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ABSTRACT The landing point of a saccade defines the new fixation region, the new region of interest.
We asked whether it was possible to predict the saccade landing point early in this very fast eye movement.
This work proposes a new algorithm based on LSTM networks and a fine-grained loss function for saccade
landing point prediction in real-world scenarios. Predicting the landing point is a critical milestone toward
reducing the problems caused by display-update latency in gaze-contingent systems that make real-time
changes in the display based on eye tracking. Saccadic eye movements are some of the fastest human
neuro-motor activities with angular velocities of up to 1,000°/s. We present a comprehensive analysis of the
performance of our method using a database with almost 220,000 saccades from 75 participants captured
during natural viewing of videos. We include a comparison with state-of-the-art saccade landing point
prediction algorithms. The results obtained using our proposed method outperformed existing approaches
with improvements of up to 50% error reduction. Finally, we analyzed some factors that affected prediction
errors including duration, length, age, and user intrinsic characteristics.

INDEX TERMS Saccade, eye movement, gaze-contingent, recurrent neural networks, LSTM, fine-grained

learning.

I. INTRODUCTION

Gaze-contingent displays [1] have been used in video stream-
ing [2], [3], robot-assisted surgery [4], human-computer
interfaces for new virtual reality environments [5], reading
research [6] and simulation of impaired vision [7], [8], among
others. These systems allow researchers to investigate a vari-
ety of visual phenomena, including eye movement guidance
in reading, stability of vision, visual search strategies, and
scene perception. Due to data transmission, image process-
ing, and data display preparation, all systems have an updat-
ing latency of at least 10 ms [9] to 12 ms [10] that introduces
an updating error (see Figure 1).

Saccades are very fast eye movements made between
phases of fixation which bring the image of the region of
interest to the fovea, the small (1 to 2°) retinal region with the
highest resolution. During typical viewing, we make about
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three saccades per second. Saccades are one of the fastest
muscle movement, up to 1,000°/s (peak angular velocity).
Saccades have short durations, lasting about 15 to 200ms,
with the duration closely tied to the length (amplitude) and
to the peak velocity. While the common perception is that
saccades are ballistic eye movements that are not modified
during flight and have a straight path, this is often not the
case [11]. Since saccades are fast, due to the unavoidable
latency of gaze-contingent systems (that are intended to
update displays according to gaze location), the gaze is no
longer at the measured location by the time the display can
be updated.

Saccades are responses of the visual system mainly to
visual stimuli. One approach to predicting the next saccade
landing point is to analyze the visual scene for the most likely
new region of interest. These visual salience models have
improved over recent decades [12]. The computations for
visual salience may be challenging for a real-time application
and a scene that is in motion. Another limitation of the visual
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FIGURE 1. An illustration of system latency in which the virtual arm (on
display) is shown in an earlier location of the real arm as the arm was
extended. The large television (Vizio M80-D3) was running at 60Hz frame
rate. The system latency was about 30ms, which is low for a digital
display [10].

salience approach is that such models have not been shown to
be able to predict the timing of saccade initiation, so could not
inform the timing of the change of a gaze-contingent display.
As an alternative approach, we propose using the early part
of a tracked saccade to predict the landing point. Such an
approach is agnostic to visual stimuli, employing saccade
dynamics alone.

Modelling saccade dynamics is challenging, as saccades
may not be ballistic or straight [11]. The relationship between
saccade amplitude and maximum velocity (the saccadic main
sequence) was first described by Bahill et al. [13]. Longer
saccades have been modeled with lognormal functions, while
Gaussian functions [14], or compressed exponential func-
tions [15] may be better for shorter saccades. Various models
have been proposed or used to predict saccade amplitude,
direction or trajectory, including mirroring the data points
before the peak velocity [14], the main sequence [16], [17],
Kalman filters [18]-[20], a compressed exponential func-
tion [15], a Taylor series [21], and a skewed Gaussian func-
tion [22]. Saccade prediction could improve the experience
with gaze-contingent displays [15], [18]-[21].

