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ABSTRACT Urban functional zones are considered significant components for understanding urban
landscape patterns in the socioeconomic environment. Although the spatial configuration of road networks
contributes to urban function delineation at the block level, the morphological uncertainties caused by
the road network structure in fine-scale urban function retrieval are ignored. This paper proposes an
adaptive network-constrained clustering (ANCC) model to map urban function distributions at a finer level.
By utilizing points of interest (POIs) to indicate independent functional places, the adaptive road configu-
ration with a multilevel bandwidth selection strategy is proposed. On this basis, a term frequency–inverse
document frequency-weighted latent Dirichlet allocation (TW-LDA) topic model is designed to delineate
urban functions from semantic information. Taking Futian District, Shenzhen, as a case study, the results
show an overall accuracy of approximately 77.10% in urban function mapping. A comparison of a block-
level mapping model, a non-adaptive network-based model and the ANCC model reveals accuracies of
53.10%, 59.20% and 77.10%, respectively, indicating the advantages of the ANCC model for improving
urban function mapping accuracy. The proposed ANCC model shows potential application prospects in
monitoring urban land use for sustainable city planning.

INDEX TERMS Adaptive, ANCC, fine-scale urban function zone, road-constrained, TW-LDA.

I. INTRODUCTION
Rapid urbanization processes have led to drastic socioeco-
nomic evolution [1], [2]. In the process of urban development,
the potential impacts and interactions of population, road,
social and economic activities have been revealed by many
studies [3], [4]. The significant socioeconomic changes have
improved transportation and have further led to the diversity
of urban functions such as residential, industrial, commer-
cial and sports areas [5]. Identifying these functional areas
and delineating their distribution characteristics are essential
to understanding urban spatial structures and guiding sus-
tainable city development [6]–[8]. Conventional approaches
to identify urban functions rely heavily on remote sensing
and land use data and professional surveying to delineate
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block-level urban functions [9]–[11], and these approaches
are limited by time and labor-consuming data acquisition.

The widespread availability of mobile positioning tech-
nology has led to opportunities to obtain large-scale geo-
tagged data that contain rich human activity information, such
as mobile phone signaling data, points of interest (POIs),
social media data, GPS positioning records and street view
images [12]–[14]. Geotagged data have been widely utilized
in urban function retrieval in previous studies. Jiang et al. [15]
demonstrated that Twitter density can represent population
density under certain conditions, thus reflecting the activities
of urban residents. Lloyd et al. [16] explored the spatial dis-
tribution of the urban retail industry by studying the Twitter
distribution. In addition, by utilizing reclassified POI data,
single functional areas and mixed functional areas have been
identified quantitatively [17]. Yunliang et al. [18] calculated
the overlap rate between a POI distribution with obvious
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category characteristics and clustering results and determined
the functions of urban functional areas.

Despite the achievements made by applying large-scale
geotagged data, disperse distributions that cause biases in
retrieving continuous urban functional zones have not been
considered. To solve this issue, Luo et al. [19] integrated user
trajectory data and density-based spatial clustering for noisy
applications (DBSCAN) to explore high-density regions in
space. Tang et al. [20] proposed a novel model, namely,
Detecting and Evaluating Urban Clusters, using an agglom-
erative hierarchical clustering method to detect urban clusters
based on the similarities in the daily travel space of urban resi-
dents. Tu et al. [21] proposed a new framework based on hier-
archical clustering integrating remote sensing imagery and
mobile phone positioning data to analyze urban functional
zones with landscape and human activity metrics. In addition,
they systematically integrated geotagged data distributions
and building morphologies to depict urban functional char-
acteristics. Spyrou et al. [22] proposed a tile-like partition-
ing algorithm to divide predefined geographical regions.
Yuan et al. [23] developed a topic modeling-based approach
to cluster segmented regions into functional zones by lever-
aging mobility and location semantics mined from latent
activity trajectories.

