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ABSTRACT In this paper, an analytic condition is given for determining delayed positive feedback controller
for stabilizing an oscillatory system. The τ -decomposition and D-decomposition methods are employed
in deriving this condition. The obtained results are then used to stabilize second order delay systems
by a proportional controller. Under-damped and over-damped systems are treated separately, where the
Smith-predictor structure is used in the over-damped case to obtain the stability conditions. Illustrative
examples are given to show the effectiveness of the proposed approach.

INDEX TERMS Delayed positive feedback, τ -decomposition, D-composition, stability domains, time delay
systems.

I. INTRODUCTION
It was shown in [1] that delayed positive feedback can sta-
bilize oscillatory systems. It was also proven that a sin-
gle integrator is stabilizable by a single delay and that a
chain of integrators can be stabilized by multiple delays [2].
The continuing interest in stabilizing systems by delay can
be explained and motivated by the form of the controller
which is simple and easily implementable, as it consists
usually of delayed versions of the output multiplied by con-
stants. In [3], the authors presented a delay based control
strategy, called the integral retarded controller, to control
the velocity of a DC servomotor. The stabilization problem
of a vibration system by delayed state difference feedback
was investigated in [4]. In [5], stabilization of longitudinal
vibrations along an elastic beam with delayed feedback is
analyzed. Delayed feedback was also employed to stabilize
nonlinear systems. In [6], stability of a class of generalized
gyroscope systems under delayed feedback was investigated.
In [7], the authors studied the stabilization problem of an
unstable highly nonlinear hybrid stochastic differential delay

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaojie Su.

equation by delay feedback control. In [8], delayed positive
feedback was used in the study and analysis of coupled
genetic oscillators.

Although stabilizing by delayed feedback has advantages
such as ease of implementation and its simplicity, the intro-
duction of delay comes with difficulties in analyzing stability
of the closed loop system, which is challenging even in the
case of linear time invariant systems. The difficulties are
mainly due to the resulting infinite dimensional eigenvalue
problem caused by the delay. In fact, studying stability of
delay systems continue to be one of the active areas of
research [9]–[10], as time delay appears in a natural way
in many mathematical models of engineering and physical
systems. It is well known that the delay term complicates the
analysis of these systems, deteriorates the performance and
may lead to instability. Stability results for time delay sys-
tems can be achieved using a time domain approach, where
Lyapunov theorem and its extensions are exploited. Usually,
this approach results in solving linear matrix inequalities
LMI’s. Aggregation methods were employed to get sufficient
stability conditions, see [11]–[12]and the references therein.

Frequency domain methods are also used in stabilizing
time delay systems. Many researchers used a parametric
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approach to study this problem by concentrating on conclud-
ing stability or instability of the system with respect to a
single or multiple system parameters. The main approaches
can be divided into two main streams. Those studying
system’s stability with respect to delay value, known as
τ -decomposition methods [13], where it is focused on
the partition of the delays parameter space into count-
ably many regions having the same number of unsta-
ble poles [14]. The second approach, studies stability
with respect to system parameters, not the delay, and it
is known as the D-decomposition method. See [15]– [16]
and the references therein for a detailed explanation
and applications of the D-decomposition method. Both
approaches rely on the continuity property of the roots of the
quasi-polynomial with respect to delay and system parame-
ters. The D-decomposition method was largely used in robust
stability problems and design of low fixed order controllers
for time delay systems, as it permits to decompose the
controller’s parameter space and determine stability bound-
aries using a set of parametric equations. These equations
explicitly depend on the control parameters, which results
in finding the stability regions and can help in obtaining
analytical expressions for tuning the controllers. In this line
of research, the D-decomposition method was used in [15] to
determine stabilizing PID controllers for dead time systems;
and in [17], the set of all stabilizing first order controllers
were parameterized. Other methods were also used, such as
the extensions of the Hermite-Biehler theorem, to find the set
of all stabilizing PI and PID controllers for first-order systems
with time delay in [18]–[19], respectively.