Each saccade landing point determines the new fixa-
tion or gaze location, with that object being imaged at the
fovea. Prediction of landing point may reduce problems due
to the system-update latency of gaze-contingent displays,
as the display could be updated at the predicted saccade land-
ing point while the saccade was in flight [22]-[26]. Due to the
speed of saccades, vision is very poor during the saccade [27],
so an update is unlikely to be noticed. Previous approaches
to predicting saccade landing location include polynomial
fitting [24], Recurrent Neural Networks (RNNs) [25], and
velocity profile fitting [22]. Here we present a new method
for landing-point prediction.

Figure 2 shows an example of a measured saccade path
captured during natural viewing of a video clip. The fig-
ure shows the path when the region of interest changed from
stimulus A (the man) to stimulus B (the woman). In saccade
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landing point prediction based on eye tracker data, the predic-
tion is performed every time a saccade starts. The goal is to
predict the target gaze position (defined by the landing point
of the saccade) using the first coordinates provided by the eye
tracker. The prediction is performed using exclusively the eye
tracker data (i.e. the stimuli are unknown). The landing point
prediction can be updated with every new position provided
by the eye tracker. The figure illustrates some of the main
challenges associated with saccade-landing-point prediction
including: i) nonlinear trajectory of the movement; ii) mea-
surement noise of the eye tracker; and iii) nonlinear velocity
profiles (e.g. the distance between data samples during the
first 10ms and the last 38ms varies). Figure 3 illustrates the
target gaze position (horizontal axis only), the delay intro-
duced by the hardware, and the prediction of the landing point
(horizontal coordinate) obtained with the proposed prediction
updated every 10 ms.

Among the disruptive technologies of last years, Deep
Learning (DL) has become a thriving topic [28]. The increas-
ing volumes of available data and the increased computa-
tional power are used to model complex problems in terms
of a hierarchy of simpler processing units. Data-driven learn-
ing methods has allowed advances in many fields such as
Computer Vision [29], Speech Recognition [30], and Natural
Language Processing [31].

Recurrent Neural Networks (RNN) are architectures espe-
cially useful when modeling sequences [32]. The number
of applications of RNNs is large and it includes model-
ing sequences of data with very different natures such as
handwritten-signature recognition [33], [34], audio process-
ing [30], [35], and epilepsy [36]. RNN architectures incor-
porate dynamic temporal relationships by self-connected
units (i.e. recurrent connectivity). This connectivity serves
to incorporate temporal context into the learning process.
The context can be passed through units or stored in specific
memory units as an internal state. However, traditional RNN
are not capable of maintaining this contextual information for
long term temporal relationships. This problem is known as
vanishing gradient problem [37]. Long Short-Term Memory
(LSTM) [38] was proposed trying to solve the vanishing
problem. LSTM networks incorporate specific memory units
to model long-term temporal relationships.

A loss function is used to guide the learning process
of data-driven approaches. Choosing the loss function that
best fits the modelling task at hand is critical. The num-
ber of loss functions in the literature is large. Among the
different learning strategies, fine-grained learning is aimed
to distinguishing sub-categories inside a primary category.
Fine-grained learning merges sub-ordinate patterns allowing
improved classification [39] and regression models [40].

The main contributions of our work are:

« A new saccade landing point prediction method based

on LSTMs and a fine-grained learning strategy.

« A comprehensive analysis of the performance over more

than 200,000 saccades from 75 participants acquired
during viewing video. This analysis includes the effects
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FIGURE 2. Landing point prediction from a 10 ms sequence (small white circles) from a real saccade movement acquired with an EyeLink 1000 eye
tracker (1,000Hz). The trajectory of the 49ms saccade is represented by the Cartesian coordinates of each of the samples obtained from the eye tracker
(small white circles and squares). The gaze positions are in the region of interest of the viewer, with the fovea represented by the colored circles, each
with a diameter of 2.5°. Note that prediction is performed independently of the stimuli (i.e. video frames are not used in the prediction).
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FIGURE 3. Gaze position (blue) during one left-to-right saccade. Updating
of a gaze-contingent stimulus is shown for simple updating which was
delayed by the system latency (green line) on an iMac Intel Core i7 (60 Hz
display) connected to an Eyelink 1000. The red line used our proposed
method that predicted the landing point of the saccade and moved the
stimulus to the predicted landing location so that it was visible
immediately on saccade landing. The approach assumes that the stimulus
is not visible during a saccade (“saccadic suppression”).

