept lattice, and by that we get possible sequences of
questions ready for use in the formative assessment module
of an e-learning system. The questions are sorted from the
more general ones (questions in formal concepts near the top
of the concept lattice) to the more specific ones (questions in
formal concepts near the bottom of the concept lattice).

Step 6 is implemented by the assessment module of
an e-learning system. Initially, system randomly chooses a
sequence of questions and starts the test. After the question is
answered the system evaluates the answer. If the answer was
correct the next question from the sequence is opened. Other-
wise, system offers help, and if student answers incorrectly
again the system will give another variant of the question
or return a step back to the previous (easier) question. After
all questions are answered correctly or the assessment was
terminated the system gives final evaluation and generates
feed-back and advice for further learning and exercising. This
assessment module is primarily suited for formative assess-
ments because each student gets a longer list of questions that
can cover entire course material. Students are not required to
complete the assessment in one session, they can take it in
sequential sessions during the course.

VOLUME 9, 2021

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

IEEE Access

(BUILDING INITIAL FORMAL CONTEXT)

v

DEFINE DIMENSIONS

DECLARE FORBIDDEN

)

TUPLES

REPEAT

SET FEATURE TUPLE SIZE

D)

DIMENSION v

forbidden

C
SELECTION H(

GENERATE TEST-CASES

tuple

]‘— v
NO
DO ALL TEST-CASES HAVE MATCHING QUESTIONS EXAMINE ALL TEST-CASES
PROBLEM
YES
l allowed tuple
(FINAL FORMAL CONTEXT)
. CREATE NEW QUESTION
< PROCEED WITH THE FCA METHOD)

UPDATE FORMAL CONTEXT

FIGURE 5. An overview of the combinatorial testing method.

A. COMBINATORIAL TESTING METHOD

In this paper we will concentrate on the initial Steps 1 —4 from
Fig. 4 where we need to describe the questions with attributes
and build the formal context before running the combina-
torial testing procedure that searches for most appropriate
questions. Therefore, we present in Fig. 5 a more detailed
overview of our combinatorial testing method.

From the Fig. 5 we see that the combinatorial testing
method starts by building the initial formal context and ends
when each test-case is fully covered by at least one of the
questions in the final formal context. Before running the
combinatorial testing process, we need to define dimensions
(subsets of features) and set the size of the feature tuples
(usually 2 or 3) that should be covered by the test-cases. Some
of the generated test-cases could be already covered by the
questions in the formal context. Others, that are not found
in the formal context should be thoroughly examined. If the
feature combination of a test-case is interesting and covered
by the course material it should be implemented as a new
question (or a set of new questions) and added to the initial
formal context. Otherwise, we must declare that such feature
combination is not allowed and run the combinatorial testing
procedure again. Finally, when all the test-cases are fully
covered we generate the final formal context containing only
those questions that match the generated test-cases. This final
formal context will be used by the FCA method for build-
ing the concept lattice and preparing the student assessment
(Steps 5 and 6 in Fig. 4).

It must be noted that the combinatorial testing results
depend on the initial definition of dimensions, as will be
seen in Sections VII and VIII. If the combinatorial testing
procedure does not return meaningful test-cases, it is very
likely that our definition of dimensions is flawed and they
need to be redefined before running the testing procedure
again.

We must comment on the differences of our approach to the
attribute exploration discussed in [15]. Attribute exploration
is a manual interactive process for building the formal context
and its concept lattice. Initially, the set of attributes is declared

VOLUME 9, 2021

and the set of objects is empty. Objects are then added to
the formal context depending on the answers that the domain
expert gives to the FCA system. Domain expert must validate
or refute each attribute implication proposed by the FCA sys-
tem. This task can become very complex and time-consuming
for larger attribute sets (e.g. 50 attributes). It can be espe-
cially hard to refute suggested attribute implications, because
the domain expert must then provide a counterexample that
should not contradict previously validated attribute implica-
tions. Furthermore, if the attribute exploration process ends
successfully the domain expert must check all objects (candi-
date questions) in the formal context and compose all needed
new questions strictly according to their often large attribute
subsets.

Our proposed combinatorial testing method automatically
finds a concize set of test-cases (candidate questions) that
cover all pairs or triples of features from feature dimensions.
Afterwards, it automatically checks if the candidate questions
are already covered by the existing questions in the database.
If that is the case they are automatically added to the final
formal context. Only when a candidate question is not cov-
ered, the domain expert must decide whether it will be imple-
mented as a new question or discarded. Furthermore, when
composing a new question domain experts have a greater
flexibility because they only need to cover the attributes (fea-
tures) that appear in the test-case. Additionally, combinatorial
testing approach can guarantee that all meaningful pairs or
triples of attributes are covered by at least one question.

Vi. COMBINATORIAL TESTING MODULE

This section details the combinatorial testing module that
implements the combinatorial testing method introduced in
Section V-A and shown in Fig. 5.

This module contains an SQLite database and three Python
scripts for preparing, running, and analyzing combinatorial
testing process. The SQLite database offers great flexibil-
ity when storing, retrieving and analyzing data using SQL
queries without a need for implementing and manipulating
complex Python data structures. Furthermore, our Phyton

52963

IEEE Access

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

database_prepared_data.txt

(4: database_manager.py w

attribute_list.txt ;
- ™~ / usscsl#:g?Ns‘ PYTHON SCRIPT FOR
-
([/ Q ANALYZING AND MODIFYING
1: create_initial_database.py w | DATABASE SQLITE DATABASE
PYTHON SCRIPT FOR CREATING ,l
INITIAL SQLITE QUESTIONS' -

DATABASE

4

/\(2: combinatorial_test_run,pyw

jenny_command.txt

jenny_tuples.txt

jenny_dimensions.txt

PYTHON SCRIPT FOR RUNNING
COMBINATORIAL TESTING AND
STORING RESULTS

jenny_raw_output.txt

Z BY

\
[
¥

jenny_forbidden.txt

3: jenny.exe

jenny_clean_output.txt

jenny_test_cases_number.txt

jenny_dimensions_simplify.txt

COMBINATORIAL TESTING
TOOL WRITTENIN C

jenny_test_cases_statistics.txt

FIGURE 6. An overview of the combinatorial testing module.

scripts communicate with the Jenny program, described in
Section III, that is used as a tool for generating test-cases.
An overview of the combinatorial testing module is shown
in Fig. 6.

Python script create_initial_database.py is used to auto-
matically create main SQLite database that will contain
questions’ descriptions and testing results. This script cre-
ates following three tables: questions, testcases and ques-
tions_testcases. First of them, table guestions will contain
data from the formal context of the selected set of ques-
tions. It has an identifier — a primary key field IDquestion
(integer type), followed by n fields (integer type) named
after question attributes from the formal context. Each of
these n fields can only have value O (if the question does
not have that attribute) or value 1 (if the question has that
attribute). Formal context attribute names are read from the
prepared text file attribute_list.txt (every row contains one
attribute name without white spaces) and a necessary CRE-
ATE TABLE command is automatically built and executed.
Afterwards, script populates the guestions table with the data
from the formal context of the selected set of questions.
Script reads the prepared formal context from a text file
database_prepared_data.txt (each row is a space-separated
list containing question ID and all question’s attribute values
given as 0 or 1) and creates and executes corresponding
INSERT commands. The second table is testcases and it has
one primary key field IDtestcase (integer type), which is
a test-case identifier, and a text field description that will
hold a list of all features of a test-case. The third table,
questions_testcases has IDquestion field (integer type) and
IDtestcase field (integer type) — question and test-case iden-
tifiers respectively, as well as full_match field (integer type),
which states if the question completely matches the test-case
(value 1) or if the question only partially matches the test-case

52964

(value 0). Tables testcases and questions_testcases are ini-
tially empty, and they will later hold data from the combi-
natorial test runs.

The central part of the combinatorial testing module is
implemented in the Python script combinatorial_test_run.py.
It acts as a wrapper for the combinatorial testing tool Jenny
by preparing all the input parameters and running the Jenny
tool as well as by decoding its output. Furthermore, this
Python script analyses the generated test-cases and stores the
experiment’s results. Before running this script, users should
prepare following input text files:

o jenny_tuples.txt (required) that contains only one num-
ber — the requested size of the feature tuples that need to
be covered by the generated test-cases.

o jenny_dimensions.txt (required) that contains all the fea-
tures grouped into different dimensions. Dimensions
are disjoint subsets of the features set. Each row is a
tab-separated list of features that represents one dimen-
sion.

o jenny_forbidden.txt (optional) that contains feature
combinations that should not appear in any test-case.
Each row is a space-separated list of forbidden feature
combinations (usually feature pairs).