Based on the retrieved continuous urban functions,
the driving factors that change urban functional zones should
be considered to improve the retrieval accuracy. In fact,
road networks can effectively reflect the spatial heterogene-
ity of urban functions from the perspective of city mor-
phologies [24], [25]. Existing research has provided evidence
suggesting the significance of road networks in develop-
ing various urban functions [26]. Okabea et al. [27] pro-
posed a clustering method based on road network constraints
and verified that human mobilities are essentially limited
by traffic networks. Moreover, Ma et al. [28] proposed an
Epanechnikov-based kernel density estimation (KDE) with a
bandwidth selection strategy to extract road-constrained areas
of interest.

Despite the morphological characteristics of urban struc-
tures that road networks represent, the discrepancies of urban
functions supported by road networks are ignored. Previous
studies solely considered road networks as corridors con-
necting different functions of blocks and buildings, instead
of as independent spaces. In fact, in addition to transporta-
tion, road networks serve as a significant component in
various functions [29], [30]. For instance, Zhu et al. clas-
sified the areas around the road into different functions
based on the spatial-temporal patterns of urban mobility on
the roads. Thus, it is essential to retrieve network-based
functional zones based on urban structures. To accurately
depict the functional zones, an adaptive approach to retrieve
network-constrained urban functions is required.

In this study, an adaptive network-constrained cluster-
ing (ANCC) model is proposed to retrieve fine-scale urban
functional zones. First, the adaptive road configuration with
a multilevel bandwidth selection strategy is proposed to

delineate fine-scale zones. A term frequency–inverse
document frequency-weighted latent Dirichlet allocation
(TW-LDA) topic model is then proposed to delineate urban
functions. By utilizing POIs to indicate independent func-
tional places, the proposed ANCC model is applied in Futian
District, Shenzhen. The accuracy of the ANCC model is
further evaluated and compared with that of a block-level
mapping model and a non-adaptive network-based model.

The remainder of this paper is arranged as follows.
Section II describes the datasets and study area used in
this study. Section III introduces the overall framework and
methodology of the ANCC model and TW-LDA. Section IV
displays the experimental results. Section V evaluates the
model accuracy and compares the ANCC model with a non-
adaptive urban function mapping model. Section VI summa-
rizes the conclusions and future work of this study.

II. STUDY AREA AND DATA
The study area is in Futian District, Shenzhen, Guangdong
Province. Shenzhen is considered one of the national
economic centers and international cities in China and occu-
pies an important position in economic development, includ-
ing high-tech industry, financial services, foreign trade and
export, marine transportation and creative culture. FutianDis-
trict, the political and business center of Shenzhen, reflects a
significant variety and complex distribution of urban func-
tional zones.

This study area and the corresponding data sources
including POIs and road networks are shown in Figure 1.
In particular, both POIs and road network data were collected
from Gaode (available at: lbs.amap.com). Since POIs are
updated by Gaode at the minute level (lbs.amap.com/home/
advantage?active = data), the spatial occupation of data can
be ensured, which can reflect the spatial distribution of human
activities related to urban functions with high accuracy. In this
study, we collected a total of 132,584 POIs with accurate
location coordinates and detailed classification information.
Specifically, these POIs are classified into nine primary
categories such as educational, commercial and residential
classes; 68 secondary categories such as accommodation and
companies; and 217 tertiary categories such as Park Plaza
and industrial parks. From a visual inspection, one can find
that these POIs can cover the entire study area (excluding
the green land and water bodies, which are not accessible).
Moreover, the road networks collected from Gaode were pre-
processed by eliminating urban expressways and correcting
position deviation. Based on the correlation between various
types of roads and urban functional zones, freeways and
ramps are excluded. Finally, 2522 roads after preprocessing
were used in this experiment.

III. ANCC MODEL FOR RETRIEVING URBAN
FUNCTIONAL ZONES
In this study, an ANCC model is proposed to retrieve fine-
scale urban functional zones. The overall framework con-
sists of two components, the adaptive road configuration
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FIGURE 1. Study area and data sources.

and TW-LDA semantic function recognition, as shown
in Figure 2. First, the adaptive road configuration with a
multilevel bandwidth selection strategy is proposed to depict
urban zones. In particular, POIs are adaptively constrained
by roads based on different bandwidths that fit multilevel
street networks. A TW-LDAmodel is proposed to identify the
semantic functions corresponding to the urban zones. Each
semantic function is identified through the POI categories by
applying the TW-LDA model.