of covariates including user-dependent (e.g. neuromo-
tor physiognomy) and task-dependent (e.g. number of
samples available to make the prediction, length of the
saccade) characteristics.

o Comparison with state-of-the-art approaches [24], [25].
The experiments demonstrate the superior performance
of the fine-grained learning approach in comparison
with traditional learning functions. The results obtained
using our proposed method outperformed existing
approaches with improvements ranging from 20% to
50% error reduction.
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The rest of this paper is organized as follows: the end
of Section 1 presents the related works. Section 2 describes
the saccade landing point prediction approach, the learning
strategy, and the database used for the experimental proto-
col. Section 3 reports the experiments and results. Finally,
Section 4 summarizes the conclusions.

A. RELATED WORKS

There have been previous efforts on predicting the saccade
landing point from eye tracker data [22], [24]-[26]. The
method used in [24] was based on polynomial fitting trained
to predict displacement and angle of the saccade. The results
reported in [24] suggested that it is possible to predict the
landing point of saccades and its potential to improve gaze-
rendering systems. The method in [22] was based on veloc-
ity profile prediction, using the close relationship between
velocity and amplitude [13]. They proposed fitting a Gaussian
velocity function to predict the amplitude of the saccade.
Both studies [24], [22] used eye-movement data obtained
from non-natural viewing conditions, with saccades made to
pre-defined visual stimuli. The prediction of saccade land-
ing point using RNNs was proposed in [25], [26] where
researchers evaluated Long Short-Term Memory Networks
(LSTM). The results in [25] demonstrated the capacity of
these networks to model the saccade movement and outper-
form function-fitting approaches in natural viewing. These
approaches try to exploit the predictable characteristics of the
oculomotor system. The aim is modeling the movement using
only the early part of the saccade.

Asnoted above, a potential alternative approach uses visual
attention, in which the goal is to predict group behavior
or typical behavior of people within a group [12]. These
methods are usually aimed to model mid-term user behavior
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rather than individual saccade movements. Visual attention
models can be divided into two categories: i) Static saliency
maps prediction based on static fixations [41]-[44]; and
ii) Dynamic saliency maps prediction incorporating the tem-
poral sequence of fixations [45]-[47]. Itis not clear that visual
attention models will be able to provide the timing of saccade
events at the individual level or to handle situations when
there are two equally salient new locations (as in Figure 2)
that produce bimodal gaze distributions (e.g. Figure 1
in [48]) as required for gaze-contingent and virtual-reality
systems.

Il. MODELING SACCADIC EYE MOVEMENTS
A. NATURAL VIEWING DATABASE
Data was drawn from a shared database [49]. It comprised
the gaze of 75 human participants (37 female, 38 male) with
normal sight who participated in studies approved by the
Institutional Review Board of the Schepens Eye Research
Institute and were in accordance with the Declaration of
Helsinki (Code of Ethics of the World Medical Association).
Participant screening included self-reported ocular health,
measures of central visual function (visual acuity and con-
trast sensitivity), and evaluation of central retinal health and
fixation stability (retinal imaging using a Nidek MP-1, Nidek
Technologies, Vigonza, Italy or an Optos OCT/SLO, Marl-
borough, MA, USA). Participants had visual acuity of 6/7.5
(0.10 logMAR) or better, letter contrast sensitivity of 1.67 log
units or better, no evidence of retinal defects and steady
central fixation.

Participants either watched:

1. 40to 46 of 206 thirty-second “Hollywood’” video clips.
Those included a variety of genres and depicted activ-
ities. The genres included nature documentaries (e.g.,
Food, Inc, The March of the Penguins), cartoons (e.g.,
Cloudy with a Chance of Meatballs, The Simpsons
Movie), and dramas (e.g., Stardust, The Stepfather).
Participants were instructed to watch each video clip
“normally, as you would watch television or a movie
program at home” and then to describe the contents
of the clip [50], [51]. This group of 62 participants
contributed 108,640 saccades.

