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ABSTRACT In this paper, a self-learning multi-class intelligent model for wind turbine fault diagnosis is
proposed by using MFQL (Modified-Fuzzy-Q-Learning) technique. The MFQL is adaptive in nature and
extension of fuzzy-Q-learning method where look-up table of Q-learning is conquered by fuzzy based
approximation strategy to reduce the curse of dimensionality of the Q-learning. The proposed MFQL
classifier diagnoses the mechanical and imbalance faults without using mechanical sensors. Proposed
methodology is addressed with relying on PMSG (Permanent Magnet Synchronous Generator) stator current
signals, which is already being used by protection system of wind turbines. According to the aforementioned
description, non-stationary current signals of PMSG have been pre-processed to extract the input features by
empirical mode decomposition followed with J48 algorithm based most relevant input feature selection. For
the one-step ahead performance demonstration of the proposedMFQL approach, results have been compared
with neural network, support vector machines, fuzzy logic, and conventional Fuzzy-Q-Learning techniques.
Demonstrated results outperform the capability of proposedMFQL approach.Moreover,MFQL is developed
first time to implement in the area of WTGS fault diagnosis in the literature.

INDEX TERMS J48 algorithm, machine learning, fault diagnosis, FAST, dynamic modeling, wind turbine,
TurbSim, real-time analysis, imbalance fault, non-intrusive.

I. INTRODUCTION
Wind industry is growing up day-by-day to meet consumer
demand and established power in India was 343789MWupto
April 2018 leads to fifth in rank in the world [1]. Under the
national wind resource assessment program, MNRE (min-
istry of new and renewable energy) through CWET (centre
of wind energy technology), state and private nodal agen-
cies, has installed grid interactive wind power of 45.2%
(36368 MW) of total renewable energy. So, power sys-
tem dependability on wind energy is increasing day-by-day,
which may lead difficulty in dynamic healthy operation with
uninterrupted power supply to end user. Hence, condition
monitoring, fault detection & diagnosis (CM-FDD) of WT
is become more important, which is very difficult to per-
form under perturbs operating conditions. As per available
study in [2]–[4], the down time period of WT is from 52 to
237 hours in a year. The main causes of WT downtime are
the failure of its components and related sub-system i.e.,
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failure to blades/hub/pitch (13.7%), failure to control sys-
tem (12.9%), failure to drive train (1.1%), failure to elec-
tric system (17.5%), failure to gearbox (9.8%), failure to
generator (5.5%), failure to hydraulic and brakes (14.5%),
failure to sensors (14.1%), failure to structure (1.5%), failure
to yaw system (6.7%), and failure to other (2.7%) [29]. Some
imbalance faults also play a major role in WT downtime.
The most common imbalance faults (IF) are imbalance mass
density in blades (IFB: IF in blade) (symbol: AdjBlM), shaft
imbalance (IFS: IF in shaft), tail furl imbalance (IFT: IF
in TailFurl) (symbol: TailFurl), rotor furl imbalance (IFR:
IF in rotor) (symbol: RotFurl), nacelle-yaw imbalance (IFY:
IF in yaw) (symbol: NacYaw) and aerodynamic asymme-
try (IFP: IF in pitch) (symbol: BlPitch) in wind-turbine-
generating-system (WTGS) which leads 16.22% of total
failure rate.

NacYaw imbalance fault can be generated by control error
in yaw system of WT which modify the required position of
nacelle system. RotFurl and TailFurl imbalance faults can be
developed by amend furl angle in RotFurl and/or TailFurl
respectively of WT. Similarly, AdjBlM imbalance fault in
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blade can be generated by change in mass density of the
one blade as compare with other blades. The variation of the
mass density in blade is due to manufacturing errors, icing
condition, deterioration, and fatigue during operation of WT
which develop additional loading on tower leading to collapse
the system. BlPitch imbalance fault can be generated by
aerodynamic asymmetry caused bymalfunctioning of control
mechanism and high wind shear which amend BlPitch angle
of one blade from the desired value. Due to this, an unbalance
torque is generated which leads to aerodynamic asymmetry
on rotating shaft.