Additionally, we added an option of naming groups of
features that can be useful when dealing with large fea-
ture sets. If this option is used all the names of the fea-
ture groups and their elements must be declared in a text
file jenny_dimensions_simplify.txt. Each row contains data
on one feature group: feature group name, hash sign and a
space-separated list of features in the group. We will con-
sider that a question covers a feature group if it has at least
one attribute (feature) from the feature group. Feature group
names can then be used when declaring feature dimensions
or listing forbidden feature combinations.

VOLUME 9, 2021

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

IEEE Access

1: function FIND_TEST_CASES()
2 test_case_counter < 0
3 if feature groups names are declared in jenny_dimensions_simplify.txt then
4 create dictionary jenny_simpli fied_dict for storing feature groups elements
5: for each line in jenny_dimensions_simplify.txt do
6 split line at "#" and store results as data[0] and data[1]
7 add key-value pair {data[0], "(" + data[l].replace(" ","=1 OR ") + "=1)"} to jenny_simplified_dict
8 end for
9: end if
10: run function that deletes old data from the tables testcases and questions_testcases
11: for each line (generated test-case) from decoded jenny program output jenny_output_clean.txt do
12: test_case_counter < test_case_counter + 1
13: run function that stores the test-case in the table testcases
14: if jenny_simplified_dict exists then
15: for each key in jenny_simplified_dict do
16: find and replace key in line with the value of the key
17: end for
18: end if
19: find if the test-case is fully covered by any questions and store results in the table questions_testcases
20: find if the test-case is partially covered by any questions and store results in the table questions_testcases
21: end for
22: run function that generates test-cases statistics

23: end function

FIGURE 7. Algorithm of the function find_test_cases().

After reading the input text files, the script will automati-
cally prepare the corresponding command-line inputs for the
Jenny tool, execute it and decode its output by replacing the
implicit feature names (as seen in Fig. 2) with the feature
(or feature groups) names declared in the input text files.
Script also stores the executed command-line call of the Jenny
program, its raw and decoded output, as well as the counted
number of generated test-cases in separate text files.

Then, script calls the function find_test_cases() that imple-
ments the main algorithm of our combinatorial testing
method shown in Fig. 7. Initially, the function checks if the
simplified feature groups are declared. If they are used, then
a simple dictionary is created that stores key-values pairs:
feature group name, SQL command segment with the all
the N elements in the feature group: (attributel = 1 OR
attribute2 = 1--- OR attributeN = 1).

Next, the function empties the tables testcases and ques-
tions_testcases, and then stores each generated test-case
using an automatically built INSERT SQL command (line
13 in Fig. 7).

Afterwards, for each decoded test-case function automati-
cally builds a more complex INSERT INTO SELECT com-
mand in SQL that determines if the test-case is covered
fully or partially by the questions from the guestions table,
and stores the data on fully/partially covered questions to
the questions_testcases table (lines 19 and 20 in Fig. 7).
A test-case is covered fully if there are one or more questions
that have attributes that match with the all the features in
the test-case. To measure if a test-case is partially covered

VOLUME 9, 2021

INSERT INTO questions_testcases

(IDquestion, IDtestcase, full_match)

SELECT question_ID, test_case_ID, 1

FROM

questions

WHERE

test_case_feature_1 = 1 AND test_case_feature_2 = 1 AND
- AND test_case_feature N = 1

FIGURE 8. SQL command template for finding and storing data on fully
covered test-cases.

INSERT INTO questions_testcases
(IDquestion, IDtestcase, full_match)
SELECT question_ID, test_case_ID, 0O

FROM

questions

WHERE

((test_case_feature_1 = 1) + (test_case_feature_ 2 = 1)
+ .- + (test_case_feature_N = 1))

>= partially_cover_limit

FIGURE 9. SQL command template for finding and storing data on
partially covered test-cases.

we introduced a global variable partially_covered_limit that
sets the lower limit of features that need to be covered by the
questions. Consequently, we consider a test-case is covered
partially if there are one or more questions whose attributes
match with at least n = partially_covered_limit of test-case
attributes. In Fig. 8 and Fig. 9 we show SQL templates for
dynamically building commands for finding and storing data
on fully and partially covered test-cases, respectively.

Note that in SQLite there is no special Boolean datatype,
and therefore True is equal to integer value 1 and False
is equal to integer value 0. We used this characteristic of

52965

IEEE Access

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

SQLite in the SQL command in Fig. 9 to quickly iden-
tify all the questions that partially match a given test-case.
If the partially_cover_limit is set to 1, then the WHERE
clause from Fig. 9 is equal to (test_case_feature_1 = 1
OR ftest_case_feature_2 = 1 OR --- OR test_case_feature
_N=1).

Finally, the function performs an analysis of the results
and stores them in the text file jenny_test_cases_statistics.txt.
Script executes a group of six more complex SELECT com-
mands that aggregate data about the generated test-cases
(line 22 in Fig. 7).

First SQL command lists all the test-cases along
with the number of questions that fully and partially
match each test-case. As an example, this SQL com-
mand is formally described with relational algebra expres-
sions (1), (2) and (3) over relations testcases(IDtestcase,
description) and questions_testcases(IDquestion, IDtestcase,
full_match). We used extended relational algebra notation
from [38].

The queries declared in (1) and (2) are virtual rela-
tions (views) that use aggregate operation y on a left outer
join operation 1« between relations testcases and ques-
tions_testcases to count the number of fully and partially
matched questions for each test-case, respectively.

Final query in (3) applies a projection operation IT on
an inner join operation o< between relations festcases and
views Full and Partial to display all test-cases with additional
information from (1) and (2).

Full < Hx Dtestcase as ID, full _count (
x.IDtestcase Yeount(y.IDtestcase) as full_count (Ox(festcases)

X x.IDtestcase=y.IDtestcase Ny.full_match=1
py(questions_testcases))) (1)

Partial < Hx Dtestcase as ID, partial _count (
x.IDtestcase Ycount(y.IDtestcase) as partial _count (px (te stcases)

N x.IDtestcase=y.IDtestcase Ny full_match=0
py(questions_testcases))) 2)

nlDtestcase, description, full _count, partial_cuunt(
testcases ><estcases.iDrestcase=Full 1D Full

D<IFyil ID="Partial 1D Partial) 3)

Following two SQL commands separately list the
test-cases that are fully matched and the test-cases that are
only partially matched, respectively. Later, this can be useful
for manual inspection of test-cases. The fourth SQL com-
mand calculates basic statistics of the generated test-cases —
it lists the test-cases number, the number and the percentage
of test cases that are fully matched, as well as only partially
matched by the existing questions. Afterwards, the fifth SQL
command lists all the questions that have been fully matched
by the test-cases, together with the number of test-cases they
correspond to. Lastly, the sixth SQL command prepares and
lists formal context of the questions that have been fully
matched by the test-cases. When each test-case is matched by

52966

at least one question the combinatorial testing process ends
and the listed output formal context becomes the final formal
context. The FCA method will automatically build its concept
lattice, which will be then used to generate sequences of
questions for the student assessment module (Steps 5 and 6 in
Fig. 4).

Before the script ends it copies all the used input and
output text files, together with the SQLite questions’ database
into a timestamp-named directory inside an experiments
subfolder.

The combinatorial testing module contains another Python
script (database_manager.py), which is used to manage the
SQLite questions’ database. This script provides a simple,
menu-based interface to the SQLite database that facili-
tates viewing, querying and modifying its data. Control and
communication with the database in all of our scripts was
achieved using Python’s sglite3 module.

Using this script users can manually run commands
for creating, emptying or deleting previously described
database tables, and get basic statistical information about
the tables. Script also facilitates adding new question descrip-
tions to the table questions, e.g. when composing new
questions that implement previously uncovered generated
test-cases.

Furthermore, script allows users to run arbitrary SQL com-
mands. This is especially useful when analyzing combina-
torial testing results, e.g. if there are no questions that fully
match a given test-case, we can create a SELECT command
that finds questions that are most similar to the given test-
case. Also, users can modify question description data, e.g.
if we determine that the question’s attribute values were not
correctly set.

Therefore, for most users with an intermediate knowledge
of SQL this database management script provides a sim-
ple and useful alternative to more complex SQLite database
management tools, such as command-line shell for SQLite
Sqlite3 [39] or a GUI desktop application SQLiteStudio [40].

VII. USE CASE OVERVIEW

As ause case for the combinatorial testing method we will test
a set of 473 questions form the freshmen year course Funda-
mentals of Electrical Engineering taken from our e-learning
system WebOE.> This set of 473 questions was manually
labelled with attributes from a predefined set of 50 attributes
(presented in Fig. 10) that covers the course material. The
labelled question set was used in our previous research [41],
and it represents a fraction of more than 3500 questions stored
in our e-learning system.