2. two to five 30-minute movie clips (Bambi, Flash
of Genius, Inside Job, Juno, and Kpax). This group
of 14 participants (one was also in the first group)
contributed 110,695 saccades.

A detailed description and additional information about the
database can be found in [49].

Figure 4 presents the database statistics for duration and
length of the saccades, and age of the participants. As we will
see in the experimental section, these factors are important
to determine the prediction error. The average duration was
34 milliseconds, while average length was 5.8 degrees. The
average age of the participants in the database was 54 years
old with similar number of participants younger and older
than 60 years old.
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FIGURE 4. Descriptive histograms showing the duration and length
(amplitude) of the 219,335 saccades, and the ages of the 75 participants.

B. SACCADE DETECTION

Gaze was tracked with an EyeLink 1000 infra-red video-
based eye tracker (SR Research Ltd., Mississauga, ON,
Canada) at a sampling rate of 1,000 Hz while participants
viewed a 27" display (60 x 34 cm) from 1 m for a 33 x 19°
potential viewing area. Using the method described in [21],
219,335 saccades were detected off-line. Raw data' were

n this work, raw data refers to the data directly provided by the Eye
Tracker.
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FIGURE 5. Saccade landing point learning algorithm was based on three loss functions: £; was obtained as the Mean Square Error (MSE) between the
Prediction (P) and the Target function (T); £, was obtained as the Cross Entropy (CE) between the discretized Prediction (P) and the discretized Target
(T); finally, £5 was obtained as a linear combination of £, and £,. FC = Fully connected layer.

used to develop and test the algorithms. EyeLink’s online
data parser was used to identify and remove blinks. Periods
surrounding the missing data were removed if the speed was
>30°/s. Missing data for blinks were replaced by interpola-
tion using cubic splines. Before saccade detection, the raw
data was smoothed with a 3rd-order Savinsky-Golay filter
with a window size of 15. This smoothing made saccade
detection more reliable. Speed was calculated as the first
derivative of the eye position with respect to time. Saccade
commencement was signaled by speed >30°/s for at least
10 ms. Saccade completion was signaled by speed <30°/s.
Saccades were restricted to: (1) <40°, as this was approx-
imately the maximum diagonal dimension of the display;
and (2) >1° in amplitude and 15 ms in duration to exclude
microsaccades. Additional restrictions of an initial speed
<0.075°/ms, terminal speed <0.3°/ms, and removal of sac-
cades with a velocity at first quartile of duration <0.15 peak
velocity, removed eye movements with uniform but unrealis-
tically low velocity profiles during their initial phase, which
may have been pursuit eye movements. The smoothed data of
the saccades that were identified using the above procedure
were then replaced with the raw data. The rationale was that
areal-time algorithm would have access to raw data, thus our
input was realistic.

C. SACCADE LANDING POINT PREDICTION BASED ON
FINE-GRAINED LEARNING STRATEGY

Saccades are complex neuromotor eye movements involving
six muscles per eye, acting in a coordinated manner in a
very short time. The aim of a saccade lading point predic-
tion algorithm is to estimate the final foveated region using
the first samples of the saccade obtained by the eye. The
landing point is defined according to: (i) prediction model
(LSTM Neural Network in our approach) and; (ii) input data
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provided by the eye tracker. The length, duration, and cur-
vature of the sequence varied depending on the oculomotor
setup of the movement. To model the non-monotonic trajec-
tories of the saccade, we update the prediction every Sms with
new data provided by the eye tracker. The problem of the
latency of gaze-contingent systems will be partially solved
if the prediction is sufficiently accurate early in the saccade
(e.g. first 15ms).

In addition to our proposed approach, we have evaluated
different learning strategies to model saccades. Figure 5
shows our learning algorithm, which can be summarized in:

1) TARGET FUNCTION (T)

We evaluated two different strategies based on three Tar-
get functions (Tp, T2, T3). The first strategy consisted of
modelling the Cartesian coordinates of the landing point:
T1 = (xum, ym). The output of the network (xz, y;,) was direct
prediction of the position of the landing point. The second
strategy included the training of a specific network for each
of the Target functions (T», T53). The first network was trained
to predict the angle/direction of the saccade movement (T =
«), while the second network was trained to predict the
displacement (T3 = d). The output of both networks was
combined with the initial points (x1, y1) to obtain the landing
position (x, = x1 +d cosa,yr, =y, +dsinw).