Presented maximum research for fault analysis of WTGS
imbalance faults are based on sensors [6], [7]. While sensors
are not easily accessible due to high height of tower and also
impact approximate 14% failure [28]. Therefore, machine
current signals analysis (MCSA) based condition monitor-
ing become enthusiastic which decrease the maintenance
cost, improve the system life and protect the system from
catastrophic failures.

For the condition monitoring of WTGS, several artifi-
cial intelligence schemes (i.e., based on fuzzy-logic, MLP,
LVQ, PNN, SVM etc.) have recommended using current
signature based approach for fault diagnosis as mentioned
in [2], [13], [15], [26]–[28]. However, these approaches have
some drawbacks as mentioned in [2], [13], [15]. Majority of
the mentioned problems of [2], [13], [15] (i.e., low diagnosis
accuracy in fuzzy-logic, required huge amount of training
data in neural networks, difficult in parameter selection in
SVM & PSVM, required large storage memory in PNN,
low processing speed in LVQ, addition of inherent noise in
PLL, etc.) can be overcome with the proposed MFQL based
classifier. The MFQL classifier is based on reinforcement
learning based classifier The main properties of MFQL based
classifier are: 1) classifier assign the penalty for each wrong
classification and allow for correction in next decision stage,
2) it is adaptable to correct own behaviour as per gained
experimental knowledge, 3) it does not require previous sys-
tem information like model information or parameters, 4) the
procedure for consequent rewards-punishment adjustment
for the fuzzy-q-values is in an incremental manner, which
increase classification accuracy, 5) it includes a heuristic
feedback mechanism (i.e., reward/punishment mechanism),
6) it learn in a sufficient number of training samples to
classify mechanical faults correctly.

This paper is well ordered in the six sections: the
main problematic are listed in Section I. In Section II,
the dynamic of WTGS model using amalgam platform of
FAST, TurbSim and Simulink is presented. In Section-III,
feature extraction and feature selection methodology are
presented by using EMD and J48 algorithm respectively. The
detailed procedure for implementation of proposed MFQL
classifier is also presented in Section-III. In Section-IV,
mathematical validation of MFQL based results are
describes. In Section V, results-and-discussion are mentioned
and finally the conclusion of the study is explained in
Section-VI.

FIGURE 1. Complete dynamical WTGS model arrangement in amalgamate
environment of simulink of MATLAB, FAST and TurbSim.

II. WTGS DYNAMIC FORMATION
A. BRIEF DETAILS OF WTG MODEL IMITATION
In this study, a coalesced platform of three distinct soft-
ware (i.e., FAST [5], TurbSim [22] and Simulink) is devel-
oped to form the whole dynamics of real-time WTGS as
demonstrated in Figure 1. The FAST (fatigue, aerodynamic,
structure, turbulence) is utilized for developing the dynam-
ics of a real-time WT. TurbSim is utilized to generate time
series aeroelastic imitation for wind data (i.e., non-linear and
non-stationary in nature) and Simulink platform is utilized to
design the PMSG and other electrical equipments.

FAST is open access, most advanced code, which can
be utilized for designing of onshore and/or offshore, rigid
and/or teethering hub, upwind and/or downwind rotor, pitch
and/or stall regulation, lattice and/or tubular tower, 2 and/or
3 blade horizontal axis non-linear WT and its perfor-
mance was certified by Germanischer Lloyd [21]. FAST
code is the amalgamation of 3-distinict codes (i.e., FAST2,
FAST3 and AeroDyn aerodynamics subroutines). FAST code
also includes model for blades, tower, shaft and furl. The
performed subroutine by FAST is amalgamated Simulink
with the help of speed, power and torque signals.

TurbSim is an emulator which emulates a stochastic inflow
turbulence wind velocity vectors of 15.7 m/s (i.e., a mean
value) [22]. It is the advanced model than IEC based Tur-
bulence Models. The main advantage of the TurbSim is
that the dynamic of time-series 3-D wind velocity vector in
stochastic, full-field, turbulent can be generated numerically
at points in a vertical rectangular grid, which is used as an
input into the AeroDyn-based codes such as FAST, YawDyn,
or MSC.ADAMSr.