The main contribution of the paper is the joint use of
the D-decomposition and τ -decomposition methods to find
analytic conditions on the proportional and delay terms of a
delayed positive controller to guarantee stability of the closed
loop of an oscillatory system. Stabilization of oscillatory
systems finds applications in many fields such as robotics
and flexible structures [1]. A similar result was derived in
[1] using the Nyquist criterion. Another advantage of the
proposedmethod is its direct application in stabilizing second
order delay systems by proportional controllers. It is also
shown how to use this approach with a Smith predictor to sta-
bilize second order time delay system.Moreover, the obtained
results are applied to the consensus problem of multi-agent
network system [20]–[22]. Finally, determining stabilizing
regions for second order delay system can be considered as
first step in obtaining optimal low order controllers by opti-
mizing other performance indices using genetic algorithms or
particle swarm optimization techniques.

The paper is organized as follows. In section II, we deter-
mine the stability domains in the space of the couple ( k, τ )
representing the parameters of a controller applied to an
oscillating second order system. Next, we generalize the
obtained results to a delayed second order system, where
under-damped systems and over-damped systems are treated
separately. Section IV is devoted to illustrative examples.

FIGURE 1. Block diagram of the system.

Finally, section V concludes the paper and draws some future
alternatives.

II. SPECIAL SECOND ORDER SYSTEM
In this section, we consider determining the stabilizing
regions in the (k, τ ) space of a delayed positive feedback
controller

u(t) = ky(t − τ ), (1)

with a positive feedback k and a time delay represented by
τ > 0, applied to the system

ÿ(t)+ αy(t) = u(t), α > 0. (2)

First, the admissible ranges of the positive feedback gain k
are found by applying the D-decomposition method. Then, k
is fixed within this range and the τ−decomposition method is
used to determine the stabilizing delays τ . By sweeping over
the values of k , the complete set of stabilizing controllers can
be obtained. The novelty in the developed method resides in
the fact that the ranges of stabilizing (k, τ ) values, for second
order oscillatory system, are determined analytically. The
closed-loop transfer function of Figure 1 is given by,

H (s) =
C(s)G(s)

1− C(s)G(s)
=

ke−τ s

s2 + α − ke−τ s
. (3)

Analytic determination of stability conditions for the closed
loop system is a challenging task as a result of the obtained
quasi-polynomial:

D(s, τ ) = s2 + α − ke−τ s. (4)

That is why we will give a solution by dividing the original
problem into two sub-problems.

A. DETERMINING ADMISSIBLE VALUES OF k
TheD-decomposition technique relies on the continuity prop-
erty of the roots of the quasi-polynomial (4) with respect
to the coefficients. A necessary and sufficient condition for
instability of a stable quasi-polynomial is the crossing of
the imaginary axis by at least one of the roots. Suppose
that τ is fixed, the previously mentioned result can be used
to determine stabilizing intervals of k by partitioning the
real line k as explained in the sequel. The determination of
D−decomposition borders is obtained by setting s = jw
in (4), which yields

−w2
+ α − ke−jτw = 0. (5)
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the real part and imaginary part of (5) are equated to zero,
to obtain: {

−w2
+ α − kcos(τw) = 0,

sin(τw) = 0,
(6)

which gives the following equations{
−w2
+ α − k(−1)m = 0,

τw = mπ where m = 0, 1, 2, . . .
(7)

Two cases are considered:

• Case 1: For even values of m, i.e. m = 2l, l =
0, 1, 2, . . ., we have{

−w2
+ α − k = 0,

w = 2lπ
τ
.

(8)

• Case 2: For odd values of m, i.e. m = 2l + 1, l =
0, 1, 2, . . ., we have−w

2
+ α + k = 0,

w =
(2l + 1)π

τ
.