A. ADAPTIVE ROAD CONFIGURATION
To depict morphological characteristics affected by road net-
works, this section proposes an adaptive road configura-
tion approach with a multilevel bandwidth selection strategy.
The adaptive road configuration involves a road-constrained
KDE method, which is modified based on the traditional
KDE approach. Traditional KDE usually maps homoge-
neous spaces based on Euclidean distance or emphasizes the
constraint functions of road networks [31] and ignores the
uncertainties of zones caused by road networks. Since POIs
representing different urban functions are usually distributed
near the sides of roads, it is necessary to consider different
bandwidths in traditional KDE to depict POIs within road
zones.

To contend with this issue, a network-constrained KDE is
proposed based on the traditional KDE. Generally, the tradi-
tional KDE is defined as follows:

λ (x) =
n∑
i=1

1
h2
k
(
x − xi
h

)
(1)

FIGURE 2. Overall framework of the ANCC model.

where λ (x) is the KDE; x represents the location of POI;
xi represents the surrounding POIs within the bandwidth;
h is the attenuation threshold of the path distance (i.e., band-
width); n is the number of POIs whose distance from posi-
tion x is less than or equal to the bandwidth hh; and k(·) is the
kernel function. Among many kernel functions, the Epanech-
nikov kernel function is chosen because it shows potential
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to provide sufficient smoothing in the present independent
data. It improves delineating region boundaries with adaptive
bandwidths. The Epanechnikov kernel function is applied as
follows:

k
(
x − xi
h

)
=

3
4

(
1−

(x − xi)2

h2

)
(2)

From the above definition, one can find that traditional
KDE uses a fixed bandwidth and fails to depict the character-
istics of the road-network spatial distribution [32]. Consider-
ing the urban function-driven road networks, the limitations
caused by the traditional KDE can be summarized in the
following two aspects: (i) Due to the heterogeneous distri-
bution of roads, with dense road networks usually distributed
in central urban areas, the continuous urban areas generated
by traditional KDE could be dominated by those densely
distributed road networks, leading to a close and overlap-
ping distribution. (ii) Morphological characteristics cannot
be depicted accurately in residential and industrial areas in
which few roads are distributed. Examples of these areas indi-
cating specific urban functions are parks and manufacturing
districts, which are often located in small clusters away from
major roads. Accordingly, it is necessary to determine the
proper bandwidths to accurately identify spatial zones with
regard to different urban functions.

To address these challenges, the road network is catego-
rized into different levels based on the road densities in urban
space. The key consideration for obtaining the appropriate
road network density is to determine the search radius of the
road network density. By setting a large number of control
experiments, the search radius suitable for the experimental
area is determined to calculate the road network density.
Then, the Natural Breaks (Jenks) method is used to adaptively
classify the density intervals of road networks. The Natu-
ral Breaks (Jenks) data classification method is designed to
optimize the arrangement of a set of values into ‘‘natural’’
classes. This classification method seeks to minimize the
average deviation from the class mean while maximizing the
deviation from the means of the other groups. The average
deviation of road network density is defined as follows:

AD =

∑∣∣d − d̄∣∣
n

(3)

where AD is the average deviation of road network density;
d is the pixel value of each density; d̄ is the arithmetic mean;
and n is the number of pixels.
Based on the Natural Breaks (Jenks), the classification

results of road network density can be obtained. Then,
the coefficient of variation is used to set the appropriate
bandwidth for each classification. Because the dimensions of
each classification are different, the coefficient of variation
(CV), which is affected by both the dispersion degree and
the average value of the variable values, is used to measure
the relationship between the bandwidth of each classifica-
tion. The adaptive bandwidth based on road-network density

classification is defined as follows:

hi =
σi

µi
· α =

√∑ni
k=1(dk−d̄i)

2

ni

d̄i
· α (4)

where hi is the bandwidth of the road from the ith classifica-
tion; σi is the standard deviation of the ith classification; d̄i is
average density of the ith classification; ni is the number of
pixels in the ith classification; α is the calculation coefficient.
After measuring the relationship of each classification by
the CV, a large number of control experiments are set to
determine the value of α. After repeated experiments, setting
α = 5 is the most suitable for the experimental area. As a
result, the network-constrained KDE can adaptively set the
bandwidth according to the road network density to depict
urban zones with higher accuracies. The classification of
the adaptive bandwidth strategy and the bandwidth size set
at each level are determined by the variation in network
density of the experimental area. In other words, different
experimental areas can flexibly vary according to the density
distribution characteristics and complexity of the network.