In this study, NREL, USA based a standard WTGS model
of 10 kW rating [5] is used which has 34 m tower height,
3-blades of rotor diameter of 5.8 m, nacelle mass of 260 kg,
hub mass of 113 kg with 48 poles of PMSG. PMSG and other
electrical components are imitated in MATLAB simulink
platform. PMSG is used to generate electrical power from
the WT mechanical power, which is based on the series of
real-time wind speed. In the recorded data, PMSG stator
current, output electric power, shaft rotation speed and torque
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FIGURE 2. Model of WTGS in FAST and simulink combined simulation platform.

TABLE 1. Fault simulation files and its associated parameters [5].

are collected. The maximum logged current amplitude is
35 A at the maximum wind speed scenario and the output
electrical power of PMSG is varied in the range of 7-14 kW,
where maximum power limitation of PMSG is not mod-
eled. Recorded signals (i.e., non-linear and non-stationary in
nature) of PMSG stator side is utilized for further study in
WTGS fault analysis.

B. IMBALANCE FAULT FORMULATION FOR FURTHER
STUDY
Developed 10 kW WTGS (as depicted in Figure 2) are
tested for five faulty and one healthy operating scenario.
AdjBlM imbalance fault is generated by varyingmass density
(MD) (+2%, +5% and −3%) of one blade which creates
diverse distribution of mass w.r.t. rotor. TailFurl and/or Rot-
Furl imbalance fault is generated by varying tail and/or rotor
furl angle (+10◦,−5◦ and +5◦) apart of essential position,
which creates irregular WT direction. NacYaw imbalance
fault is generated by varying yaw angle from required posi-
tion (+200,+100 and−100), which creates irregular position
of rotor toward the wind. Finally, BlPitch imbalance fault is
created by varying pitch angle of one blade from the required
position (+100,+50 and −80), which generates irregular
torque on rotor. Essential library and its associated variables
of FAST code are tabulated in Table 1 which are utilized for
creation of imbalance faults.

Emulated WTGS model under six distinct conditions are
executed for 40s with 2kHz sampling frequency and electric

power, stator current, turbine shaft toque and wind speed
are recorded for further study. The input feature extraction
and selection using PMSG stator current is demonstrated in
subsequent sections.

III. METHODOLOGY
The proposed approach for the implementation of the whole
methodology for non-intrusive fault detection and diag-
nosis is presented in Figure 3, which includes the fol-
lowing operation: 1) Dynamic model development of the
WTGS using FAST, TurbSim and Simulink, 2) Differ-
ent type of the imbalance fault creation using dynamic
model of FAST, 3) capture the different type of electri-
cal and mechanical signals under different operating condi-
tions with and without fault scenario, 4) data pre-processing
for filling the missing value and spikes removal (if any),
5) feature extraction using EMD method, 6) most rele-
vant feature selection using machine learning method of
J48 algorithm, 6) MFQL model development, 7) perform
the training and testing of the developed intelligent model,
and 8) after cross validation of the performance, save the
model for future use. The detailed information for each
subsection of the proposed approach is represented in this
paper.

A. FEATURE EXTRACTION USING EMD [23]
In this study, features are extracted by using EMD (Empirical
Mode Decomposition) technique, which is a data depen-
dent adaptive-signal processing method which decomposes
non-stationary and/or stationary signal into intrinsic mode
functions (IMFs). The step-by-step process for creating IMFs
from a signal y(t) is as:
A1. Load the data set signal y(t) first, then find the extrema

values i.e., minima & maxima and Use cubic spline
interpolation for connecting them.
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FIGURE 3. Proposed approach for non-intrusive fault detection and diagnosis of WTGS.

A2. Estimate an upper [em(t)] and lower [et (t)] envelope
and then mean value m(t):

m(t) = [em(t)+ et (t)]/2 (1)

A3. Define the value of y(t)− m(t) :

H1(t) = [y(t)− m(t)] (2)

A4. Check H1(t) fulfils both situations of IMFs. If yes,
H1(t) is become IMF#1, elseH1(t) is treated as original
signal and redo 1-4 steps. Follow this procedure k-time,
H1(k) become an IMF:

H1(k) = H1(k−1) − a(t) (3)

A5. Delineate �1(t) = H1k (t), with �1(t) being IMF#1 of
original signal. (where, �1(t) = smallest temporal
scale)

A6. Compute residue value:

ψ1(t) = y(t)−�1(t) (4)

assume ψ1(t) = indigenous signal and redo above
process to evaluate IMF#2.