2) LOSS FUNCTIONS (L)

Inspired by the learning strategy proposed in [40] we defined
three loss functions. The first loss function (L) performed a
regression loss trying to obtain a fine prediction of the landing
point. The LSTM blocks were connected to a dense output
layer with Gy units (G = 2 for Ty, G; = 1 for T>_3) and
linear activation. The loss function was calculated as the [°
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norm between the Target and Predicted distributions:
LiP,T)=|T-P| (1

The second loss function (£;) exploited the stability of
the training procedure based on a softmax layer (categorical
cross-entropy loss). The Target function (T) was discretized
(’i‘) in G classes, and the loss function was calculated as:

£ (BT =~ 3 tog (B) o
c=1

where G, was the number of classes for each Target function
(G, = 64 for landing point Ty, G» = 32 for displacg—
ment and angle T>_3), log was the natural logarithmic, T,
was a discrete label associated to class ¢, and 130 was the
predicted probability for the class c. For the discretization,
the screen was divided into a 64 cells grid and each landing
coordinate was replaced by the index of the nearest cell (see
Figure 5). The displacement and angles were discretized into
32 equidistant values (from O to m for angle, from 0.1 to
40 degrees for displacement).

Finally, the third loss function (£3) was calculated as a lin-
ear combination of previous ones with a weighting parameter
B (empirically set to 0.7):

L3=L1+BL, (3)

3) ARCHITECTURE OF THE NETWORK

Different architectures were evaluated during the experi-
ments. The number of layers was chosen to maximize the
prediction accuracy for the minimum number of parameters
possible. The final neural network architecture was based
on two LSTM hidden layers, and a fully connected dense
layer with a linear activation (T) and softmax activation (T).
The number of units of the output dense layer (G;) varies
depending on the loss function £; and the target function (see
loss function explanation and Figure 5).

4) TRAINING PROCEDURE
As gaze was acquired at 1,000Hz, we obtained one sample
every lms. Throughout the paper we use time units to refer to
the available samples. We trained six models that varied in the
time available to make the prediction. The six models were
trained to predict the landing point from given sequences with
only the first 10ms, 15ms, 20ms, 25ms, 30ms or 35ms. The
proposed architecture was trained using the Cartesian coor-
dinates of the training saccades, according to the following
steps:
a. Each of the saccade training sequences (x,y’)
with length M’ were truncated with length N =
10, 15, 20, 25, 30, 35) depending on which of the six
models was trained. Zero padding was applied when
M'<N.
b. The target function T was chosen depending of the
output to be modeled: landing coordinates (T =
(x,"w, yfw)), angle (T, = ab), or displacement

(Ts = dV).
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c. The loss function was chosen depending of the learning
strategy: mean square error between Prediction and
Target (L1); cross entropy between discretized values
of Prediction and Target (£7); linear combination of
both losses (£3).

d. The architecture of the network was built with two
LSTM layers (each consisting of 32, 64, or 128 units
depending of the setup evaluated, see Table 1) and
a dense layer (G units with linear activation for Ty,
and softmax activation for T, and T3). Additionally,
we evaluated both forward and bidirectional learning.

e. The truncated training sequences (X', y') and the target
output T were used to train each of the six models
(different values of N). All LSTMs were trained using a
Backpropagation algorithm with Adam optimizer, and
a maximum number of 60 epochs.

5) PREDICTION OF LANDING POINTS

For a given a saccade sequence, the first prediction was
provided from the first 10ms and updated every 5ms using
its corresponding model and the samples available to make
the prediction. The (x/, y) coordinates of the saccade were
used as input of the trained model (truncated to the nearest N)
and the output of the network was provided as the predicted
landing point (xi, yi).

Ill. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL PROTOCOL

The experimental protocol used to train the models was based
on an open-set setup. The participants employed to train the
saccade prediction models were not used to evaluate such
models. The database was split into training (80% of the par-
ticipants available in the dataset) and testing set (remaining
20% of the participants). These sets were chosen randomly,
and the process was repeated ten times. The performances
obtained from all ten experiments were averaged to provide
the results. Each user (i.e. individual) contributed to the
test set with a different number of samples (i.e. saccades).
To avoid a biased result, the prediction error was first cal-
culated individually for each user, and then averaged for all
users in the test set.