Various question types are supported (e.g. multiple-
choice, true/false, fill-in or short answer and computational),
although the questions in the selected set are multiple-choice
(with three to five given answers, only one of them is correct),

5 https://osnove.tel.fer.hr — WebOE e-learning system used on the course
Fundamentals of Electrical Engineering, developed at the Department of
Electrical Engineering Fundamentals and Measurements of the Faculty of
Electrical Engineering and Computing, University of Zagreb, Croatia

VOLUME 9, 2021

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

IEEE Access

01: force_electric
02: field_electric
03: potential_electric
04: energy_electric
05: charge

06: capacity

07: capacitors

08: resistance

09: DC_current

10: DC_voltage

11: DC_power

12: current_source
13: voltage_source
14: real_source

15: ideal_source
16: force_magnetic
17: field_magnetic
18: energy_magnetic
19: flow_magnetic
20: dinduced_voltage
21: ohm

22: Kirchhoff

23: Thevenin

24: Norton
25: Millman
26: superposition
27: bridge

28: delta_star

29: impedance

30: AC_current

31: AC_voltage

32: AC_power

33: 1inductance

34: inductive_coupling

35: sine_wave

36: vectors

37: phasors

38: sine_sources

39: frequency_dependence

40: non_sinusoidal_sources

41: harmonics

42: transients

43: three_phase_phasor_diagram
44: three_phase_sources

45: three_phase_star_balanced
46: three_phase_star_unbalanced
47: three_phase_delta_balanced
48: three_phase_delta_unbalanced
49: three_phase_neutral

50: three_phase_break

FIGURE 10. A predefined set of 50 attributes describing Fundamentals of
Electrical Engineering course material.

and computational, where students need to input one to three
numerical solutions that are automatically evaluated. As an
example, Fig. 11 shows one multiple-choice question from
the set (question text is originally in Croatian) and the list of
its attributes.

Although the text of the question presented in Fig. 11
seems quite short and straightforward, the solution of the
stated problem is not trivial. Valuable additional information
is included in the questions’ figure, e.g. we see that the load
is purely resistive, and it is connected in an unbalanced star
configuration, and also that the ammeter is in the neutral line.
To calculate the solution efficiently, we need to apply basic
electrical laws (Ohm’s law and Kirchhoff’s current law), and
need to know how to calculate current, voltage and power
in AC circuits using phasor/vectors. We can see that this

VOLUME 9, 2021

Question 1D2909

Figure shows a three-phase network where the ammeter
measures 4 A when the switch S is closed. Calculate total real
power P of the three-phase load.

g —
7 A S
U 50 /0
+ 2
0 11
Uz 100/0°
+ 3
s 100/0°0)
®.—.37
Answers:

A)1200 W B)2400 W C)3600 W D)6400 W E) 12800 W
(correct answer D)

Question labels (attributes):

potential electric, voltage source, ideal source, Ohm,
Kirchhoff, impedance, AC _current, AC voltage, AC power,
vectors, phasors, sine_sources, three_phase _phasor_diagram,
three_phase_sources, three phase_star unbalanced,
three_phase neutral

FIGURE 11. A example multiple-choice question from the questions’ set.

question is quite specific, and therefore it is labelled with an
extensive list of attributes.

By testing the questions’ set using combinatorial testing
techniques we want to ensure that the questions cover all
pairs or triples of attributes. Therefore, the questions will
connect different learning concepts and will demand that the
students learn the course material more thoroughly. To obtain
best results, we also need to declare which combinations of
attributes are not allowed. Some of them are not meaningful
— e.g., pair (phasors, non_sinusoidal_sources), and others
are too advanced or not covered by the course material —
e.g., pair (three_phase_sources, harmonics). After automat-
ically generating test-cases we need to check if they are
already covered by the questions in the set, otherwise we
should consider implementing uncovered test-cases as new
questions. Additionally, we can use generated test-cases to
check if the questions were labelled incorrectly. For example,
if a generated test-case is meaningless, but is nevertheless
covered by one or more questions, then those questions are
probably labelled wrong.

Before running the combinatorial testing method, we need
to prepare input text files as detailed in Section VI — list of
attributes from Fig. 10 must be stored as attribute_list.txt,
and the questions’ formal context must be stored as
database_prepared_data.txt. We extracted the formal con-
text directly from our e-learning system database, and an
excerpt of the database_prepared_data.txt input file is shown
in Fig. 12.

52967

IEEE Access

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

FIGURE 12. An excerpt of the formal context from
database_prepared_data.txt.

DIMENSION 1:

force_electric, field_electric, potential_electric,
energy_electric, charge, capacity, capacitors,
inductance, inductive_coupling, force_magnetic,
field_magnetic, energy_magnetic, flow_magnetic,
induced_voltage, non_sinusoidal_sources, harmonics,
transients

DIMENSION 2:
ohm, Kirchhoff, bridge, delta_star, superposition,
Thevenin, Norton, Millman

DIMENSION 3:

current_source, voltage_source, real_source,
ideal_source, sine_sources, three_phase_phasor_diagram,
three_phase_sources, three_phase_star_balanced,
three_phase_star_unbalanced, three_phase_delta_balanced,
three_phase_delta_unbalanced, three_phase_neutral,
three_phase_break

DIMENSION 4:

DC_current, DC_voltage, DC_power, resistance,
AC_current, AC_voltage, AC_power, impedance, sine_wave,
vectors, phasors, frequency_dependence

FIGURE 13. List of dimensions in Strategy 1.

We should point out that the FCA method will find
3504 formal concepts from the formal context of the
473 questions. Therefore, it will generate a large and complex
concept lattice containing 3504 vertices (formal concepts)
and 15284 directed edges.

Afterwards, we need to define feature dimensions that
will be used for combinatorial testing. As we stated earlier,
each attribute will be considered as a distinct feature, and
dimensions are disjoint subsets of features. The way in which
dimensions are selected has a great influence on the number
and quality of the test-cases. Therefore, we have prepared
four different main strategies for defining dimensions:

o Strategy I — features are grouped into four different
dimensions. First dimension contains 17 features cov-
ering electrostatics, magnetism, and advanced circuits
phenomena. Second dimension covers fundamental laws
and theorems of electrical engineering, and it has 8 fea-
tures. Third dimension is comprised of 13 features that
cover ideal and real voltage and current sources, as well
as three-phase systems. The last, fourth dimension has
12 features covering DC and AC electrical values, pha-
sors, and frequency dependence. The list of dimensions
is given in Fig. 13. There are at most 17 - 13 - 8§ -
12 = 21216 different test-cases. This strategy has some
drawbacks, as for each test-case only one feature per
dimension is allowed, e.g. an interesting combination
such as (Thevenin, Millman) will not be covered because
they both belong to dimension 2.

o Strategy 2 — rather than organizing multiple attributes
in dimensions, in this approach we consider each of
the 50 attributes in Fig. 10 as a separate dimension.

52968

DIMENSION 1:

three_phase_star_balanced, inductive_coupling,
real_source, flow_magnetic, induced_voltage,
three_phase_sources, capacity, delta_star, sine_wave,
voltage_source, AC_power, frequency_dependence

DIMENSION 2:

inductance, three_phase_delta_balanced, Kirchhoff,
ideal_source, current_source, three_phase_break,
three_phase_star_unbalanced, charge,
three_phase_phasor_diagram, Thevenin, ohm, DC_voltage

DIMENSION 3:

MiTTman, DC_current, field_electric, vectors,
three_phase_delta_unbalanced, impedance, DC_power,
energy_magnetic, AC_voltage, superposition, AC_current,
capacitors, energy_electric, force_electric, phasors,
resistance, force_magnetic

DIMENSION 4:

field_magnetic, transients, potential_electric,
harmonics, bridge, sine_sources, Norton,
non_sinusoidal_sources, three_phase_neutral

FIGURE 14. List of dimensions in Strategy 3.

Therefore, there are 50 dimensions, and for each dimen-
sion we defined only two feature values: True or False.
Value True is denoted as attribute_name_I (then a
test-case has that attribute), and value False is denoted
as attribute_name_Q0 (then a test-case does not have that
attribute). In comparison to Strategy 1 all attribute com-
binations are now possible, but at the cost of enormous
maximum number of test-cases (25).

Strategy 3 — similarly to the Strategy 1, features are
grouped into four dimensions, but now this partitioning
is done randomly. Dimensions 1 — 4 are given in Fig. 14,
and they have 12, 12, 17 and 9 features, respectively.
Maximum number of all test-cases in Strategy 3 is 12 -
12 - 17 - 9 = 22032. This is comparable to the num-
ber of test-cases in Strategy 1. Again, there are draw-
backs, e.g. a very interesting feature combination (Ohm,
DC _voltage) will not be covered by any test-case (they
both belong to dimension 2), but a feature combination
(Thevenin, Millman), not covered in Strategy 1 will now
be covered (now those features belong to dimensions
2 and 3, respectively).