A7. Redo this method i-times to generate i IMFs of y(t) and
dismiss the procedure if ψ1(t) = monotonic function.
At last, after implementation the process (from point
A1-A7), the y(t) is retrieved by Eq. (5):

y(t) =
L∑
l=1

�l(t)+ ψL(t) (5)

where ψL(t) = residue,�l(t) = l th IMF and, L = number of
IMFs

From the energy level of each IMF, normal and faulty
conditions can be distinguishes, as depicted in Figure 4. The
Ee (energy entropy) is determined by Equation (6) and are
listed in Table 2, which shows the difference in magnitude of
entropy for each case.

Ee = −
L∑
i=1

Pi log Pi (6)

here, Pi = Ei/E energy magnitude in (%) for ith IMF, where

E =
L∑
i=1

Ei = energy of y(t) (7)

Based on Table 2 and Figure 4, it is analyzed that energy
distribution of IMFs varies w.r.t. fault type. Here, the y-axis
of each IMF represents the energy magnitude of the IMF,
whereas total number of data samples are represented on
x-axis of the figure 4.

B. MOST INFLUENCING INPUT (MII) SELECTION USING
J48
The selection of the MII is a big research area, which affect
the model performance. In this study, J48 algorithm is used
to select the MII, which is extensively utilized to assemble a
typical decision tree (DT) and utilizing theory of information
entropy for attribute selection and identification [18]. In this
study, generated IMFs vector of EMD (as demonstrated in
A1-A7 of section 3.1 and in a matrix of Eq.8) are pruned
with redundant attribute to form a group of utmost suitable
attributes.

H = [imf1, imf2, imf3, . . . . . . , imf17]96000×17 (8)

Utilized the input matrix H : xi ∈ Rn, i = 1, 2, . . . , l, target:
y ∈ Rl, then J48 split space with same target samples and
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FIGURE 4. IMFs representation for 5-Faults and healthy condition of:
(a) Current signal and (b) Voltage signal.

FIGURE 4. (Continued) IMFs representation for 5-Faults and healthy
condition of: (a) Current signal and (b) Voltage signal.

TABLE 2. Determined energy entropies for current based IMFs.

are grouped together. Assune data at node m be designated
by β for each specimen divide λ = (j, tm) with feature j and
threshold tm, and data can be divided into βleft (λ) and βright (λ)
subgroups as:

βleft (λ) = (x, y)| xj <= tm and βright (λ) = β\βleft (λ) (9)

Impurity at m is evaluated by its function H () according to
performed task (such as classification/ regression).

G(β, λ) =
ηleft

Nm
H (βleft (λ))+

ηright

Nm
H (βright (λ)) (10)

Optimized the parameters to reduce impurity as:

λ∗ = argmin
θ
G(β, λ) (11)

Iterate again-and-again for βleft (λ∗) and βright (λ∗) till Nm <
minsamples or Nm = 1.

If problem is formulated for classification, then target is
0, 1, . . . ,K − 1, for m node, and notifying a region Rm with
Nm instances is

pmk = 1/Nm
∑
xi∈Rm

I (yi = k) (12)

Generally, evaluation of impurity (i.e., Gini):

H (Xm) =
∑
k

pmk (1− pmk ) (13)

Cross-entropy:

H (Xm) = −
∑
k

pmk log(pmk ) (14)

Misclassification:

H (Xm) = 1−max(pmk ) (15)
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TABLE 3. J48 model performance analysis.

TABLE 4. Class-wise classification matrix.

Here, two models have been created based on J48 algo-
rithm (Table 3). Comparative analysis of Table 3 shows that
J48 selects 8 IMFs for Model#1 and 15 IMFs for Model#2 as
MII to the classifier. As per the performance analysis,
Model#1 is comparable over Model#2. Thus, Model#1 is
selected as suitable model for WTGS diagnosis and perfor-
mance analysis, and has been depicted in Table 4 for each
case of Model#1.