The network-constrained KDE can effectively retrieve the
urban functional zones within the scope of road distribu-
tion but fails to capture POIs that are away from the road
networks. As a supplement, we extract POIs that are away
from the road distribution according to an adaptive bandwidth
strategy and obtain their KDE results through the traditional
KDE method. As a result, the urban functional zones that are
not significantly affected by road networks are retrieved.

The overall process of the adaptive road configuration
approach can be summarized as the following steps. (i) The
network-constrained KDE is applied to discrete POIs in space
to obtain the kernel density results near the road networks.
(ii) The remaining POIs are extracted to obtain the kernel
density results by traditional KDE. (iii) Since the KDE results
with network constraints and the traditional KDE results
obtained based on different processing methods cannot be
integrated directly, two KDE results based on pixels must be
normalized. On this basis, the contours of urban functional
areas are extracted by vectorization. The normalization for-
mula for the density value is expressed as follows:

δi =

n∑
i=1

(
Pi − Pmin
Pmax − Pmin

+
Ni − Nmin
Nmax − Nmin

)
(5)

where δi is the value of normalized KDE pixel i,Pi is the
traditional KDE value at pixel i, and Ni is the network-
constrained KDE value at pixel i.

B. TW-LDA TOPIC MODEL
Based on the spatial zones of urban functional areas obtained
by the adaptive road configuration approach, specific urban
functions must be identified among them. Considering urban
functional zones as independent units, the three-level textual
type of POIs is used as the basis for function identification.
In particular, because of the mixed urban functions in real
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cases, a small number of representative functions such as
medical care and education can be easily concealed by a
large number of commercial functions. To address this issue,
a TW-LDA topicmodel is proposed to set appropriate weights
for each type to improve the accuracy of function recog-
nition. First, a term frequency–inverse document frequency
(TF-IDF) model is used to determine the weights of
POI types. The text of all POI types in a urban functional
zone is set as the document, and the document set of all
city functional zones is set as the corpus. The weights of a
POI type increase with the frequency of their appearance in
the document but decrease with the frequency of the appear-
ance of the document that contains them in the corpus. The
TF-IDF is defined as follows:

TFIDF
(
Vij
)
=TF (Vi)× IDF (Vi) = tf ij × log

(
n

ni + a

)
(6)

where j represents the document of an urban functional zone,
tf ij denotes the frequency of the type of word Vi that appears
in document j, IDF (Vi) denotes the inverse document fre-
quency of the type of word Vi in the corpus using log

(
n

ni+a

)
,

n is the total number of documents in the corpus, ni is the
number of documents containing the type of word Vi in the
corpus, and a is the adjustment factor. Usually, a = 1 is set
to avoid a zero denominator. Because this experiment uses
POI type text to calculate the weight, some types are either
overly abundant or excessively sparse, so the weight is not
suitable, which reduces the accuracy of urban function recog-
nition results. Therefore, to account for weight inaccuracy,
we adjust the weight by adjusting a to obtain more realistic
recognition results. On this basis, the weight of a certain type
w is defined as follows:

weight (w) = TFIDF (w) (7)

Based on the calculated weights of each word indicating
a type, a latent Dirichlet allocation (LDA) model [33] with
the word weights is used to calculate the topic distribution of
representative functions and is defined as follows:

p (zi = k | z¬i,weight(w))

=
weight (t) n(t)k,¬i + βt∑V

t=1 (weight (t) n
(t)
k,¬i + βt )