The experiments include nine different approaches defined
by the different learning strategies proposed in Section 2.2,
plus three baseline approaches published in previous
works [24], [25]:

o Polynomial Fitting [24]: this method was one the first
approaches of saccade-landing-point prediction in the
literature. The authors modelled the amplitude of the
saccade as a polynomial problem. The direction was
estimated from the samples available for the predic-
tion (angle between first and last saccade sample). The
training method was based on a polynomial fitting
that minimized the error between the prediction and
the real landing point. To guarantee a fair comparison,
we applied the proposed approach to the training data
available in our dataset.
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TABLE 1. Performance of the different approaches (standard deviation in parentheses). The error rates are provided for saccades with length (E4) under

5 degrees, under 15 degrees, saccades larger than 15 degrees, and average error for all saccades. The errors were calculated as the average of the six

errors obtained for the six models trained (N = 10, 15,..., 35). Bi = Bidirectional layers, T = Target, E = Average Prediction Error, ET = Averaged Execution

Time in milliseconds for a single prediction (input sequence with N = 10 coordinates).

Approach | Ref. | Method T Bi | Hid. Un. | #Param* | Loss Ea<s Ea<is Ea>15 Ean ET
Baseline [24] | Polyfit - - - 18 - 1.870.13 | 234017 | 843035 | 3.62021) | 0.1
A [25] = FFNN | xp,yy | no | 32x32 2K Ly 139009 | 17101, | 650031 | 187015 | 4.5
B - RNN | Xy, Vi no | 32x32 2K Ly . 138000 | 170010 | 648030 | 185015 | 45
C [25] | LSTM | xp, Y . no 32x32 13K Ly . 1.37008) | 1.680.10) | 632030 | 1.7100.1) . 4.6
D - LSTM a,d | no | 32x32 13K L, 135000 | 1.92012 | 7.58042 | 2.34010 | 4.6
E - LSTM | xp,Vy | no | 32x32 15K Ly 124006 | 146008 = 5.66026 | 1.5401s | 4.8
F - LSTM | xp, Yy | no | 64x64 54K L 123001 | 145008 | 557026 | 151013 | 52
G - LSTM | xp,Vy | no | 128x128 207K L 12407 | 14500 | 54905 | 15201 | 5.3
H - LSTM | xp, Yy . yes | 32x32 25K L 12907 | 1.51010 | 5.72027 | 1.6501s | ss

*The number of parameters of the model is calculated for input sequences with N=10 coordinates.

o Approach A - Feed Forward Neural Networks (FFNN)
[25]: FFNNs are the basic architecture of Neural
Networks and have been demonstrated to be useful
modeling nonlinear functions [52]. This approach was
composed of two hidden layers (32 units and ReLu
activation of each), and an output layer with two units
(i.e. coordinates of the landing point). The (xi, y) coor-
dinates were used as the input of the model.

o Approach B — RNN: A RNNs is an architecture trained
to model temporal relationships in machine learning
problems. The (x, y’) coordinates were used as the input
of the model.

o Approach C — LSTM and Coordinate Regression [25]:
A LSTM is a RNN architecture specifically designed
to solve the vanishing problem using memory units.
In this approach, the learning strategy was defined by
the coordinate target function T; = (xp7, yy) and the
regression loss function L.

e Approach D - LSTM and Direction And Displacement
Regression: the learning strategy of this approach was
defined by the target functions (T> = «, T3 = d) and
the regression loss function L.

o Approaches E, F;, G — LSTM And Fine-Grained Learn-
ing: these approaches were defined by the coordinate
target Ty = (xy, yy) and the combined loss function
L53. The difference between approaches D to F was the
number of units in the LSTM layers.

o Approach H — Bidirectional LSTM and Fine-Grained
Learning: this approach introduced bidirectional learn-
ing to approach D. Bidirectional networks connected
hidden layers of opposite directions to the same output.
These layers allowed us to model previous and next
positions with more information.
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For each approach, we trained six models (N =
10, 15, 20, 25, 30, 35) according to the protocol presented
in Section III.A. All approaches were evaluated using the
same evaluation set. The error was calculated as the /> norm
between the predicted and the real landing points.