(9)

Equations (8) and (9) are written as follows:{
−( 2lπ

τ
)2 + α − k = 0,

−( (2l+1)π
τ

)2 + α + k = 0.
(10)

The resolution of this system of equations gives

α =
(8l2 + 4l + 1)

2
(
π

τ
)2, (11)

and

k =
(4l + 1)

2
(
π

τ
)2. (12)

Using (11) and (12), the quasi-polynomial (4) has roots on
the imaginary axis when

k =
(4l + 1)

(8l2 + 4l + 1)
α. (13)

Note here that the above expression found for k is indepen-
dent of τ . Taking account of the fact that k > 0, the admissible
intervals as a function of l are obtained as follows:

0 < k <
(4l + 1)

(8l2 + 4l + 1)
α, (14)

and

k >
(4l + 1)

(8l2 + 4l + 1)
α, (15)

where l = l = 0, 1, 2, . . .

B. COMPUTING STABILIZING VALUES OF τ
Once the admissible values of the gain k are determined,
the conditions on the delay τ should be found. The
τ -decomposition method is applied to obtain τ -values, which
ensure stabilization of the system.

Given the characteristic function,

D(s, τ ) = n(s)+ d(s)e−τ s, (16)

where the polynomials d(s) and n(s) are coprime and
degree(n(s)) > degree(d(s)). The τ−decomposition tech-
nique allows specifying the τ values so that D(s, τ ) is stable.
We notice that if s = jw is a root of D(s, τ ), then its

complex conjugate s̄ = −jw is also a root, which gives the
following system of equations:{

n(jw)+ d(jw)e−jτw = 0,
n(−jw)+ d(−jw)e+jτw = 0.

(17)

The elimination of the exponential term presented in (17)
allows obtaining:

W (w2) = n(jw)n(−jw)− d(jw)d(−jw) = 0. (18)

However, when wi verifies W (w2
i ) = 0 then s = jwi and

s = −jwi denote the system characteristic roots for delays τ
validating the equation below:

e−jwiτ = −
n(jwi)
d(jwi)

. (19)

The τ -decomposition technique is based on the algorithm
written below:

1) Specify the delay free system roots (for τ = 0), which
provide hints about the delay τ impact on the evolution
of the roots.

2) Compute the polynomialW (w2).
3) Calculate the real positive roots ofW (w2) (represented

by w2
i for i ≥ 1). In case there is no positive real

solution for W , then system stability is the same for
all delay values. Moreover, it is important to determine
the motion of the roots located near jwi as τ increases.
Thus, the sense of variation ofW (.) should be examined
according to w2. Obviously, the sense of variation of
the functions Re(s, .) : R+ → R, τ 7→ Re(s, τ ),
where Re(s, .) corresponds to the real part of s and
W (.) : R+→ R, w2

7→ W (w2) is the same [23].

signRe
ds
dτ
|s=jwi = sign

dW (w2)
dw2 |w2=w2

i
. (20)

Thus, the τ−decomposition technique relies on the
Re(s, τ ) variation sense in the points jwi neighborhood.
In fact, when dRe(s,τ )

dτ ≤ 0 or dRe(s,τ )dτ ≥ 0, then, for all τ1 ≥ τ2
we get respectively Re(s, τ1) ≤ Re(s, τ2) or Re(s, τ1) ≥
Re(s, τ2). This result shows that roots move to the right-half
or to the left-half complex plane according to the change of
the delay value. This procedure allows determining the values
of τ constituting the upper and lower-bounds of the system
stability interval.
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FIGURE 2. jwl producing the upper-bounds of stabilizing values of τ ; jwl
producing the lower-bounds of stabilizing values of τ ; Roots locus for
decreasing value of τ and Roots locus for decreasing value of τ .

We observe, from Figure 2, the effect of varying the time
delay in the neighborhood of the crossing points. At these
points, the delay bounds can be determined. In fact, for an
increasing functionRe(s, τ ), as delay τ increases in the neigh-
borhood of the points jwl ,Re(s, τ ) will also augment as shown
in Figure 2. As a consequence, the roots will migrate to the
instability region. Hence, the upper bound of delay ensuring
stability is obtained by increasing τ until the first pole of the
system is located at the jω axis. In a similar manner, ifRe(s, τ )
is a decreasing function of τ , the lower stability bound is
calculated.