Strategy 4 — in this approach we start with the dimen-
sions defined in Strategy 1 (Fig. 13), but then we sim-
plify them by grouping closely related features into
feature groups. Feature groups are shown in Fig. 15 and
simplified dimensions are given in Fig. 16.

By taking this approach we have reduced the size of
the dimensions, which now have 7, 8, 5 and 6 features,
respectively. Because of that, the maximum number of
all test-cases is significantly smaller, 7-8 -5 - 6 = 1680.
When checking if the question is covered by the gen-
erated test-case, we will consider that a feature group
(from Fig. 15) is covered if the question has at least
one of the attributes in that feature group. This gives
us some flexibility in the questions’ testing process, e.g.
a test-case that contains a feature group phasor_diagram
could be matched by a question with at least one of the
following attributes: sine_wave, vectors, and phasors.

VOLUME 9, 2021

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

IEEE Access

electrostatics: magnetism:
force_electric inductive_coupling
field_electric force_magnetic
energy_electric field_magnetic
charge energy_magnetic
capacitors flow_magnetic
induced_voltage
DC_values: sources:
DC_current current_source
DC_voltage voltage_source

real_source
ideal_source
sine_sources
non_sinusoidal_sources

resistance

AC_values: phasor_diagrams:
AC_current sine_wave
AC_voltage vectors
impedance phasors

three_phase_easier:
three_phase_phasor_diagram
three_phase_sources

three_phase_star:
three_phase_star_balanced
three_phase_star_unbalanced

three_phase_delta:
three_phase_delta_balanced
three_phase_delta_unbalanced

three_phase_harder:
three_phase_neutral
three_phase_break

FIGURE 15. Feature groups used in Strategy 4.

DIMENSION 1:
electrostatics, magnetism, potential_electric, capacity,
inductance, harmonics, transients

DIMENSION 2:
ohm, Kirchhoff, bridge, delta_star, superposition,
Thevenin, Norton, Millman

DIMENSION 3:
sources, three_phase_easier, three_phase_star,
three_phase_delta, three_phase_harder

DIMENSION 4:
DC_values, AC_values, DC_power, AC_power,
phasor_diagrams, frequency_dependence

FIGURE 16. List of dimensions in Strategy 4.

We have used each of the four outlined strategies to gen-
erate test-cases that cover all pairs of features (tuple size
t = 2) and all triples of features (tuple size + = 3) from
the defined dimensions, with and without declared forbidden
feature combinations.

VIIl. RESULTS AND DISCUSSION

In this section we will present results of the proposed combi-
natorial testing method applied to the initial set of labelled
473 questions taken from our e-learning system database.
A test-cases list is generated in every iteration of the com-
binatorial testing process, and our Python script combina-
torial_test_run.py automatically checks if each generated
test-case is covered fully or partially by the questions in the
database, as was detailed in Section VI. Finally, all mean-
ingful uncovered test-cases should be implemented as new
questions and added to the database.

VOLUME 9, 2021

TABLE 2. Combinatorial testing results using Strategy 1.

Test run 1 2 3 4

Test t=2 t =2and t=3 t =3 and

parameters 3 forbidden 3 forbidden
combinations combinations

Number of 225 223 2670 2641

test-cases

Test-cases 11 17 153 163

fully covered [4.89%] | [7.62%] [5.73%] |[6.17%]

Test-cases 102 109 1280 1282

partially covered | [45.33%] | [48.88%] [47.94%] | [48.54%]

Questions fully | 124 113 234 257

covered by [26.22%] | [23.89%] [49.47%] | [54.33%]

test-cases

First, we will give results of the initial combinatorial
test runs using four different strategies as described in
Section VII. Each of the strategies has been run four times,
using a feature tuple size of + = 2 and + = 3, and with,
as well as without a declared list of feature combinations
that are not allowed in the generated test-cases. Also, in all
test runs a test-case will be considered as partially covered
if there are one or more questions whose attributes match at
least 3 test-case features. Afterwards, we will choose the most
appropriate strategy and complete the whole combinatorial
testing process.

A. COMBINATORIAL TESTING RESULTS USING

STRATEGY 1

In the first testing strategy we used four feature dimen-
sions listed in Fig. 13, and the testing results are presented
in Table 2. Each data column in the table corresponds to a
test run with a different set of input parameters.

For the first test run, we set the feature tuple size to ¢ =
2 and declared no forbidden feature combinations. Number
of generated test-cases was 225. There are 102 test-cases
(45.33%) that are partially covered by the questions, but only
11 test-cases (4.89%) are fully covered by at least one of
the questions. Note that 124 of 473 questions (26.22%) are
covered by at least one test-case, but this is mainly due to the
test-case (potential_electric, Ohm, sine_sources, impedance)
that is covered by 107 questions.

In the second test run, we set ¢ = 2 and declared a short list
of three forbidden feature combinations: (DC_current, har-
monics), (DC_current, induced_voltage) and (force_electric,
Millman). Subsequently, the number of generated test-cases
was reduced to 223, and 7.62% of test-cases were fully cov-
ered by the questions.

In the third and fourth test runs we set the number of
feature tuples to + = 3. In the third run we did not use
forbidden feature combinations, and in the fourth run the
above-mentioned short list of forbidden feature combinations
was used. 2670 test-cases were generated in the third run, and
2641 test-cases were generated in the fourth run. The percent-
age of fully covered test-cases was very small in both test
runs (5.73% and 6.17%, respectively). Because of the greater
number of generated test-cases the ratio of questions

52969

IEEE Access

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

TABLE 3. Combinatorial testing results using Strategy 2.

TABLE 4. Combinatorial testing results using Strategy 3.

Test run 1 2 3 4 Test run 1 2 3 4

Test t=2 t=2and t=3 t =3 and Test t=2 t = 2and t=3 t =3 and

parameters 85 forbidden 85 forbidden parameters 4 forbidden 4 forbidden
combinations combinations combinations combinations

Number of 14 17 36 46 Number of 213 209 2480 2443

test-cases test-cases

Test-cases 0 0 0 0 Test-cases 13 13 161 162

fully covered [0.0%] [0.0%] [0.0%] [0.0%] fully covered [6.1%] [6.22%] [6.49%] | [6.63%]

Test-cases 14 17 36 44 Test-cases 88 88 1088 1057

partially covered | [100.0%] | [100.0%] [100.0%] | [95.65%] partially covered | [41.31%] | [42.11%] [43.87%] | [43.27%]

Questions fully |0 0 0 0 Questions fully | 127 164 227 234

covered by [0.0%] [0.0%] [0.0%] [0.0%] covered by [26.85%] | [23.89%] [47.99%] | [49.47%]

test-cases test-cases

covered by test-cases increased to 49.47% and 54.33%,
respectively.

As we can see from Table 2, this strategy initially produces
many different test-cases, especially when we want to cover
all feature triples. Also, in all four test runs initial test-case
full coverage is very small. This could be countered by
generating a more extensive list of forbidden feature com-
binations, but this is a very delicate and time-consuming job
considering there are 50 features. Furthermore, as we noted
in Section VII, this strategy will fail to cover some mean-
ingful feature combinations if they are included in the same
dimension.

B. COMBINATORIAL TESTING RESULTS USING
STRATEGY 2

In the second testing strategy we used fifty feature dimen-
sions, each corresponding to one of the features, and the
testing results are presented in Table 3.

Using this strategy, we did not obtain good results. In all
four test runs, using feature tuples sizes 2 and 3, with-
out and with a list of 85 forbidden feature combinations,
there were initially no fully covered test-cases. As there are
50 dimensions, each with only 2 feature values (True and
False) combinatorial testing procedure will efficiently find a
small number of test-cases that will cover all possible feature
pairs (when t = 2) or feature triples (when t = 3) at least
once. Unfortunately, almost all of the 14 to 46 test-cases
generated in the four test runs represent feature combinations
that are too complex, contradictory or not meaningful, even
when using a list of 85 forbidden feature combinations. This
can explain why none of the test-cases was fully covered by
at least one existing question in the database. Furthermore,
such test-cases that include numerous various features would
be hard to implement as new questions. Again, one possi-
ble time-consuming solution to this problem is to devise a
much longer list of forbidden feature combinations. Also,
we could consider expanding feature tuple sizes to t = 4 or
more, which would increase the number of generated test-
cases, but also increase the probability that the test-cases
would be more meaningful. Note that the almost all of the
generated test-cases in four test runs were partially cov-
ered by the questions. However, this is not too surprising

52970

because each test-case has 50 features, and it was easy to
find questions whose attributes match with at least 3 out of its
50 features.