×

∑W
d=1 (weight (d) · n

(k)
md,¬i + αk )∑K

k=1
∑W

d=1 (weight (d) · n
(k)
md,¬i + αk )

(8)

where W is the total number of words indicating types, K is
the number of topics, V is the number of words indicating
types without repetition, k is the topic variable, weight(w) is
the weight of a word of type w, n(k)md denotes the number of
words of type i assigned to topic k in the document m, ¬i
means that the influence of the current word is ignored in the
sampling process, and α and β are the hyperparameters of θ

and ϕ in the Dirichlet distribution, respectively. The distribu-
tion θof the ‘‘functional document topic’’ is as follows:

θm,k =

∑W
d=1 |weight (d)| · n

(k)
md + αk∑K

k=1 (
∑W

d=1 |weight (d)| · n
(k)
md + αk )

(9)

The function types are further identified based on the
results of the topic distribution of POI types, which is defined
as follows:

functionm,k = θm,k (10)

In the output results of functional zone documentm, words
indicating types with a probability higher than 0.07 and of
similar type in each topic were selected to infer specific
functions among topics, and those words indicating different
types in the topic were deleted. As a result, the topics with
the highest values of distribution probabilities were selected
as the target functions.

A comparative study is proposed to assess the accuracy of
the proposed TW-LDAmodel (compared with the block-level
mapping model and the non-adaptive network-based model).
Details are illustrated in Section V.A.

IV. RESULTS
A. SPATIAL RETRIEVAL OF URBAN FUNCTIONS
1) ADAPTIVE BANDWIDTH SELECTION BASED ON ROAD
NETWORK DENSITY
Since the traditional KDE with fixed bandwidth fails to
capture urban functional zones driven by road networks,
the adaptive road configuration approach with a multilevel
bandwidth selection strategy is proposed. The key issue of
the multilevel bandwidth selection strategy is the selection
of the bandwidths. Higher or lower values of bandwidths in
the network-constrained KDEmay lead to biases in retrieving
urban zones. To determine the target bandwidths, the relation-
ship between road network densities and bandwidth variation
must be investigated. Specifically, the selection of bandwidth
is determined by the appropriate road network density. The
key consideration for obtaining the appropriate road network
density is to determine the search radius. Comparative stud-
ies are proposed to explore the appropriate search radius,
as displayed in Figure 3. Although the smaller search radius
(h = 100 m or 150 m) can generate fine-scale morpholog-
ical patterns, patterns that are restricted to road networks
are discretely distributed (Figure 3(a) and (b)). Furthermore,
the larger search radius (h = 200 m or 250 m) cannot effec-
tively distinguish the road network densities within areas,
which are displayed in continuous patterns that have been
underfit (Figure 3(c) and (d)). The results indicate that higher-
density road networks tend to be associated with a search
radius from 150 m to 200 m to depict more accurate urban
zones. While a larger search radius can cause over-fitting
of discrete morphological patterns, a smaller search radius
leads to continuous morphological areas and cannot be used
to establish an adaptive bandwidth strategy.

Through comparative evaluations, a search radius of 170 m
is selected to fit the patterns in our experimental study,
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FIGURE 3. Examples of search radius selection.

as shown in Figure 4. On this basis, the road network densities
are calculated within 0-34, and the effective density range
is 3-34 after filtering out the invalid data. From a visual
inspection, one can distinguish that the road densities in
the eastern and southern areas are much higher; in contrast,
in areas far from the central areas, the roads are relatively
sparse with much lower road densities. Thus, adaptive band-
width selection strategies are required to fit the variation of
road densities. Based on the Natural Breaks (Jenks) method,
the classification number is set to 4, and the calculated road
densities within 3-34 are divided into four levels—3-9, 9-14,
14-19, and 19-35, as shown in Figure 5. The CV in the adap-
tive bandwidth calculation method to measure the bandwidth
relationship of each road classification is calculated based
on the above road-network density classification results. The
calculation coefficient α is determined by comparing the
results of bandwidth and road network constraints when it
is 1-10. The experimental results show that excessively small
or overly values will lead to biases of the network-constrained
KDE. Finally, α is determined as 5. Based on this approach,
the bandwidth of each road classification is set as 55 m, 80 m,
100 m and 125 m (Table 1). The spatial distribution of road
classification based on the four bandwidth levels is displayed
in Figure 6. As a result, each road is set up with an appropriate
bandwidth for applying the network-constrained KDE.