C. MODIFIED FUZZY Q LEARNING (MFQL) FRAMEWORK
In this section, implementation of proposed MFQL classifier
has been explained in detail. Firstly, detail of Q-learning and
then Fuzzy-Q-learning details have been presented for proper
understanding of MFQL implementation.

1) Q-LEARNING (QL)
The QL is a model free incremental reinforcement learning
techniquewith proven convergence [19], which shows several
applications in control domain with numerous benchmark
nonlinear problem solutions [19], [20]. QL is a model free
algorithm for optimal decision making under uncertainty.

QL includes an agent-making a sequence of attempts
at classifying the condition, starting from a preliminary
position:

sk ∈ S(k = 0, 1, 2 . . .) (16)

where, k = stage variable/time instant; and S = state space.
This series of actions either achieve success or it may be a

failure. This agent is appraised for it success and panelized
for its failure. Q based function is utilized for the quality
judgment of state action sequence:

Q(sk , y(sk )) (17)

where y(sk ) ∈ Y (sk ) = action taken in state sk ∈ S.
Here the system builds a transition to next state: sk

r
−→

sk+1 with the agent getting a reinforcement signal or reward
r . The r performs as a sign of ‘‘bad’’ or ‘‘good’’ deed medley
by the agent. These all are performed to attain an optimal

decision. In this study, agent tries to classify the faults appro-
priately by analyzing rewards/punishment acknowledged at
the end of an endeavor. After adequate repetitions, the clas-
sifier is competent to classify proper type of fault. How-
ever, Q-learning is useful for small and/or discrete state
space by using look-up table for storing the q values. If a
problem requires state-space for continuous action or state
space become very large, then look-up table of Q-learning is
become infeasible. For such type of problem, Fuzzy or ANN
based Q-learning become feasible.

2) FUZZY Q LEARNING (FQL)
Approach based on look-up table of Q-learning is also known
as ‘‘Curse of Dimensionality’’ which can be conquered by
utilizing approximation technique to approximate theQ func-
tion. The approximation can be performed by using ANN or
fuzzy approach for replacing the look-up table to enhance the
Q-learning [20].

In this paper, fuzzymethod is utilized for the approximation
of Q-function. Fuzzy-Q-learning tally input vector at
instant k:

sk =
{
sk1, s

k
2, . . . , s

k
n

}
(18)

where, n = state or number of state variables
Generated n based rule firing strengths:

Ri : αi
(
sk
)

(19)

With the help of each rule, m actions Y = {y1, y2, . . . , ym}
can be chosen where q is the quality of each action in the
particular rule. Fuzzy-inference-system (FIS) for each rule
Ri, i ∈ N is described as:

Ri : If sk1 is T
i
1 and

. . . . . . and skn is T
i
n then y = y1 with q(i, 1)

or y = y2with q(i,2)
. . . . . .

or y = ymwith q(i,m)

 (20)

where, T ix = linguistic value of skx of Ri rule. The membership
function is represented by αT ix . In this study, Takagi-Sugeno
FIS has been utilized. The q-values are utilized to locate best
possible action among the possible actions (m) by choosing
highest q value action of each rule Ri. The most favorable
action y(sk ) at situation sk is computed:

y(sk ) =
N∑
i=1

χyi

/
N∑
i=1

χ; yi ∈ Y ; where, αi(sk ) = χ (21)

where, yi = best action of rule Ri.
For better rewards, the performer has to go for other

optional actions in reinforcement learning (RL) based FQL.
The pseudo-stochastic procedure based exploration can be
applied, and exploration-exploitation (EEP) chooses random
action with minimum probability (ε). Based on EEP, selected
action is represented as:
y†i = ε-greedy yi
if y∗i = maximizing action, then
q(i, y∗i ) = max

b≤m
q(i, b),
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for a continuous action y(sk ), the q-value is defined as:

Q(sk , y(sk )) =
N∑
i=1

χq(i, y†i )

/
N∑
i=1

χ (22)

Computed state value is:

V (sk ) =
N∑
i=1

χq(i, y∗i )

/
N∑
i=1

χ (23)

y(sk ) is implemented to change the stage and/or state for cre-
ating a RL signal, which is utilized for evaluation of temporal
difference (TD) error given by:

1Q = r + γ V (sk+1)− Q(sk , y(sk )) (24)

and updated q-values are represented as:

q(i, y†i )← q(i, y†i )+ η1Q

(
χ

/
N∑
i=1

χ

)
(25)

where, γ = discount factor in range of 0 ≤ γ < 1 and
η = learning rate

Here, FQL is implemented for classifying theWTGS oper-
ating stage, which provide only reinforcement signal which
decide the quality of identification. Therefore, optimization
of these signals maximizes cumulative rewards received at
each stage. This system is made adaptive in nature by creating
MFQL.