C. COMBINATORIAL TESTING RESULTS USING

STRATEGY 3

In the third testing strategy we used four randomly generated
dimensions listed in Fig. 14, and the testing results are pre-
sented in Table 4.

This strategy produced quantitatively very similar results
to the Strategy 1 where all four dimensions were man-
ually set. Here, in second and fourth test run we
used a small list of four forbidden feature combina-
tions: (real_source, field_electric), (induced_voltage, har-
monics), (three_phase_delta_balanced, DC_current) and
(three_phase_star_balanced, DC_current), but the full cov-
erage of the test-cases did not improve considerably. Most
of the generated test-cases in test runs 1 and 2 were not
meaningful, which was expected because the 50 features
were randomly partitioned into four dimensions. However,
in test runs 3 and 4 there was a significant number of useful
test-cases, e.g. test-case no. 1700 in test run 4: (real_source,
current_source, DC_current, Norton) that was not among the
generated test-cases when using Strategy 1.

D. COMBINATORIAL TESTING RESULTS USING

STRATEGY 4

In the fourth testing strategy we used four dimensions listed
in Fig. 16, together with feature groups from Fig. 15, and the
testing results are presented in Table 5.

In this approach, we used feature groups to reduce the size
of the dimensions. As a result, combinatorial testing process
generated considerably fewer test-cases. When covering all
feature pairs (t = 2), there were 56 test-cases generated in
the first test run and 66 test-cases in the second run (with
forbidden feature combinations). Also, in coverage of all
feature triples (r = 3), there were 352 test-cases in the
third test run and 321 test-cases in the fourth test run (when
forbidden feature combinations are declared). There were
initially 30 forbidden feature combinations used in test runs
2 and 4, and they are listed in Fig. 17.

VOLUME 9, 2021

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

IEEE Access

TABLE 5. Combinatorial testing results using Strategy 4.

Test run 1 2 3 4

Test t=2 t=2and t=3 t =3 and

parameters 30 forbidden 30 forbidden
combinations combinations

Number of 56 66 352 321

test-cases

Test-cases 9 14 55 76

fully covered [16.07%] | [21.21%] [15.63%] | [23.68%]

Test-cases 40 55 223 262

partially covered | [71.43%] | [83.33%] [63.35%] | [81.62%]

Questions fully | 142 80 246 253

covered by [26.85%] | [16.91%] [52.01%] | [53.49%]

test-cases

(electrostatics, Thevenin)
(electrostatics, Norton)
(electrostatics, Millman)
(electrostatics, three_phase_easier)
(electrostatics, three_phase_star)
(electrostatics, three_phase_delta)
(electrostatics, three_phase_harder)
(electrostatics, AC_values)
(electrostatics, DC_power)
(electrostatics, AC_power)
(electrostatics, phasor_diagrams)
(electrostatics, frequency_dependence)
(magnetism, three_phase_easier)
(magnetism, three_phase_star)
(magnetism, three_phase_delta)
(magnetism, three_phase_harder)
(harmonics, superposition)
(harmonics, three_phase_easier)
(harmonics, three_phase_star)
(harmonics, three_phase_delta)
(harmonics, three_phase_harder)
(harmonics, phasor_diagrams)
(transients, three_phase_easier)
(transients, three_phase_star)
(transients, three_phase_delta)
(transients, three_phase_harder)
(transients, AC_values)

(transients, AC_power)

(transients, phasor_diagrams)
(transients, frequency_dependence)

FIGURE 17. Initial list of forbidden feature combinations in Strategy 4.

Furthermore, in comparison to previous strategies a greater
percentage of test-cases was initially fully covered by the
questions, 16.07% in test run 1 and 15.63% in test run 3, and
when using forbidden feature combinations 21.21% for test
run 2 and 23.68% for test run 4. Note, that when we required
feature coverage of all pairs 56 — 9 = 47 test-cases were
not fully covered in test run 1, and 66 — 14 = 52 test-cases
were not fully covered in test run 2. These uncovered test-
cases, if meaningful, should be implemented as new ques-
tions, and added to the initial set of 473 questions. In test runs
3 and 4, which required coverage of all feature triples there
were considerably more test-cases not fully covered (297 and
245, respectively). However, these numbers are still man-
ageable compared to results of third and fourth test runs in
strategies 1 and 3.

VOLUME 9, 2021

E. DISCUSSION

From the results of initial combinatorial test runs using all
four presented strategies we can conclude that the num-
ber of generated test-cases varies substantially according to
the size of the feature tuples that need to be covered, and
depending on the number and sizes of the feature dimensions.
To maximize the potential benefit that the combinatorial
testing provides, special care should be given when select-
ing feature dimensions, and also when determining feature
combinations that are not allowed. Listing all the forbidden
feature combinations is a hard task, but the combinatorial
testing itself can help us to identify them in the gener-
ated test-cases. Moreover, note that all combinations of fea-
tures placed in same dimension are implicitly forbidden, e.g.
DC_values and frequency_dependence from dimension 4 in
Fig. 16.

By examining the results of the combinatorial testing runs
we found that large subsets of questions are covered by a few
generated test-cases. For example, in the third test run from
Strategy 4 (+ = 3, no forbidden combinations used) there
were 246 questions covered by at least one test-case, and the
dominant test-cases were (potential_electric, Ohm, sources,
DC _values) — covered by 207/246 questions, and test-case
(potential_electric, Ohm, sources, AC_values) — covered by
139/246 questions. This is expected, as the focus of our fresh-
man year course Fundamentals of Electrical Engineering is
on the basic DC and AC circuit analysis. On the contrary, only
1 of 246 questions was covered by a test-case (inductance,
Ohm, three_phase_delta, AC_values). Therefore, teachers
could consider devising additional questions about inductive
delta-connected loads in three phase systems.

After completing initial test runs using all four presented
strategies, we have decided to use Strategy 4 to demonstrate
the complete combinatorial testing process until all test-cases
are covered by the questions. As we can see from the results,
Strategy 4 has the best initial test-case coverage, and a
manageable number of uncovered test-cases. Furthermore,
the usage of simplified dimensions with feature groups from
Fig. 15 offers teachers and instructors more flexibility in
preparing new questions based on uncovered generated test-
cases.

In future research we will also consider using other combi-
natorial testing tools to compare results and performance with
the Jenny program used in these experiments. Also, proposed
combinatorial testing method is currently implemented only
as a command-line tool. Therefore, our aim is to provide
a Web interface for the implemented combinatorial testing
method that could greatly help teachers and instructors in
applying the proposed method on their courses.

F. COMPLETE COMBINATORIAL TESTING PROCEDURE
USING STRATEGY 4

For this demonstration, we used the input data prepared
for Strategy 4, with feature groups from Fig. 15 and four

52971

IEEE Access

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

TABLE 6. Complete combinatorial testing process using Strategy 4 (t = 2).

Test run 1 2 3 4 5
Number of 473 473 473 473 522
questions in the

database

Number of 30 38 39 42 42
forbidden

combinations

Number of 66 71 71 72 72
test-cases

Test-cases 14 16 16 23 72

fully covered [21.21%] | [22.54%] | [22.54%] | [31.94%] | [100.0%]
Test-cases 55 65 65 65 72
partially covered | [83.33%] | [91.55%] | [91.55%] | [90.28%] | [100.0%]
Questions fully | 80 56 70 90 139
covered by

test-cases

feature dimensions from Fig. 16. A coverage of all pairs of
features between the feature dimension is required, so the
size of the feature tuples was set to ¢+ = 2. The initial list
of 30 forbidden feature combinations from Fig. 17 was also
used.

After each test run all of the generated test-cases were
inspected for meaningless feature combinations or those
too advanced for our course. If such feature combinations
were identified, they were added to the list of the forbid-
den feature combinations and the test was run again. When
all of the uncovered test-cases are meaningful, we treat
them as prepared suggestions for new questions. Teachers
implement new questions according to the uncovered gen-
erated test-cases and add them to the questions’ set. Also,
the formal context of the questions’ set is updated with
the labelled description of new questions. The combinato-
rial testing process continues until each of the generated
test-cases is covered by at least one question. The complete
results of this combinatorial testing procedure are presented
in Table 6.

Note, that the first test run is equal to the initial test run
2 from Table 5. In second and third row of the Table 6 we give
the current size of the questions’ set and the current number
of feature combinations that are not allowed. Furthermore,
it can be seen that we successively increased the number of
forbidden feature combinations from 30 in the initial first test
run to 42 in the fourth and fifth test run. All forbidden feature
combinations additionally added to the initial list in Fig. 17
in test runs 2, 3 and 4 can be seen in Fig. 18.