Applying this algorithm to the quasi-polynomial defined
by (4), we get:

1) First compute zeros of the system without delay (τ =
0). The system characteristic zeros provided by s =
±j
√
α − k , satisfying the following condition:

k < α. (21)

Obviously, the zeros are placed on the imaginary axis.
2) As

n(s) = s2 + α and d(s) = −k, (22)

we obtain

W (w2) = n(jw)n(−jw)− d(jw)d(−jw),

= (−w2
+ α)2 − k2.

3) Solving W (w2) = 0 and considering the condition
(21), the following roots are determined:{

w2
1 = α−k > 0,

w2
2 = α + k > 0.

By testing Re(s, .) monotony in the points ±j
√
w1

neighborhood, we obtain

signRe
ds
dτ
|s=j
√
w1 = sign

dW (w2)
dw2 |w2=w2

1
,

= sign(−2k) < 0.

In this case, Re(s, .) is a decreasing function of τ .
Therefore, increasing the value of τ will result in cross-
ing the imaginary axis from right to left. Applying (19),

we obtain:

cos(τ
√
α − k) = 1 and sin(τ

√
α − k) = 0, (23)

Thus,

τ =
2lπ
√
α − k

where l = 0, 1, 2 . . . (24)

To maintain the roots in the left-half complex plane,
the following relation should be satisfied

τ >
2lπ
√
α − k

where l = 0, 1, 2 . . . .

Similar arguments are applied in the case of the roots
±j
√
w2. The functionRe(s, .) monotony test is obtained

applying the equation written below:

signRe
ds
dτ
|s=j
√
w2 = sign(2k) > 0. (25)

Roots cross the imaginary axis from left to right for the
following values of τ :

τ =
(2l + 1)π
√
α + k

where l = 0, 1, 2 . . . (26)

Which gives the following condition

τ <
(2l + 1)π
√
α + k

.

Thus, the system stability is achieved for:

2lπ
√
α − k

< τ <
(2l + 1)π
√
α + k

where l = 0, 1, 2 . . . (27)

Now, taking into account (14), (15), (21) and (27), we get
the following conditions on the values of k and τ that guar-
antee stability of the closed loop system defined by (3):

0 < k <
(4l + 1)

(8l2 + 4l + 1)
α,

2lπ
√
α − k

< τ <
(2l + 1)π
√
α + k

,
(28)

for l = 0, 1, 2 . . ..

III. GENERAL SECOND ORDER DELAY SYSTEMS
In this section, taking advantage of the obtained result (28),
we develop a method of stabilizing second order delay sys-
tems. Consider a prototype second order system with delay
given by

G(s) =
k2w2

ne
−τ s

s2 + 2ζwns+ w2
n
, (29)

where ζ > 0 is the damping ratio, wn is the natural frequency
and k2 a constant, to be stabilized by a proportional controller
having the form

C(s) = k1e−τζwn . (30)

In this case, the transfer function of the closed-loop system
of Figure 1 is given by

H (s) =
k1k2w2

ne
−τ (s+ζwn)

s2 + 2ζwns+ w2
n − w2

nk1k2e−τ (s+ζwn)
, (31)
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FIGURE 3. Stability regions (k1, τ ) for ζ = 0.707 and l = 0,1, . . . ,7.

and the characteristic equation of (31) is as follows

D(s, τ ) = s2 + 2ζwns+ w2
n − w

2
nk1k2e

−τ (s+ζwn). (32)

Now, we impose that the poles of the closed loop system are
located to the left of the damping factor ζwn by the change of
variable µ = s+ ζwn, we get

D(µ, τ ) = µ2
+ w2

n(1− ζ
2)− k1k2w2

ne
−τµ. (33)

It is clear that equation (33) has the same form of (4) where
α = w2

n(1 − ζ
2), k = k1w2

n. The case ζ = 0 corresponds
to an oscillatory system and we can directly apply the results
of the previous section. Two cases, namely the under-damped
and over-damped case, will be studied.