3) MODIFIED FUZZY Q LEARNING CLASSIFIER (MFQL)
Firstly, prepared input vector sk (Eq.12) from generated IMFs
of EMD with the help of J48 algorithm, which is utilized n
FIS.

sk = [IMFk1 , IMF
k
2 , . . . , IMF

k
8 ] (26)

Now, TSK type rule base is represented as:

Ri : If sk1is IMF
i
1 and

. . . . . . and skn is IMF
i
8 then y = y1 with q(i, 1)
or y = y2 with q(i, 2)
. . . . . .

or y = y11 with q(i, 11)

(27)

where, y1, y2, . . . yn = fault type/number, and sk1 = crisp
value of input variable.
sk is quantized into 3 fuzzy subsets by using Gaussian

membership function as given by Eq.14:

αIMF (s1) = e−(s1−c1)
2/2σ 21 (28)

where, c1 = central and σ1 = standard deviation.
The IMFs for each input variables are represented as:

αlp (sj) = e

−(sj−s
lp
j )

σ2j ; lp = 1, 2, 3; j = 1, . . . , 8; (29)

where lp = fuzzy labels and sj = crisp value of MII Ij
The centers of each MF is stipulated:

c
lp
j = aj + bj(lp − 1) (30)

where, aj = smin
j , and bj = smin

j +
(smax
j −s

min
j )

2 × (lp − 1)

The width of MF of each input variable is stipulated:

σj =
(smax
j − smin

j )

5
(31)

where, smin
j = minimum value of input variable of Ij, smax

j =

minimum value of input variable of Ij.
Consequently, each fuzzify input variable has three labels

(smin
j , c

lp
j and smax

j ) to form the total number of fuzzy rules for
n number of faults are:

Ri = (lp)j × n = (fuzzy partition)(no.of input) × (no.of fault)

(32)

So, as per Eq. (x), fuzzy q-values vector has been initialized
in order of 38 × 6 for 6-type fault analysis by using 8 IMFs.
The most optimal action and q-values are obtained for each
rule:

q∗(i, y) = max
y∈Y

q(i, y) (33)

y∗i = argmax
y∈Y

q(i, y) ∀i ∈ N (34)

Here, all firing strength value for every action for all rules
are aggregated and a vector is produced as:

α(y∗) = α(y∗i )+ α(i, y
∗
i ) ∀i ∈ N ∀y

∗
∈ Y (35)

∀y∗ ∈ Y=1× 6 vector for 6 type faults.
All the action specific firing strength values are normalized
as Eq. 36:

α(y∗) = α(y∗)

/∑
y∗∈Y

α(y∗) (Normalized value) (36)

To search optimal action for the discrete selection in the
task of identification, which is the continuous action com-
puted by Eq. 24. Here it is released that the task of identifi-
cation in WTGS has a different concept, therefore an action
of highest cumulative firing strength (α), shown as global
identifier of Eq. 37, whereas in FQL, a TSK type mechanism
is applied to find out the action.

yIden(sk ) = argmax
y∈Y

α(y) (37)

The identifier action is based on a max firing strength
action selection mechanism for selecting a discrete action,
whereas fuzzy Q learning framework employs a simplified
TSK type mechanism to generate a continuous action (24).