As the number of forbidden feature combinations
increased, the percentage of test-cases covered fully and
partially by the questions also grew. However, after elimi-
nating all unwanted feature combinations in test run 4 only
23/72 generated test-cases were fully covered by the ques-
tions. Therefore, after test run 4, we needed to create at least
49 new questions that implement the remaining 49 meaning-
ful test-cases, which were not fully covered by the existing
questions. Using the script database_manager.py we added
these 49 new questions to the initial questions set, thereby
increasing its size to 522. Afterwards, the combinatorial

52972

ADDED IN TEST RUN 2:

(DC_power, three_phase_easier)

(DC_power, three_phase_star)

(DC_power, three_phase_delta)

(DC_power, three_phase_harder)
(frequency_dependence, three_phase_easier)
(frequency_dependence, three_phase_star)
(frequency_dependence, three_phase_delta)
(frequency_dependence, three_phase_harder)

ADDED IN TEST RUN 3:
(harmonics, DC_power)

ADDED IN TEST RUN 4:
(harmonics, frequency_dependence)
(magnetism, frequency_dependence)
(magnetism, DC_power)

FIGURE 18. Additional forbidden feature combinations added to the list
in Fig. 17.

testing process successfully ended in the fifth test run because
each of the 72 generated test-cases was fully covered by at
least one question.

Test-cases’ overview in Fig. 19 shows that majority of
test-cases are partially covered by a substantial number of
questions (i.e. match 3/4 test-case features), however there are
only a few test-cases that are fully covered by a considerable
number of questions (i.e. match all 4 test-case features).

A detailed list of all the test-cases generated in the fifth test
run is presented in Table 7, including test-case ID, test-case
features, and numbers of questions that fully and partially
cover each test-case. Test-cases that were fully covered in
the final — fifth test run after adding 49 new questions to the
database are marked with an asterisk.

As an example, we show one of the new 49 questions
in Fig. 20. This question covers the test-case ID13 (electro-
statics, bridge, sources, DC_values), and here we can see
the flexibility of the feature groups listed in Fig. 15. Fea-
ture group electrostatics is covered by attributes capacitors,
charge and energy_electric; feature group sources is covered
by attributes ideal_source and voltage_source, and feature
group DC _values is covered by attribute DC_voltage. Note
that the question can be labelled with additional attributes,
e.g. capacity and delta_star, provided that all the features
from the test-case are covered.

After the combinatorial testing procedure was completed,
we see that in the final set of 522 questions there is a sub-
set of 139 questions covered by all the 72 generated test-
cases. Most of the generated test-cases are covered by 1 to
4 questions, but there are some exceptions, e.g. test case
ID67 (inductance, Ohm, sources, frequency_dependence) is
covered by most questions, 32/139. Our combinatorial testing
method also automatically prepares the formal context of the
resulting subset of 139 questions that covered all of the gener-
ated test-cases. Afterwards, this formal context is processed
using the FCA method according to the Steps 5 and 6 of
our method for automated assessment generation (Fig. 4).
First, a concept lattice is automatically built from the formal
context, and then our method identifies suitable sequences of

VOLUME 9, 2021

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

IEEE Access

ID1 (electrostatics, Ohm, sources, DC_values)

1D2 (magnetism, Millman, sources, AC_power)

1D3 (potential_electric, Kirchhoff, three_phase_easier, AC_values)
1D4 (capacity, superposition, three_phase_delta, phasor_diagrams)
ID5 (inductance, bridge, three_phase_harder, phasor_diagrams)
1D6 (harmonics, Thevenin, sources, AC_values)

1D7 (transients, delta_star, sources, DC_power)

1D8 (potential _electric, Norton, sources, frequency_dependence)
1D9 (inductance, delta_star, three_phase_star, AC_values)

1D10 (magnetism, superposition, sources, DC_values)

D11 (capacity, Ohm, three_phase_easier, AC_power)

D12 (electrostatics, Kirchhoff, sources, DC_values)

D13 (electrostatics, bridge, sources, DC_values)

D14 (magnetism, Thevenin, sources, phasor_diagrams)

D15 (magnetism, Norton, sources, AC_values)

D16 (potential_electric, Millman, three_phase_harder, DC_values)

q

D17 (capacity, Thevenin, sources, frequency_dept 1ce)

o
g
1]
S

150 200 250

B Number of questions that fully
cover test-case

B Number of questions that
partially cover test-case

1D18 (inductance, Ohm, three_phase_delta, AC_power)

D19 (inductance, Kirchhoff, sources, frequency_dependence)
1D20 (capacity, bridge, sources, frequency_dependence)

D21 (electrostatics, delta_star, sources, DC_values)

1D22 (potential_electric, Norton, three_phase_star, phasor_diagrams)
1D23 (electrostatics, superposition, sources, DC_values)

1D24 (inductance, Millman, sources, frequency_dependence)

1D25 (magnetism, Ohm, sources, phasor_diagrams)

1D26 (capacity, Kirchhoff, sources, DC_power)

D27 (potential_electric, bridge, three_phase_delta, AC_values)
1D28 (potential_electric, delta_star, three_phase_harder, AC_power)
1D29 (capacity, superposition, three_phase_harder, AC_values)
D30 (potential_electric, Thevenin, three_phase_star, AC_power)
1D31 (inductance, Norton, sources, DC_power)

1D32 (capacity, Millman, three_phase_star, AC_values)

1D33 (capacity, delta_star, three_phase_easier, phasor_diagrams)
1D34 (capacity, Norton, three_phase_easier, DC_values)

D35 (harmonics, Ohm, sources, AC_values)

D36 (transients, Ohm, sources, DC_power)

ID37 (inductance, Kirchhoff, three_phase_harder, DC_values)

D38 (potential_electric, superposition, sources, DC_power)

1D39 (harmonics, Norton, sources, AC_power)

1D40 (transients, Thevenin, sources, DC_values)

1D41 (capacity, Kirchhoff, three_phase_star, DC_values)

1D42 (potential_electric, bridge, three_phase_star, AC_power)
1D43 (magnetism, Kirchhoff, sources, phasor_diagrams)

D44 (inductance, superposition, three_phase_star, AC_power)
1D45 (inductance, Millman, three_phase_easier, phasor_diagrams)
1D46 (potential_electric, Millman, three_phase_delta, DC_values)
1D47 (harmonics, delta_star, sources, DC_values)

1D48 (transients, Millman, sources, DC_power)

1D49 (transients, bridge, sources, DC_power)

ID50 (inductance, Thevenin, three_phase_delta, AC_values)

1D51 (potential_electric, Ohm, three_phase_harder, DC_values)
D52 (transients, Kirchhoff, sources, DC_values)

1D53 (harmonics, Millman, sources, AC_power)

1D54 (inductance, Kirchhoff, three_phase_delta, AC_power)

1D55 (harmonics, bridge, sources, AC_power)

ID56 (potential_electric, delta_star, three_phase_delta, phasor_diagrams)
ID57 (transients, superposition, sources, DC_values)

D58 (capacity, Thevenin, three_phase_easier, AC_values)

1D59 (inductance, Norton, three_phase_delta, AC_values)

D60 (capacity, delta_star, sources, frequency_dependence)

1D61 (magnetism, delta_star, sources, AC_power)

1D62 (inductance, Ohm, three_phase_star, AC_values)

D63 (inductance, bridge, three_phase_easier, AC_power)

1D64 (potential_electric, superposition, three_phase_easier, DC_values)
ID65 (potential_electric, Thevenin, sources, DC_power)

D66 (inductance, Norton, three_phase_harder, phasor_diagrams)
1D67 (inductance, Ohm, sources, frequency_dependence)

1D68 (magnetism, bridge, sources, DC_values)

1D69 (harmonics, Kirchhoff, sources, AC_values)

ID70 (transients, Norton, sources, DC_values)

D71 (inductance, superposition, sources, frequency_dependence)
1D72 (inductance, Thevenin, three_phase_harder, phasor_diagrams)

‘U|f[‘l|“I‘I|”f'"””"|I|;‘f|l"“|'“| i 'Hurrrf[f

FIGURE 19. Overview of test-cases in the final, fifth test run.

VOLUME 9, 2021

52973

lEEEACC@SS F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

TABLE 7. List of test-cases generated in the final, fifth test run.