A. UNDER-DAMPED CASE
In this case, we assume that the open loop system is
under-damped ( ζ < 1), the stability regions of couple (τ, k1)
is provided applying the technique presented in Section II.
Therefore, by using the τ -decomposition method, the stabi-
lizing delay values are given by the following condition

2lπ
wn√

1− ζ 2 − k1k2
< τ <

(2l+1)π
wn√

1− ζ 2 + k1k2
, (34)

and the D-decomposition method permits the determination
of k1 stabilizing gain values given by

0 < k1 ≤
(4l + 1)

(8l2 + 4l + 1)
(1− ζ 2)

k2
, l = 0, 1, 2, . . . (35)

For wn = 1 and ζ = 0.707, the stability regions are
given in Figure 3. Figure 4 and Figure 5 show the stability
region in the (k1, τ, ζ ) space for l = 1 and l = 1, 2, . . . , 6,
respectively.

B. OVER-DAMPED CASE
Consider the over-damped (ζ > 1) case. We can just choose
k1 so that the polynomial D(s, 0) is Hurwitz stable and the
roots of W (w2) are all negative. However, the difficulty in
satisfying these two constraints comes from the fact that we
imposed the use of a proportional controller C(s) = k1e−ζwn .
This may not always be feasible to achieve by the use of one

FIGURE 4. Stability regions (k1, τ, ζ ) for l = 1.

FIGURE 5. Stability regions (k1, τ, ζ ) for l = 1,2, . . . ,6.

FIGURE 6. The Smith-predictor feedback system.

parameter k1. To solve this problem, Smith’s predictor is a
key. Assuming that C1(s) = k3, the transfer function of the
dashed block part in Figure 6 is given by

H1(s) =
C1(s)G(s)

1+ C1(s)G(s)
e−τ s, (36)

=
k2k3w2

n

s2 + 2ζwns+ w2
n + k2k3w2

n
e−τ s.

By an appropriate choice of controller C1(s) the system can
become an oscillatory type system. In fact, by choosing
C1(s) = k3 =

ζ 2

k2
, and the same variable change µ = s+ ζwn

we get

D(s) = s2 + 2ζwns+ w2
n + ζ

2w2
n = µ

2
+ w2

n. (37)

In the other words, the choice of

C2(s) = k4e−(τ+τ1)ζwne−τ1s, (38)
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FIGURE 7. Stability regions (k4, τ1) for ζ = 50, w2
n = 10 and k2 = 2 and

τ = 0.25 seconds where l = 0,2, . . . ,7.

FIGURE 8. Stability regions (k4, τ1, ζ ) for w2
n = 10 and k2 = 2 and

τ = 0.25 seconds where l = 1,2, . . . ,5.

as a delayed positive feedback, the transfer function of the
overall system presented in Figure 6 becomes

H (s) =
k4w2

nζ
2e−(τ+τ1)µ

µ2 + w2
n − ζ

2w2
nk4e−(τ+τ1)µ

, (39)

and the characteristic equation of (39) is as follows

D(µ, τ + τ1) = µ2
+ w2

n − ζ
2w2

nk4e
−(τ+τ1)µ. (40)

Therefore, we obtain in the same way, the relations defining
the domain of (k4, τ1) stabilizing values, given by the follow-
ing inequalities

2lπ
wn√

1− ζ 2k4
− τ < τ1 <

(2l+1)π
wn√

1+ ζ 2k4
− τ, (41)

and

0 < k4 ≤
(4l + 1)

(8l2 + 4l + 1)
1
ζ 2
, l = 0, 1, 2, . . . (42)

Stability regions in the plane (k4, τ1), for ζ = 50,w2
n = 10,

k2 = 2 and τ = 0.25 seconds with l = 0, 2, . . . , 7 are given
in Figure 7. Finally, Figure 8 shows a 3D plot of the stability
regions by varying the damping ratio.