TABLE 1. Bandwidth strategy based on road network density.

2) NETWORK-CONSTRAINED ZONE RETRIEVAL
Based on the classified road network levels and the corre-
sponding bandwidths, the POIs and road network data are
applied in the adaptive road configuration. It should be noted
that POIs were divided into two parts: road-constrained POIs
and POIs deviating from roads. The POI deviation was pro-
posed according to the bandwidth of each road: POIs within
the bandwidth scope were considered as road-constrained
POIs, whereas the remaining POIs were considered devia-
tions from the roads.

For the network-constrained KDE, road-constrained POIs
are utilized and estimated in network-driven urban zones,
which are displayed in Figure 7. In particular, the KDE
values are higher in areas with a dense road network,
whereas the values in areas with a sparse road network are
much lower. The degree of estimation is consistent with the
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FIGURE 4. Road network density results with a search radius of 170 m.

FIGURE 5. Spatial distribution of road network density.

road distribution. However, as the scope of the network-
constrainedKDE is limited around these distribution patterns,
urban functions that are less significantly affected by road
zones cannot be captured.

To resolve this issue, traditional KDE is integrated in
the network-constrained KDE. Specifically, POIs deviat-
ing from the road networks (the remaining POIs after

extracting the near-road data) are utilized. As shown
in Figure 8, those POIs are mostly distributed in blocks far
from the road network or in large areas with few roads,
especially for those in residential and industrial areas. Tra-
ditional KDE with a fixed bandwidth of 85 m based on
those data is applied, in which the bandwidth is determined
based on the KDE parameter selection strategy proposed
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FIGURE 6. Road classification based on road network density.

FIGURE 7. Estimation results of network kernel density.

in this study. The estimated results are shown in Figure 9.
Consistent with the POI distribution, most of the traditional
KDE results are distributed in the areas far from the road
at the edge of the city and in the blocks in the downtown
area.

Since the estimated results of traditional KDE and
network-constrained KDE are calculated based on different
approaches, a normalization method was applied to integrate
traditional KDE and network-constrained KDE estimation.
As shown in Figure 10, both urban functional zones affected
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FIGURE 8. POIs without road network constraints.

FIGURE 9. Estimation results of traditional KDE.

by the road network and those solely influenced by POI
distributions are retrieved. The proposed adaptive road con-
figuration approach considers different scenarios of whether
functional zones are constrained by the road networks to
improve the accuracy of urban functional zone retrieval.

B. SEMANTIC RETRIEVAL OF URBAN FUNCTIONS
Based on the estimated urban functional zones, the types of
the corresponding POIs can be obtained. All types from POIs
in the urban functional zone are regarded as one document,
and all the document sets in this region are input into the
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FIGURE 10. Normalization of the traditional KDE and network-constrained KDE results.

TABLE 2. Examples of TF-IDF Weights.

TW-LDA model. Each POI contains three levels of types,
and the results of TW-LDA model are affected by three
levels of types. TF-IDF is used to calculate the weight of
the type, so the weight of the type varies in each urban
functional zone document. Usually, the adjustment factor
a = 1 is set to avoid a zero denominator. In particular,
in the extreme number distribution of some types in the
document set, it is more appropriate to adjust the weight of
the type by adjusting the adjustment factor a. In an urban
function zone document, the weights of all types are calcu-
lated, and examples are displayed in Table 2. The weight of
‘‘Medical’’ in level 1 is 0.28, which is much greater than that
of ‘‘Commerce’’ with the weight of 0.09. This result indicates
that this weighting strategy shows the potential of eliminating
the weighting allocation biases caused by large quantities
of specific textual information classes (i.e., ‘‘Commerce’’ in
this example), which helps improve the accuracy of function
identification.