Here, EEP is applied for getting better action y†i as:

y†i = yri with probability ε

= y∗i otherwise (38)

where, yri = random action and y∗i = optimal action Compu-
tation of global q-value is represented as:

Q(sk , y(sk )) =
N∑
i=1

χq(i, y†i )

/
N∑
i=1

χ (39)
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Evaluation of global target value is performed as:

V (sk ) =
N∑
i=1

χq(i, y∗i )

/
N∑
i=1

χ (40)

MFQL identifier function for comparison of actual fault
ytrue(sk ) with the identified fault yIden(sk ).

r =

{
+10 if yIden = ytrue
−10 if yIden 6= ytrue

(41)

Now, TD error is computed as:

1Q = r + γ V (sk+1)− Q(sk , y(sk )) (42)

where, γ ∈ [0, 1] = discount factor.
Update eligibility traces for every rule, are applied having
delay parameter with ξ ∈ [0, 1].

e(i, y)← e(i, y)× γ × ξ +
αi∑
αi

for y = yIden

← e(i, y)× γ × ξ for y 6= yIden (43)

Further step is upgradation of incremental change in q-value,
for upgradation of q(i, y) value:

1Q(i) = e(i, y)×1Q×
(
αi

/∑
αi

)
(44)

Updated version of identifier for fuzzy q(i, a) values is:

q(i, yprev)← q(i, yprev)+ η[1Q] (45)

where, yprev = y(sk−1) = elected action by classifier at stage
(k-1) and η ∈ [0, 1] = learning rate.
Exploration rate can be decreased as per requirement (i.e.,

increased the search at the start of procedure and go on
decreasing after gained) as:

∈→
∈

2
every 50 samples till ε = 0.01 (46)

Presented procedure is followed till q-value start converg-
ing. The triumph rate of MFQL classifier is evaluated here
as:

%success Rate =
success

success+ failure
× 100% (47)

Step-by-step demonstration of the proposed MFQL clas-
sifier for a given 5 mechanical faults problem and a healthy
condition has been presented in subsequence section.

IV. DEMONSTRATION OF MECHANICAL FAULT
DIAGNOSIS USING MFQL
For the experimental demonstration of the performance of
the proposed approach, the training and testing data files are
prepared first after the pre-processing the data. In this study,
∼70% and ∼30% datasets are used as a training and testing
purpose for the intelligent model respectively. In this section,
step-by-step demonstration for validation of proposedMFQL
based mechanical fault classifier is presented for WTGS.
Step 1: a rule firing strength vector αi ∀i ∈ N as per

Eq. 27 is created by mapping input IMFs as given in Table 5.

TABLE 5. Rule firing strength.

TABLE 6. q-value action y∗i .

TABLE 7. Aggregated action of α(y∗)∀y ∈ Y .

TABLE 8. Aggregated output V (yk ).

Step 2: now determine highest q-value action y∗i accord-
ing to Eq. 34 as represented in Table 6 for each operating
condition.
Step 3: evaluate aggregate action specific firing strength

values α(y∗)∀y ∈ Y by using Eq. 36 as represented in Table 7.
Step 4: a global target value V (sk ) is produced by mixing

output of every rule with collaboration of fuzzy rule fire
αi > 0 by using Eq. 40 as represented in Table 8.
Step 5: classify fault condition as per q-value (as maximum

cumulative firing strength) by using Eq. 37 as represented
in Table 9.
Step 6:As perMFQL, produced value of punishment/reward

of each fault condition by using Eq. 41.
Step 7: by using Eq. 42, evaluate the TD error for arranging

q-values.
Step 8: by using Eq. 43, update q(i, y) values and e(i, y).
Step 9: by using Eq. 46, shrink exploration rate according

to the requirement.
Step 10: reiterate the step1 to 9 till 1q→ 0 (converge the

q-values to smaller one) to enhance the diagnosis accuracy of
WTGS.
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TABLE 9. Classifier’s output.

TABLE 10. WTGS fault diagnosis accuracy analysis.

V. RESULTS AND DISCUSSION
The performance analysis of proposed MFQL approach for
WTGS mechanical fault diagnosis using selected current sig-
nature based IMFs has been presented in Table 10 and also
compared its performance with SVM, ANN, Fuzzy, and con-
ventional FQL models. It is analyzed that diagnosis accuracy
of MFQL model2 (based on electrical current signature) has
utmost than others.Moreover, q-values (38× 6) are lower than
other MFQL models i.e., model1 and model3 has 310×6 and
315 × 6 q-values respectively which affect the computational
burden of the classifier.

For the further validation of proposed MFQL approach,
four different AI techniques (i.e., SVM, ANN, Fuzzy and
FQLmethods) have been implemented using 8-selected input
IMFs and its diagnosis accuracy of WTGS has been listed
in Table 10.