B. PREDICTION PERFORMANCE

Table 1 presents the performance obtained by the different
approaches. The errors were calculated as the Euclidean dis-
tance between the real (xs, yy7) and the predicted landing
point (xz, yr). All errors were averaged depending on their
length: 1) saccades shorter than 5 degrees (column 9), ii) sac-
cades shorter than 15 degrees (column 10) iii) saccades longer
than 15 degrees (column 11), and iv) all lengths (column 12).
Additionally, we report the average prediction error for all
the saccades in the test set (in natural viewing, the number
of small saccades is much larger than long saccades [11],
and see Figure 4b). Table 1 shows the superior performance
of our proposed LTSM algorithm (approaches D to G) with
average improvement of more than two degrees compared to
two state-of-the-art methods [24], [25]. The results show the
superior performance of the learning strategy based on pre-
dicting the final landing points (approaches E to H) in com-
parison with the method based on direction and displacement
(approach D). The results suggest that the network was capa-
ble of modeling the entire movement using the exclusively
the initial part of the sequence. Displacement, curvature, and
angles were modelled all together in this strategy. Regarding
the loss function, the combined loss (£3) outperformed the
regression loss (£1). The learning process involving both
regression and cross-entropy (approaches E to G) was better
than the approaches based on traditional regression functions
(approaches B and C). Finally, the bidirectional learning
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= Drama) (Right). The performance of the approaches are shown as unique curves that were calculated as the average of the six curves (N = 10,

15,..., 35).

(approach D) did not improve the forward learning (approach
E). Table 1 includes the standard deviation of the errors.
Additionally, Table 1 summarizes the number of parameters
of the approaches evaluated in this work. While the poly-
nomial method proposed in [24] was defined by 18 param-
eters, the neural network architectures were comprised of
many more parameters that could be successfully trained for
saccade-landing-point prediction due to the large number of
saccades available in the datasets that are becoming available.

Table 1 includes the execution times for a prediction of
an input saccade of ten milliseconds (N = 10). All the
experiments were carried out in an Intel Core i7-8750H
CPU @ 2.20GHz, 32 GB RAM, Nvidia GeForce RTX
2080. As was expected, the polynomial fitting had the low-
est execution time. Deep learning approaches were around
5 milliseconds with small differences between approaches,
except for the Bidirectional layer with an execution time
of 8.8 milliseconds. Note that execution time of the deep
learning approaches varied with the input size N. For exam-
ple, the execution time for different input sizes (N =
10, 15, 20, 25, 30, 35) of the approach F' were [5.2, 6.1, 7.3,
8.2, 9.4, 10.4 milliseconds]. Note that these execution times
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could be improved with dedicated hardware or subsampled
input sequences.

For the rest of the experiments, we used model F as it had
a good balance between prediction accuracy and number of
parameters. The prediction error was inversely proportional
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FIGURE 9. Example of the performance of the proposed method, approach F, and two previous approaches over real saccade trajectories. The two rows
show saccades for two different participants. The trajectories have been smoothed for visualization purposes. Number of samples used for the prediction
N = 15. The gaze positions are in the region of interest of the viewer, with the fovea represented by the green circles, each with a diameter of 2.5°
(Colored image).

to the number of samples (V) used to make the predic-
tion. Figure 6 (Left) shows how the performance of the
proposed approach depended on N. The results show how
the prediction error decreased when more information was
available for the prediction. As described in Section 2.D,
the landing point prediction was updated once new samples
were available. Thus, the error decreased as the saccade
progressed. This update handled the non-linear trajectories of
long saccades that are common [11]. The error varied from
less than 1 degree for the shortest saccades to 15 degrees
for predictions made with only 10ms and the largest sac-
cades (30 degrees). In Figure 6 (Right) we show how the
proposed approach outperformed previous approaches for all
saccade lengths. The fine-grained learning was better than the
polynomial fitting approach [24] by more than two degrees,
on average. In comparison to the FFNN proposed in [25],
there was an improvement of 0.36 degrees, on average.

