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ABSTRACT Artificial Intelligence techniques powered by deep neural nets have achieved much success
in several application domains, most significantly and notably in the Computer Vision applications and
Natural Language Processing tasks. Surpassing human-level performance propelled the research in the
applications where different modalities amongst language, vision, sensory, text play an important role in
accurate predictions and identification. Several multimodal fusion methods employing deep learning models
are proposed in the literature. Despite their outstanding performance, the complex, opaque and black-box
nature of the deep neural nets limits their social acceptance and usability. This has given rise to the quest for
model interpretability and explainability, more so in the complex tasks involving multimodal AI methods.
This paper extensively reviews the present literature to present a comprehensive survey and commentary on
the explainability in multimodal deep neural nets, especially for the vision and language tasks. Several topics
on multimodal AI and its applications for generic domains have been covered in this paper, including the
significance, datasets, fundamental building blocks of the methods and techniques, challenges, applications,
and future trends in this domain.

INDEX TERMS Deep multimodal learning, explainable AI, interpretability, survey, trends, vision and
language research, XAI.

I. INTRODUCTION
Remarkable improvements of deep neural nets in the inde-
pendent tasks based on several modalities such as vision,
sensor data, textual data, and language have given rise to
many new trends and applications in the integrated space
of deep multimodal learning [1]. Deep neural nets [2] have
proved exceptionally effective for several single modality [3]
or multimodality tasks [4]. However, the complex hidden
layers processing in the deep neural nets makes them difficult
to interpret, opaque, and black-box models with little or no
understanding of their internal states and decision-making
process [5]. Gaining meaningful knowledge and understand-
ing of how and why the model arrived at a particular decision
or outcome is crucial inmodel explainability, making it one of
the important evaluation metrics [6]. The lack of understand-
ing of the underlying process questions the model’s cred-
ibility and transparency, impacting its social acceptability
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and usability [7], [8]. In a multimodal environment with
diverse modalities having varied scales and representations,
the extraction of information from various heterogeneous
sources is essential for the integration and fusion of these
modalities. Several applications and tasks for multimodal
AI are proposed in the literature combining various modal-
ities. However, the most prevalent applications are found in
vision and language tasks. We have considered the image
and video modalities in the vision tasks and text and audio
modalities in language tasks in this work.

Multimodality extracts and combines vital information
from the respective modality source and solves a given
problem with richer representation and performance than
the individual modalities [9]. The complementary nature of
modalities is explored in [10] to complement the missing
data or noise in modalities The inter, intra and cross-modal
interactions, correlations, and relationships between multiple
modalities with high mutual information are explored to have
improved predictions and performance. An optimal fusion
scheme would combine the modalities and ensure that the
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resultant model reflects the salient features of input modal-
ities to generate a rich, joint representation for a downstream
task [11]. Vision and language models exploit cues in the
question and biases in the data distribution with minimum
dependence on visual content leading the model to answer
a task. However, due to the non-consideration of vision
info, the model does answer the questions with high confi-
dence even though they are wrong with intrinsic weaknesses.
In Visual Questioning Answering to diagnose the model’s
performance, the inverse Visual Question Answering task is
proposed in a multimodal setting [12]. Answering questions
without proper grounding and pointing to evidence ham-
pers performance with multiple modalities [13]. The com-
monly used method for interpreting the multimodal setting
results is Grad CAM’s attention maps [14]. Still, they do
not identify whether the model looks at the correct region
to answer the questions. Attention maps do not guarantee
explanatory power [15] as the models and human percep-
tion does not concentrate on the same areas while provid-
ing the output. Lack of alignment in the image-text pairs
emphasizes that mere accuracy is not enough if it is not
accompanied by a valid justification, i.e., to be right for
the right reason [16]. Explainability efforts are also carried
out by generating visual [17] and textual explanations [18],
but they can result in multiple explanations with varied
evaluation metrics. Modular approaches make the system
interpretable by design [19], [20] but are majorly tested
on synthetic datasets such as CLEVR [21]. To exploit the
complementary assistive and explanatory information and
improved predictive power from multiple modalities, a deep
understanding of the model’s working, predictions, and flaw
detection are of utmost importance by using the respective
modalities [22].

This growing critical need and importance have led to
several reviews emphasizing the multifaceted explainability
topic in black-box models such as deep neural nets [23].
The existing literature has a number of surveys on explain-
able AI such as [5], [8], [24]–[30] and on explainable deep
learning [31], [32]. In [27], Gilpin et al. suggested a tax-
onomy for explaining the explanations by classifying the
XAI methods based on- processing, representation, and the
type of explanation produced with their evaluation based on
completeness to model and substitute tasks. In [32], a survey
of different methods on understanding and interpreting deep
neural nets are discussed. In [33], a survey of explainable
deep learning applications for medical imaging tasks from
the perceptive of deep learning researcher, developer, and
end-user is presented. Reference [34] presents the catego-
rization of different explainability methods applicable to the
medical and healthcare sector. In [35], a survey on inter-
pretability methods in machine learning from a causal per-
spective is presented. Graph neural nets show a key role
in explainability from a causal perspective. Constructing a
multimodal feature representation space spanning diverse
modalities from a causal and counterfactual perspective in the
medical domain is detailed [36]. Reference [37] presents an

overview of the Explainable AI (XAI) approaches for theNat-
ural Language Processing domain. Visual analytics [38] plays
a vital role in understanding the deep neural net models using
different techniques such as node-link diagrams, dimen-
sionality reduction, line charts, temporal metrics, and
instance-based analysis; graphical methods analyze model
parameters, individual computational neurons, and activa-
tion units. Visual representations, interactions, attribution,
and feature visualization techniques provide interpretability,
scalability, bias, and adversarial attack detection covering dif-
ferent visualization techniques. Existing surveys in the field
present either generalized or specific perceptive to XAImeth-
ods, techniques, and applications from the unimodal context.
In contrast, we focus on the applicability of explainable AI
in the multimodal setting involving diverse heterogeneous
multiple modalities that have not been previously addressed
and are key to this work. This review encounters explainabil-
ity in multimodal tasks with a specific focus on the vision
and language tasks, where interpretability in the model is
established using disentangled representations, multimodal
explanations, and counterfactuals techniques [27].