After the TF-IDF weights of words indicating types were
obtained, all documents extracted from POI textual type were
applied in the LDA model based on the calculated weights.
The number of topics k = 9 was determined according to

the number of urban function classes. In the output results of
each functional zone document, words indicating types with
a probability higher than 0.07 and similar city functions in
each topic were selected to infer specific functions among
topics, and those words indicating different urban functions
in the topic were deleted. As a result, the topics with the
highest values of distribution probabilities were selected as
the target functions. The urban function classification results
within urban zones are shown in Figure 11.

V. DISCUSSION
A. MODEL VALIDATION
A gridding method was utilized to verify the urban functional
zone classification results. The study area was divided into
grid cells with a resolution of 50 m, and the classification
results of these grid cells were further validated based on
high-resolution remote sensing images, Internet maps and
street view images. In particular, noise grids such as road
and open space were removed to effectively extract the target
grids. Based on the data of remote sensing images and street
view images, the outline and function of urban functional
zones are evaluated as accurate or inaccurate. When multiple
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FIGURE 11. Identification results of urban functional areas.

FIGURE 12. Shenzhen Art School verification.

types are mixed in one element, we mainly rely on the
street view image for verification. Street view images are
collected from the field, providing 360-degree panoramic
images that can reflect the actual function types comprehen-
sively. In the mixed function, the identification of the main
function depends on the information contained in the street

view image, such as shop signboard information and the
location of facilities, which can help to effectively identify
the main function. In particular, it is very challenging to
identify the main functions in residential-commercial mixed
functions. We take the location of mixed function pixels in
street view images as an important basis for identification.
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FIGURE 13. Shenzhen Sports Center verification.

FIGURE 14. Shenzhen Children’s Paradise verification.

For example, mixed function pixels in residential communi-
ties with densely distributed residential buildings are often
identified as residential buildings, while those in commercial
areas with densely distributed shops and restaurants are iden-
tified as commercial buildings.

The model validation is divided into two parts: (1) identi-
fying mixed function zones in specific areas and (2) assessing
the overall accuracy of the entire study area based on stratified
random sampling.

In the first part, four sites, Shenzhen Art School, Shen-
zhen Sports Center, Shenzhen Children’s Paradise andXiasha
Cultural Square, were selected for urban functional zone
verification. The verification areas were divided into grid
cells, as shown in Figures 12 (c)-15 (c). Data utilized for
validation including internet maps, remote sensing images
and street view images are displayed in Figures 12 (a)-15 (a),
Figures 12 (b)-15 (b) and Figures 12 (d)-15 (d), respectively.

The verification indicates that the selected sites are correctly
identified based on the proposed ANCC model. In particu-
lar, Figures 12 shows that the roads around Shenzhen Art
School are sparse while the textual information in POIs
is rich, which indicates that the distribution patterns of
both road networks and POIs were associated with the
improvement in classification accuracy. Figures 15 shows
that Xiasha Cultural Square contains denser roads and
near-road POIs, indicating that urban functional zones are
significantly restricted by road networks. By utilizing the
TW-LDA model, Children’s Paradise and the sports center
can be accurately identified in areas with highly mixed POIs.
In addition, Figures 13 and 14 show that the park area
and cultural area can be accurately classified among
commercial-function POIs, revealing that textual information
biases can be eliminated by applying the proposed TW-LDA
model.
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FIGURE 15. Xiasha Cultural Square verification.

FIGURE 16. Gridding of Identification results.

The verification results of the four sites are shown
in Table 3. The accuracies of Shenzhen Art School, Shen-
zhen Sports Center, Shenzhen Children’s Paradise and
Xiasha Cultural Square are 86.49%, 76.16%, 77.30% and
81.17%, respectively. This result indicates that the proposed
ANCC model can be effectively utilized for urban func-
tional zone identification when mixed urban functions are
encountered.

In the second part, the entire experimental area is divided
into grids of 50∗50 m, and 12,371 effective grids are obtained
for validation, as shown in Figure 16. Based on stratified
random sampling, different numbers of grids are selected
based on the proportion of the classified urban functions.
The verification results are shown in Table 4. It can be
seen that the accuracies of urban functions, including resi-
dence, commerce and business functions, are relatively lower
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FIGURE 17. Urban function results: (a) block-level model; (b) non-adaptive network-based model;
(c) ANCC model.
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FIGURE 17. (Continued.) Urban function results: (a) block-level model; (b) non-adaptive network-based
model; (c) ANCC model.