FIGURE 9. Stability regions for α = 1 and l = 0,1, . . . ,6.

FIGURE 10. Stability regions in the (k, τ, α) plane for l = 1,2.

IV. ILLUSTRATIVE EXAMPLES
In this section, we present four illustrative examples. In the
first example, we consider the stabilization of an oscillatory
system. In the second example, a DC motor modeled by
a second order under-damped system, is treated. In the third
example, the proposed method is applied to a TCP/AQM sys-
tem, modeled by a second order over-damped delay system,
in congestion control. A fourth example is given to show
the application of the proposed approach to second order
multi-agent systemwith delayed positive feedback controller.
Example 1: Consider stabilizing an oscillatory system with
α = 1. Figure 9 gives the stability regions for l = 0, 1, . . . , 6
and Figure 10 illustrates the stabilizing regions in the (k, τ, α)
plane using condition (28). The state responses are shown
in Figures 11 and 12.
When supplied by voltage on the stator and on the rotor,
a motor usually exerts a torque T that acts on the mechanical
structure, which is characterized by the rotor inertia J and
the viscous friction coefficient B. The equation that links the
torque and the angular velocity w is given below

T (t) = Kt i(t) = J
dw(t)
dt
+ Bw(t), (43)

where Kt is the torque constant and i is the armature current.
The velocity of the motor can be used to get the position θ as
follows

w(t) =
dθ(t)
dt

. (44)
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FIGURE 11. Response curves to initial conditions x1(0) = 0.1, x2(0) = −1
, where x1 = y , x2 = ẏ , for k = 0.8, τ = 1.

FIGURE 12. Response curves to initial conditions x1(0) = 0.1, x2(0) = −1 ,
where x1 = y , x2 = ẏ , for k = 0.8, τ = 5.

Substituting the (43) into (44), gives

Kt i(t) = J
d2θ(t)
dt2

+ B
dθ (t)
dt

. (45)

Therefore, the transfer function of the DC motor is
given by

θ (s)
i(s)
=

b
s(s+ a)

, (46)

Example 2: The mechanical representation of a DC
motor is shown in Figure 13. Now, we stabilize the DC
motor by a positive delayed feedback controller as shown
in Figure 14. The closed loop transfer where G(s) is
given by

G(s) =
θ (s)
i(s)
=

b
s2 + as+ bk1 − bk2e−τ s

, (47)

=
b

(s+ a
2 )

2 + bk1 − a2
4 − bk2e

−τ s
,

=
b

µ2 + w2
n − ke−τ s

, (48)

with µ = s + a
2 , w

2
n = bk1 − a2

4 and k = bk2. Choos-
ing the same parameters given in [3], namely a = 5 and
b = 53, we obtain an under-damped second order system.

FIGURE 13. Mechanical representation of DC motor.

FIGURE 14. Block diagram of the DC servomotor in closed loop with the
delayed positive feedback controller.

FIGURE 15. Stability regions (k2, τ ) for l = 0,1,2..

Therefore, by using the τ -decomposition method, the
stabilizing delay values are given by the following condition

2lπ√
bk1 − a2

4 − bk2
< τ <

(2l + 1)π√
bk1 − a2

4 + bk2
, (49)

and the D-decomposition method permits the determination
of k2 stabilizing gain values expressed as

0 < k2 ≤
(4l + 1)

(8l2 + 4l + 1)
(k1 −

a2

4b
), l = 0, 1, 2, . . . (50)

Stability domains in the (k2, τ1) plane are given in
Figures 15, 16 and 17 for different values of l and k1. where
b = kt

J and a = B
J .