ID | Test-case features Questions fully covered Questions partially covered
1 (electrostatics, Ohm, sources, DC_values) 1 281
2% (magnetism, Millman, sources, AC_power) 1 6

3 (potential_electric, Kirchhoff, three_phase_easier, AC_values) 18 98
4* | (capacity, superposition, three_phase_delta, phasor_diagrams) 1 12
5% (inductance, bridge, three_phase_harder, phasor_diagrams) 1 5
6* (harmonics, Thevenin, sources, AC_values) 1 30
T* (transients, delta_star, sources, DC_power) 1 4
8* (potential_electric, Norton, sources, frequency_dependence) 1 31
9* (inductance, delta_star, three_phase_star, AC_values) 1 7
10 (magnetism, superposition, sources, DC_values) 1 40
11 (capacity, Ohm, three_phase_easier, AC_power) 2 57
12* | (electrostatics, Kirchhoff, sources, DC_values) 1 149
13* | (electrostatics, bridge, sources, DC_values) 1 35
14 (magnetism, Thevenin, sources, phasor_diagrams) 2 21
15% | (magnetism, Norton, sources, AC_values) 1 4
16 (potential_electric, Millman, three_phase_harder, DC_values) 1 22
17 | (capacity, Thevenin, sources, frequency_dependence) 4 55
18 (inductance, Ohm, three_phase_delta, AC_power) 1 27
19 | (inductance, Kirchhoff, sources, frequency_dependence) 12 75
20* | (capacity, bridge, sources, frequency_dependence) 1 41
21% | (electrostatics, delta_star, sources, DC_values) 1 37
22% | (potential_electric, Norton, three_phase_star, phasor_diagrams) 1 39
23* | (electrostatics, superposition, sources, DC_values) 1 65
24* | (inductance, Millman, sources, frequency_dependence) 1 38
25 | (magnetism, Ohm, sources, phasor_diagrams) 3 150
26* | (capacity, Kirchhoff, sources, DC_power) 1 51
27*% | (potential_electric, bridge, three_phase_delta, AC_values) 1 14
28* | (potential_electric, delta_star, three_phase_harder, AC_power) 1 26
29% | (capacity, superposition, three_phase_harder, AC_values) 1 12
30* | (potential_electric, Thevenin, three_phase_star, AC_power) 1 43
31* | (inductance, Norton, sources, DC_power) 1 1
32 (capacity, Millman, three_phase_star, AC_values) 1 7
33%* | (capacity, delta_star, three_phase_easier, phasor_diagrams) 1 12
34* | (capacity, Norton, three_phase_easier, DC_values) 1 7
35 (harmonics, Ohm, sources, AC_values) 4 170
36* | (transients, Ohm, sources, DC_power) 1 31
37* | (inductance, Kirchhoff, three_phase_harder, DC_values) 1 58
38 (potential_electric, superposition, sources, DC_power) 4 36
39* | (harmonics, Norton, sources, AC_power) 1 3
40* | (transients, Thevenin, sources, DC_values) 1 66
41* | (capacity, Kirchhoff, three_phase_star, DC_values) 1 61
42% | (potential_electric, bridge, three_phase_star, AC_power) 1 29
43 (magnetism, Kirchhoff, sources, phasor_diagrams) 3 65
44%* | (inductance, superposition, three_phase_star, AC_power) 1 8
45 (inductance, Millman, three_phase_easier, phasor_diagrams) 1 4
46%* | (potential_electric, Millman, three_phase_delta, DC_values) 1 15
47% | (harmonics, delta_star, sources, DC_values) 1 11
48%* | (transients, Millman, sources, DC_power) 1 4
49* | (transients, bridge, sources, DC_power) 1 4
50* | (inductance, Thevenin, three_phase_delta, AC_values) 1 22
51 (potential_electric, Ohm, three_phase_harder, DC_values) 18 229
52 (transients, Kirchhoff, sources, DC_values) 15 126
53%* | (harmonics, Millman, sources, AC_power) 1 5
54 (inductance, Kirchhoff, three_phase_delta, AC_power) 1 16
55% | (harmonics, bridge, sources, AC_power) 1 3
56 (potential_electric, delta_star, three_phase_delta, phasor_diagrams) | 4 11
57* | (transients, superposition, sources, DC_values) 1 56
58* | (capacity, Thevenin, three_phase_easier, AC_values) 1 30
59* | (inductance, Norton, three_phase_delta, AC_values) 1 3
60* | (capacity, delta_star, sources, frequency_dependence) 1 40
61* | (magnetism, delta_star, sources, AC_power) 1 7
62 (inductance, Ohm, three_phase_star, AC_values) 2 128
63* | (inductance, bridge, three_phase_easier, AC_power) 1 2
64* | (potential_electric, superposition, three_phase_easier, DC_values) |1 65
65 (potential_electric, Thevenin, sources, DC_power) 4 46
66* | (inductance, Norton, three_phase_harder, phasor_diagrams) 1 3
67 (inductance, Ohm, sources, frequency_dependence) 32 111
68* | (magnetism, bridge, sources, DC_values) 1 10
69% | (harmonics, Kirchhoff, sources, AC_values) 1 71
T70* | (transients, Norton, sources, DC_values) 1 26
71 | (inductance, superposition, sources, frequency_dependence) 3 44
72% | (inductance, Thevenin, three_phase_harder, phasor_diagrams) 1 21

52974 VOLUME 9, 2021

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

IEEE Access

Question ID5009

For a capacitor network shown in the figure calculate the
electric energy stored in capacitor Cs if U=12 V, C,=8 uF, C;=4
uF, C5=6 puF, C4=3 pF and Cs=5 pF. All capacitors are initially
uncharged.

1 1
C, Cs Cs
e T &
Answers:

A)48uJ B)64w C)9%] D)128uJ E)0J

(correct answer E)

Question labels (attributes):

energy electric, charge, capacitors, potential electric, capacity,
voltage source, ideal source, DC voltage, Kirchhoff, bridge,
delta_star

FIGURE 20. A new multiple-choice question implementing test-case ID13.

questions that can be used for formative student assessment
in e-learning systems. Each sequence of questions starts with
the most general questions (usually easier) and ends with the
most specific questions (usually harder). It must be noted
that from the final formal context of 139 questions the FCA
method found 1024 formal concepts and built a large concept
lattice, consisting of 1024 vertices (formal concepts) and
3371 directed edges. However, it is far more manageable than
the concept lattice of all the 473 questions in the initial set
(3504 vertices and 15284 directed edges, as stated earlier in
Section VII).

IX. CONCLUSION AND FUTURE WORK

In this paper we proposed a method for automated gener-
ation of assessments in e-learning systems, by focusing on
the questions that cover and combine multiple topics from
the course material. We used the FCA method to formally
describe each question in the database with a subset of
attributes. Then, we applied combinatorial testing technique
used in software testing as a tool for identifying and selecting
an almost minimal set of questions that covers all the defined
attributes and ensures that all meaningful pairs or triples of
attributes are covered by at least one question. The imple-
mented combinatorial testing method can also give educators
the descriptions of new questions that could be created and
added to the repository of questions. Lastly, we outlined
how the FCA method can automatically generate sequences
of questions sorted by their generality, which is primarily
suitable for use in formative student assessments.

To demonstrate the usefulness of the implemented com-
binatorial testing method we applied it to the initial set
of 473 labelled questions from our e-learning system. Our
method suggested 49 new questions that cover additional
pairs of attributes that were missing in the initial question
set. Furthermore, the method found a subset of 139 questions,
such that all meaningful pairs of attributes are covered by at
least one question.

VOLUME 9, 2021

In future work we will use other established combi-
natorial testing tools to compare their results and perfor-
mance with the Jenny combinatorial testing tool used in this
research. Also, to facilitate the usage of the proposed com-
binatorial testing method we will aim to create a Web-based
interface for the developed command-line tools. Furthermore,
we will apply process mining and model checking techniques
to analyze students’ performance and activity when taking
formative student assessments created using our method.
Teachers and instructors could then closely monitor students’
progress and timely detect any anomalies and warning signs
that suggest a student might not pass the course.

REFERENCES

[1] D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to Combinatorial
Testing. Boca Raton, FL, USA: CRC Press, 2013.

[2] R. Kuhn, Y. Lei, and R. Kacker, ‘‘Practical combinatorial testing: Beyond
pairwise,” IT Prof., vol. 10, no. 3, pp. 19-23, May 2008.

[3] L.Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “DeepCT:
Tomographic combinatorial testing for deep learning systems,” in Proc.
IEEE 26th Int. Conf. Softw. Anal., Evol. Reeng. (SANER), Feb. 2019,
pp. 614-618.

[4] L. Sh. Ghandehari, Y. Lei, R. Kacker, R. Kuhn, T. Xie, and D. Kung,
“A combinatorial testing-based approach to fault localization,” [EEE
Trans. Softw. Eng., vol. 46, no. 6, pp. 616-645, Jun. 2020.

[5] C.Nie and H. Leung, ““A survey of combinatorial testing,” ACM Comput.
Surv., vol. 43, no. 2, pp. 1-29, Jan. 2011.

[6] S. K. Khalsa and Y. Labiche, “An orchestrated survey of available algo-
rithms and tools for combinatorial testing,” in Proc. IEEE 25th Int. Symp.
Softw. Rel. Eng., Nov. 2014, pp. 323-334.