TABLE 3. Validation results for four selected validation areas.

because they are often mixed together, yielding accuracies
of 71.10%, 74.03% and 75.60%, respectively. The urban
functions of park, culture and scenery achieve accuracies of
91.91%, 85.00% and 88.24%, respectively. Both education
and medical urban functions reached an accuracy of 87.50%.
In addition, the accuracy of the restaurant urban function
reached 91.42%. The results show that the proposed ANCC
model can effectively identify various urban functional zones.

B. MODEL COMPARISON
To evaluate the proposed ANCC model, two comparative
models, the block-level model and non-adaptive network-
based model, are proposed. In the block-level model, road
networks are utilized to delineate urban functional zones. The
non-adaptive network-based model applies fixed-bandwidth
KDE that ignores the effect of road network restrictions.

Based on the same experimental area and random stratified
sampling, the urban functional zone results of the three mod-
els are displayed in Figure 17.

The classification results of the block-level model are
shown in Figure 17 (a). Since this approach considers road
networks as zone boundaries, the delineated spatial units con-
tain more mixed urban functions and fail to capture the road
structures. Figure 17 (b) displays the classification results
of the non-adaptive network-based model. The fixed band-
widths usually generate urban functional zones in high-road-
density areas and ignore those in sparse-network areas. For
example, downtown areas contain high-density roads and are
identified as continuous urban zones without restrictions to
road structures. Moreover, most urban zones were classified
as commercial functions because of the biased allocation
of POI textual information. As residential and industrial
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TABLE 4. Validation results for nine functions.

TABLE 5. Accuracies of the three models.

functions are far from the road network, solely using network-
constrained KDE leads to biases in extracting functional
areas in areas without roads. Figure 17 (c) shows the urban
functional zone results classified by the ANCC model. The
adaptive bandwidth strategy makes it possible to flexibly
identify functional areas by integrating POI aggregation and
the road distribution.

To assess the classification accuracies of the three models,
the validation sites selected from the above section were
utilized. As shown in Table 5, the overall accuracies of the
block-level model, non-adaptive network-based model and
ANCC model are 53.10%, 59.20% and 77.10%, respectively,
revealing that the accuracies of the proposed ANCC model
are approximately 24% and 17.9% higher than those of the
block-level model and non-adaptive network-based model,
respectively.

VI. CONCLUSION AND FUTURE WORK
This paper introduces an ANCC model for urban func-
tional zones. By utilizing POIs to indicate independent func-
tional places, an adaptive road configuration approach with
a multilevel bandwidth selection strategy is proposed to
capture network-constrained morphological characteristics.
A TW-LDA topic model is then designed to delineate urban
functions from POI textual information. The proposed ANCC
model is further evaluated by a comparison with the block-
level model and non-adaptive network-based model. Taking
Futian District, Shenzhen, as a case study, urban functional
zones determined by this model show an accuracy of approx-
imately 77.10%, which is approximately 24% and 17.9%
higher than those of a block-level model and non-adaptive
network-based model, respectively.

The proposed ANCC model improves the accuracy of
the traditional urban zone methods. However, limitations
remain in the current research. The proposed ANCC model
relies heavily on the spatial distribution of the road net-
work. Missing road network data and deviations can lead to
biases in functional zones. Moreover, urban functions that are
distributed in the form of mixed functions can result in inac-
curate identification. The limitations in the semantic infor-
mation of POIs also lead to drawbacks in fully representing
the human activities related to urban functions. In addition,
road network types and accessibility have significant impacts
on urban function allocation [34]. Different types of roads,
such asmain roads, auxiliary roads and community roads, can
exhibit various constraint effects on urban zones. In future
work, we will try to explore the heterogeneous patterns of
road networks and incorporate multisource semantic data to
improve urban functional retrieval accuracies
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