Example 3: In [24], the dynamic model of transmission
control protocol TCP flows is introduced by applying the
fluid flow model without taking into accounts low beginning
and timeout mechanism. Using this system together with
delays in the network, an active queue management AQM is
built.
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FIGURE 16. Stability regions (k2, τ,k1) for l = 0..

FIGURE 17. Stability regions (k2, τ,k1) for l = 0,1,2.

This model is depicted using the non-linear differential equa-
tion written below:

Ẇ (t) =
1
R(t)
−
W (t)
2
×
W (t − R(t))
R(t − R(t))

p(t − R(t)),

q̇(t) =
NW (t)
R(t)

− C,

R(t) =
q(t)
C(t)
+ Tp.

(51)

where Ẇ (t) and q̇(t) are W (t) and q(t) time-derivatives,
respectively. W (t) represents the TCP window size, q(t)
denotes the queue length in the router, p(t) denotes the
probability packet marking/dropping ( p(t) ∈ [0 1]), R(t)
denotes the round-trip time, C(t) designates the capacity of
the link, N the number of nodes and Tp refers to the delay
of propagation. Equation (51) shows the progression of the
TCP source congestion window w(t). p(t) signal represents
the source loss rate, while delay τ corresponds to the RTT
observed by the source. In system (51), (W , q) is the state
of the system that should be controlled; p denotes the input.
Thus, the equilibrium point (W 0 , q0 , p0) is given by resolv-
ing Ẇ (t) = 0, assuming that W (t − Rc) = W (t − R0) = W 0

d
and q(t − Rc) = q(t − R0) = q0d .

After linearizing the nonlinear system [24], we obtain the
following transfer function

G(s) =
C2

2N e
−R0s

(s+ 2N
R20C

)(s+ 1
R0
)
=

k2w2
ne
−R0 s

s2 + 2ζwns+ w2
n
.

FIGURE 18. Stability domain (k4, τ1) for N = 30.

FIGURE 19. Stability domain (k4, τ1) for N = 90.

In this case, we have the following values: wn = 1
R0

√
2N
R0C

,

k2 =
R30C

3

4N 2 and ζ = 1
2

(√
2N
R0C
+

√
R0C
2N

)
and τ = R0.

The transfer function of the applied proportional controller to
the closed-loop AQM system is given by C(s) = k1e−R0ζwn .
Since ζ > 1, we find values of k1 such that all roots ofD(s, 0)
are situated in the left half of the complex plane. In addition,
W (w2) must have no positive roots. These two conditions lead
to the determination of the values of k1 ensuring stability of
the system

k1 <
4N 2

R30C
3
. (52)

Using the proposed method presented in the previous section,
we can draw the domains of (k1, τ1) stabilizing values of
the delayed positive feedback controller defined by (38).
These domains are given in Figures 18, 19, 20, 21 and 22.
Preliminary results for this example were given in [25].

Example 4: In this example we consider the consensus
problem of a multi-agent network system. A second order
linear dynamic model for each agent i is given below:

ẋi(t) = vi(t)

v̇i(t) = axi + bvi + ui(t) (53)
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FIGURE 20. Stability domain (k4, τ1) for N = 120.

FIGURE 21. Stability domain (τ1, k4, ζ ) for l = 1.

FIGURE 22. Stability domain (τ1, k4, ζ ) for l = 1,2,3.

where xi ∈ R, is the position state, vi ∈ R is the velocity state
of ith agent. The consensus protocol with delayed positive
feedback can be written as

ui(t) = −g1
n∑
`=1

ai,`[x`(t)− xi(t)]

+ g2
n∑
`=1

ai,`[x`(t − τ )− xi(t − τ )]. (54)

FIGURE 23. Network topology of 6 agents.

FIGURE 24. Stabilizing domains of (g2, τ ) for a = 3, b = 0, g1 = 0,
l = 0,1, . . . ,5.

FIGURE 25. Consensus achieved for a = 3, b = 0 and τ = 8 seconds,
g1 = 0 and g2 = 0.01.