A multi-class of 8-21-6 architecture based BP ANNmodel
has been implemented, and a tree based 5-binary SVM mod-
els have been designed to classify 5WTGSmechanical faults
and healthy condition with its optimal parameters of C = 1
and λ = 1. A detailed explanation for the implementation
of the 5-binary classifier has been given in Appendix-A.
Implementation steps of FQL based WTGS fault diagnosis
model has been presented in part 2 of subsection 3.3.2.
Proposed MFQL model is competent to attain a diagnosis
accuracy of 99.48% which shows the superiority than other
AI techniques such as ANN, SVM, Fuzzy and FQL achieve
94.95%, 96.80%, 86.4% and 94.85% respectively. Moreover,
over-fitting and sluggish processing-speed problem arised in
ANN does not present in proposed MFQL based classifier.
FQL is not adaptive in nature so it needs to optimize the
generated reinforcement signal similar to SVM parameters
optimization problem, while MFQL approach do this itself.

FIGURE 5. Performance learning curves of proposed approach, ANN and
SVM.

The performance learning curve for proposed MFQL
approach along with ANN, and SVM is represented in
Figure 5 which shows the diagnosis accuracy with respect to
the number of specimen/samples. The diagnosis accuracy is
attained by proposed approach is 98.5%, 99% and 99.998%
in just 1534, 2300 and 14300 specimen respectively, which
can also be utilized to select minimum number of specimen
for higher accuracy.

VI. CONCLUSION
In this study, a novel MFQL classifier for WT IF diagno-
sis has been presented and demonstrated. Proposed classi-
fier shows a considerably outperformed accuracy than other
computational techniques as given in Table 10, which shows
its effectiveness in terms of diagnosis accuracy enhancement,
reduction in computational burden, self-learning & optimiza-
tion, adaptive in nature and no overfitting at each level. This
is the first attempt in implementation of FQL and proposed
MFQL approach for fault diagnosis of WTGS. This novel
approach can be applied in future for nonintrusive fault clas-
sification of WTGS control without using any mechanical
sensors.

APPENDIX-A
SVM BASED MODELLING
According to the selected variables, a tree based binary SVM
models have been designed to classify the six operating
conditions (5-faulty and one healthy) as shown in Figure 6.
Using whole training datasets (i.e., input feature matrix) of
six distinct conditions, SVM model#1 is trained to separate
the normal operating condition from the five faulty conditions
(i.e., RotFurl, TailFurl, BlPitch, AdjBlM and NacYaw).
To represent the healthy operation, the output of SVM
model#1 is set with −1. Now, SVM model#2 is trained
by utilizing faulty datasets (i.e., RotFurl, TailFurl, BlPitch,
AdjBlM and NacYaw) to categorize the category#1 faults
(i.e., BlPitch, AdjBlM and NacYaw) from the category
#2 faults (i.e., RotFurl, and TailFurl). To represent the
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FIGURE 6. SVM based fault diagnosis model implementation.

TABLE 11. Utilized coding to represent the model output.

‘‘category#1 faults’’, the output of SVM model#2 is set
with −1. Then SVM model#3 is trained by utilizing ‘‘(cat-
egory#2 faults)’’ datasets to separate ‘‘RotFurl’’ fault and
‘‘TailFurl’’ fault. To represent the ‘‘RotFurl’’ fault condition,
the output of SVM model#3 is set with −1. Thereafter,
SVM model#4 is trained by utilizing ‘‘(category#1 faults)’’
datasets to segregate ‘‘(BlPitch and NacYaw)’’ fault from
‘‘(AdjBlM)’’ faults. To segregate ‘‘AdjBlM’’ fault condi-
tion, the output of SVM model#4 is set with −1. Finally,
SVM model#5 is trained by using ‘‘(BlPitch and NacYaw)’’
fault datasets to segregate ‘‘NacYaw’’ fault condition from
‘‘BlPitch’’ condition. To segregate ‘‘NacYaw’’ fault from
‘‘BlPitch’’, output of SVM model#5 is set with −1. There-
fore, the complete codification for all fault condition is
tabulated in Table 11.
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