[7]1 Q. N. Naveed, M. R. N. Mohamed Qureshi, A. Shaikh, A. O. Alsayed,
S. Sanober, and K. Mohiuddin, “Evaluating and ranking cloud-based
E-Learning critical success factors (CSFs) using combinatorial approach,”
IEEE Access, vol. 7, pp. 157145-157157, 2019.

[8] D.I.Borissova and D. Keremedchiev, ““Generation of E-learning tests with
different degree of complexity by combinatorial optimization,” J. E-Learn.
Knowl. Soc., vol. 16, no. 2, pp. 17-24, 2020.

[9] F. Vaandrager, “Model learning,” Commun. ACM, vol. 60, no. 2,
pp. 86-95, Jan. 2017.

[10] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87-106, Nov. 1987.

[11] B. Blaskovic, F. §k0p]janac—Maéina, and 1. Zakarija, “Discovering
E-learning process models from counterexamples,” in Proc. 41st Int.
Conv. Inf. Commun. Technol., Electron. Microelectron. (MIPRO), 2018,
pp. 0593-0598.

[12] A.K. Sarmah, S. M. Hazarika, and S. K. Sinha, ‘“‘Formal concept analysis:
Current trends and directions,” Artif. Intell. Rev., vol. 44, no. 1, pp. 47-86,
Jun. 2015.

[13] P. K. Singh, C. Aswani Kumar, and A. Gani, “‘A comprehensive survey on
formal concept analysis, its research trends and applications,” Int. J. Appl.
Math. Comput. Sci., vol. 26, no. 2, pp. 495-516, Jun. 2016.

[14] S. M. Dias, L. E. Zdrate, M. A. J. Song, N. J. Vieira, and C. A. Kumar,
“Extraction of qualitative behavior rules for industrial processes from
reduced concept lattice,” Intell. Data Anal., vol. 24, no. 3, pp. 643-663,
May 2020.

[15] J. Annapurna and A. K. Cherukuri, “Exploring attributes with domain
knowledge in formal concept analysis,” J. Comput. Inf. Technol., vol. 21,
no. 2, pp. 109-123, 2013.

[16] M. A. Bedek, M. D. Kickmeier-Rust, and D. Albert, “Formal concept
analysis for modelling students in a technology-enhanced learning set-
ting,” in Proc. 5th Workshop Awareness Reflection Technol. Enhanced
Learn. Conjunct, Toledo, Spain, vol. 1465, M. Kravcik, Ed., Sep. 2015,
pp. 27-33.

[17] G. Beydoun, ‘“Using formal concept analysis towards cooperative
E-learning,” in Knowledge Acquisition: Approaches, Algorithms
and Applications (Lecture Notes in Computer Science), vol. 5465,
D. Richards and B. H. Kang, Eds. Hanoi, Vietnam: Springer, Dec. 2008,
pp. 109-117.

52975

IEEE Access

F. Skopljanac-Matina et al.: Towards Automated Assessment Generation in e-Learning Systems

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]

[31]
[32]

[33]

[34]

[35]
[36]
[37]
[38]
[39]

[40]
[41]

G. Beydoun, “Formal concept analysis for an e-learning seman-
tic Web,” Expert Syst. Appl., vol. 36, no. 8, pp.10952-10961,
Oct. 2009.

U. Priss, “Using FCA to analyse how students learn to program,”
in Formal Concept Analysis (Lecture Notes in Computer Science),
vol. 7880, P. Cellier, Ed. Dresden, Germany: Springer, May 2013,
pp. 216-227.

G. J. Holzmann, The SPIN Model Checker: Primer Reference Manual.
Reading, MA, USA: Addison-Wesley, 2004.

1. Zakarija, F. §k0pljanac»Macina, and B. Blaskovic, “Automated simu-
lation and verification of process models discovered by process mining,”
Automatika, vol. 61, no. 2, pp. 312-324, Apr. 2020.

W. M. P. van der Aalst, Data Science in Action. New York, NY, USA:
Springer, 2016.

M. A. Almaiah and I. Y. Alyoussef, “Analysis of the effect of course
design, course content support, course assessment and instructor charac-
teristics on the actual use of E-learning system,” IEEE Access, vol. 7,
pp. 171907-171922, 2019.

D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault interactions
and implications for software testing,” IEEE Trans. Softw. Eng., vol. 30,
no. 6, pp. 418-421, Jun. 2004.

R.D. Kuhn, R. N. Kacker, and Y. Lei, ““Combinatorial testing,” in Encyclo-
pedia of Software Engineering, P. A. Laplante, Ed. Boca Raton, FL, USA:
CRC Press, 2010.

D. R. Stinson, Combinatorial Designs: Constructions Analysis. New York,
NY, USA: Springer-Verlag, 2004.

(2009). AllPairs. [Online]. Available: https://sourceforge.net/projects/
allpairs

(2021). Pict. [Online]. Available: https://github.com/microsoft/pict
(2020). Tcases. [Online]. Available: https://github.com/cornutum/tcases
(2005). Jenny. [Online]. Available: https://burtleburtle.net/bob/math/jenny.
html

(2016).ACTS. [Online]. Available: https://csrc.nist.gov/acts

B. Ganter, G. Stumme, and R. Wille, Eds., Formal Concept Analysis—
Foundations and Applications. Berlin, Germany: Springer-Verlag, 2005.
R. Belohlavek. (2008). Introduction to Formal Concept Analysis. [Online].
Available: https://belohlavek.inf.upol.cz/vyuka/IntroFCA.pdf

R. Wille, “Restructuring lattice theory: An approach based on hierarchies
of concepts,” Ordered Sets, 1. Rival, Ed. Dordrecht, The Netherlands:
Reidel, 1982, pp. 445-470.

B. Ganter and R. Wille, Formal Concept Analysis—Mathematical Founda-
tions Berlin, Germany: Springer-Verlag, 1999.

T. S. Blyth, Lattices and Ordered Algebraic Structures. London, U.K.:
Springer-Verlag, 2005.

(2009). Concept Explorer 1.3.
sourceforge.net/projects/conexp
A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts,
7th ed. New York, NY, USA: McGraw-Hill, 2020.

(2021). Sqlite3. [Online]. Available: https://www.sqlite.org/cli.html
(2021). SQLiteStudio. [Online]. Available: https://sqlitestudio.pl

F. Skopljanac-Macina, B. Blaskovic, and Z. Skocir, “Using formal con-
cept analysis for student assessment,” in Proc. ELMAR, Zadar, Croatia,
Sep. 2014, pp. 285-288.

[Online]. Available: https://www.

52976

FRANO SKOPLIANAC-MACINA (Member,
IEEE) received the M.S. degree in electrical engi-
neering from the Faculty of Electrical Engineer-
ing and Computing (FER), University of Zagreb,
in 2009, where he is currently pursuing the Ph.D.
degree in electrical engineering. He was an Affil-
iate with the Department of Electrical Engineer-
ing Fundamentals and Measurements, FER, from
2010 to 2015, where he has been the Labora-
tory Manager, since 2015. His research interests
include formal methods and automated assessment techniques in designing
advanced adaptive e-learning systems. He has been a member of the IEEE
Education Society since 2012.

IVONA ZAKARIJA (Member, IEEE) received
the B.Sc., M.Sc., and Ph.D. degrees from the
Faculty of Electrical Engineering and Comput-
ing, University of Zagreb, in 1993, 2011, and
2020, respectively. After graduation, she moved to
Dubrovnik and started to work with “ITI Comput-
ers.” In 1997, she changed employer and started
to work with “Nivel” Company. In 2000, she
was employed with the “Laus CC.” Since 2006,
she has been working with the University of
Dubrovnik, where she is teaching several courses in computing. She has pub-
lished 16 papers in scientific journals and in the proceedings of international
scientific conferences. Her research interests include design and building of
information systems, deep learning, artificial intelligence, data science, and
process mining. She is also a member of the IEEE Computer Society and Big
Data Community.

,‘.ﬁ

BRUNO BLASKOVIC (Member, IEEE) received
the B.Sc., M.Sc., and Ph.D. degrees in electri-
cal engineering from the Faculty of Electrical
Engineering and Computing (FER), University
of Zagreb, Zagreb, Croatia, in 1982, 1985, and
1996, respectively. In December 2003, he was pro-
moted to an Associate Professor. Since Decem-
) ber 1986, he has been working with the Depart-

ment of Electrical Engineering Fundamentals and
Measurements, FER. He published over 80 papers
in journals and conference proceedings. His current research interests include
formal methods, model checking, model transformations, business process
modeling, protocol and software synthesis, software testing, e-learning, intel-
ligent tutoring systems, satisfiability modulo theories (SMT), and network
reliability. He serves on the editorial boards of scientific journals and the
international program committee of numerous conferences. He is also a
member of ACM.

.
Nl

VOLUME 9, 2021