Similar to [22], we obtain its characteristic equation as
follows:

D(s, τ ) ,
n∏
i=1

fi(s, τ ) = 0, (55)

where fi(s, τ ), i = 2, 3, . . . , n are quasi-polynomials given by

fi(s, τ ) = s2 + bs+ a+ λig1 − λig2e−τ s, (56)

where λi, i = 2, 3, . . . , n are the non-zero eigenvalues of the
Laplacian matrix of the graph. Then, using (28), we obtain
the following result

0 < g2 <
4l + 1

8l2 + 4l + 1

(
g1 +

a− b2
4

λmax

)
,

max {τ1, τ2} < τ < min {τ3, τ4} ,
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FIGURE 26. Consensus not achieved for a = 3, b = 0 and τ = 2 seconds,
g1 = 0 and g2 = 0.2.

FIGURE 27. Stability domain of (g2, τ ) for a = 0, b = 1.4 and g1 = 2.2.

FIGURE 28. Consensus achieved for a = 0, g1 = 2.2, g2 = 1 and τ = 0.8
seconds.

with

τ1 ,
2lπ√

a− b2
4 + λmax (g1 − g2)

,

τ2 ,
(2l + 1)π√

a− b2
4 + λmax (g1 + g2)

,

τ3 ,
2lπ√

a− b2
4 + λmin (g1 − g2)

,

τ4 ,
(2l + 1)π√

a− b2
4 + λmin (g1 + g2)

,

with λmax = max2≤i≤n {λi} and λmin = min2≤i≤n {λi}.

FIGURE 29. Consensus achieved for a = 0, g1 = 2.2, g2 = 0.5 and τ = 2.5
seconds.

FIGURE 30. Consensus not achieved for a = 0; b = 1.4; g1 = 2.2; g2 = 3
and τ = 0.8 seconds.

FIGURE 31. Stability domain of (g2, τ ) for a = 1, b = 1.4 and g1 = 2.2.

For simulation, we consider a network with the following
topology:
Its Laplacian matrix is given by

L =


4 −1 0 −1 −1 −1
−1 5 −1 −1 −1 −1
0 −1 4 −1 −1 −1
−1 −1 −1 4 −1 0
−1 −1 −1 −1 5 −1
−1 −1 −1 0 −1 4

 (57)

which leads to: λmin = 4, λmax = 6.
The stability domains for a = 3, b = 0, g1 = 0, l =
0, 1, . . . , 5 are given in Figure 24. The state responses are
shown in Figures 25 and IV. For a = 0, b = 1.4, g1 = 2.2,
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FIGURE 32. Consensus achieved for a=1, b=1.4 and τ = 0.5 seconds,
g1 = 2.2 and g2 = 1.5.

FIGURE 33. Consensus not achieved for a=1, b=1.4 and τ = 1.5 seconds,
g1 = 2.2 and g2 = 2.5.

l = 0, 1, the stability domains are given in Figure 27, its
state responses are shown in Figures 28, 29 and 30. Finally,
the stability domains for a = 1, b = 1.4, g1 = 2.2, l = 0, 1
are given in Figure 31 and its state responses are shown
in Figures 32 and 33.

V. CONCLUSION
Applying both τ -decomposition and D-decomposition tech-
niques, stability of an oscillating second order systems with
delayed positive feedback is examined. This method allows
localizing stability domains of the parameters of a simple
delayed positive feedback. Based on the obtained results,
an extension was formulated to a delayed second order sys-
tem. Four illustrative examples were given. In the first exam-
ple, a delayed positive feedback for stabilizing an oscillatory
system is given. In the second example, we stabilized an
open loop under damped DC motor. In the third example,
a controller was designed for AQM routers to address the
congestion situations and minimize their impact. It consists
of a simple positive feedback controller combined with Smith
predictor. In the fourth example, the consensus problem of
a second order multi-agent systemwith delayed positive feed-
back, was treated.
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