C. EVALUATION OF THE EFFECTS OF COVARIATES
Landing point predictions were affected by many different
factors including user-dependent (e.g. neuromotor physiog-
nomy) and task-dependent (e.g. number of samples available
to make the prediction, length of the saccade) characteristics.
Some user characteristics affected the performance of
the prediction. Figure 7 (Left) shows the average perfor-
mance and that obtained by for best and worst partici-
pants. The large between-subject difference between the
best and worst participants was significant (linear regres-
sion, t = 879, p < 0.001), especially for the largest
saccades. We found that subject age was related to the
quality of the prediction. Figure 7 (Center) shows that
prediction was better for younger than older participants

52482

(shown with 60 years criterion). Presumably, older age
affected the neuromotor control of the participants, and
thus increasing age affected prediction performance (older
subjects had slightly higher errors than younger subjects:
t = 2.23, p = 0.04). Figure 7 (Right) shows that there was
no difference between the genres (F(2, 20) = 0.17, p = 0.84).

Visual stimuli are the primary drivers of visual attention
and thence saccades to new regions of interest. The stimuli
determine the length and direction of the saccades and there-
fore, they affect the accuracy of the predictions. The type and
salience of visual stimuli might vary between video genres.
Figure 7 (Right) shows the prediction error for different types
of genres (Nature Documentary, Cartoon, and Drama). Our
results suggest that the genre had a limited impact on the
performance of our predictions (p-value = 0.98). We are not
claiming that visual stimuli do not affect the performance of
our approach. While visual stimuli are critical to the length
of the saccade, with equal length, the prediction errors were
similar for the three genres.

Figure 8 shows the performance when the landing point
was updated with data provided by the eye tracker (i.e.
in-flight update). In this experiment, the landing point pre-
diction was updated every 5 milliseconds. Figure 8 shows
how the predictions improved with the time and reduced
the errors. This in-flight updating is an advantage of online
landing prediction approaches based on eye tracking data.

To illustrate the predictions of saccade-landing location,
Figure 9 shows a comparison of the predictions made by
three different approaches during real natural viewing for two
participants watching each of three video clips. These predic-
tions of real saccades reveal the suitability of this technology
for real-world applications.
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IV. CONCLUSION

Saccades are rapid eye movements that define the region of
interest of a viewer. The prediction of the saccade landing
point allows a partial solution to the problems related to the
update latency of gaze-contingent displays. We propose a
novel algorithm to train saccade landing point predictor based
on LSTM networks and fine-grained learning approach. Our
strategy includes a dual loss function trained according to
both gross and fine predictions. We evaluated 8 different
approaches over 220,000 sequences obtained from 75 users.
The data used to train and evaluate the approaches was
acquired monitoring the eye movements of the participants
during natural viewing of videos.

The results showed the superior performance of our pro-
posed method with average improvement of more than two
degrees in comparison with state-of-the-art methods [24],
[25]. Figure 6 shows a comparison of the predictions
made by different approaches during real natural viewing
(Fig. 6 Right). We presented a comprehensive analysis of the
performance including experiments that varied the number of
samples used for the prediction (Fig. 6 Left), user-dependent
effects (Fig. 7 Left), variation due to the age of the participant
(Fig. 7 Center), and different video genres (Fig. 7 Right).
Saccadic length and user characteristics showed the largest
impact on the performance. The errors varied depending
on the saccade length, with errors under three degrees for
saccades smaller than 15 degrees, and errors around eight
degrees for the largest saccades. Differences between partic-
ipants in average prediction error was up to 9.5 degrees for
the largest saccades.

Future works will include the study of user-dependent
models that allow capturing the intra-user variability. The
LSTM networks trained in this work could be tuned for each
subject (if there was enough information from the subject)
in a similar way to other domain-adaptation methods and
transfer-learning techniques. The proposed learning approach
can be used to predict the duration of the saccade, which is a
useful information in gaze-contingent rendering. Other future
research lines include the study of multimodal approaches
developed to exploit both visual stimuli [12], [45]-[47] and
eye tracker data [22], [24]-[26].
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