A. ORGANIZATION OF THE SURVEY
This paper provides an introduction to explainability in deep
neural nets with a specific focus on the explainability in
the multimodal setting. We consider and discuss deep mul-
timodal learning for different vision and language tasks and
typical challenges in the multimodal environment. The meth-
ods and techniques of multimodal data fusion and integration
are discussed in Section 2. Different types of explainability
techniques in unimodal and multimodal settings are cov-
ered. The taxonomy of varying XAI techniques is presented
in Section 3. The significance of explainability in multi-
modal networks with introspection and justification systems
is discussed in Section 4. Different multimodal explana-
tion techniques such as attention-based approaches, coun-
terfactual explanations, interactive approaches, graph-based
approaches, attribute-based techniques are clearly and dis-
tinctly classified and discussed in Section 5. Explanation
evaluation methods based on the human mental model and
automated processes are reviewed in Section 6. Different
explainability requirements to satisfy the needs and expec-
tations of different stakeholders are analyzed in Section7.
Widely used datasets for explainability in multimodal net-
works and applications are listed in Section 8. Topics aligned
with multimodal explainability setting such as multimodal
bias and fairness, adversarial attacks that enhance robust-
ness and interpretability are discussed in subsequent sec-
tions in Section 9 and Section 10. Finally, we conclude
the survey outcomes as observations and recommenda-
tions that showcase the gaps and findings with the fur-
ther scope of improvement and persisting challenges, future
research trends, and directions to pave a roadmap for further
research in this active domain in Section 11 and Section 12
respectively.
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II. MULTIMODAL MACHINE LEARNING
The McGurk effect [39] highlighted that the audio and visual
information is merged into a unified, integrated perception
that led to audio-visual speech recognition (AVSR) systems,
giving rise to multimodal multisensory interfaces and mul-
timodal information retrieval systems. Large scale datasets,
faster GPUs, visual and language features are key enablers of
multimodal machine learning research in the deep learning
era [40].

Human perception is multimodal. Humans have the inher-
ent cognitive ability to relate and process information from
multiple heterogeneous modality sources at a single instance
through the senses. We perceive and tackle things in a mul-
timodal way. Modality is the form in which information is
stored or represented and is conveyed through a media [40].
With the recent technological advances, the data come from
a diverse number of sources. For example, data on social
media sites is heterogeneous, high dimensional, complex, and
is represented by multiple modalities such as image, text,
audio, and video in the verbal, vocal, and visual form [41].
These diverse modalities differ in their scales, representation
format, varied predictive power, weights, and contributions
towards the final task [9]. Optimal data fusion schemes such
as early [11], late [42], and hybrid fusion [43] schemes are
developed to fuse themodalities at data, feature, decision, and
intermediate mixed levels [44]. Deep neural nets [45],kernel-
based methods [46], and graphical models [47], [48] are
employed for analysis and handling such data depending on
the downstream task [40]. Individual modalities are mapped
onto a common shared representation vector space either
through joint or coordinated representation [49].

Multimodal setting leverages improved predictive power
compared to its unimodal counterparts due to involvement
and knowledge extraction from multiple modalities. This
achieves improved results and richer representation with
task-relevant features, reducing data size compared to single
modality representations [4]. The interplay between multi-
ple heterogeneous and high dimensional diverse modality
sources with diverse representation formats makes explain-
ability a key concern for multimodal data. This leads to deriv-
ing comprehensive global insights about the model’s design,
working principle, decision-making process, flaw detection,
and handling the bias and fairness issues [50]. Multimodal
data provide complementary, additive, combined, and com-
prehensive information exploring the inter, intra, shared, and
cross-modality associations and correlations between differ-
ent modalities [51].

Several applications are reported in literature where multi-
ple modalities are leveraged. Table 1 enlist such applications
in various generic domains. Table 2 refers to a number of
multimodal applications applied to critical domains namely
healthcare, autonomous robots, finance as there is a growing
use of AI in these domains leading to a tremendous need for
explainability for social acceptance and usability.

TABLE 1. Multimodal applications applied in various generic domains.
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TABLE 2. Multimodal applications in critical domains. TABLE 2. (Continued.) Multimodal applications in critical domains.

However, due to persistent heterogeneity in multimodal
data, it remains challenging to develop new and efficient
analytical methodologies. It is a complex task to deal with
the multimodal data to explore their comprehensive benefits
that have attracted rich attention in the research domain in
recent years [84]. Hence there is an urgent need to under-
stand the approaches, methods, and techniques for multi-
modal data fusion and build an integrative framework for
developing tools and applications in various disciplines [85].
Interpretability, explainability, and contextual cognitive rea-
soning assist in understanding multimodal data in a better
way [86]. With the development of new benchmarks, we can
identify and handle the flaws in model evaluation metrics,
dataset bias, robustness, and spurious correlations [87] in the
multimodal data.

A. TYPICAL CHALLENGES IN MULTIMODAL SETTING
Multimodal AI is inherently complex. Following broad-scale
challenges are identified [40].
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1) Representation is the method or format in which
modalities are represented that extracts the comple-
mentary or redundant information between multiple
modalities. Due to the heterogeneous nature of mul-
timodal data, its representation is very important and,
at the same time, challenging too. For example- the
sound is a signal, and the image is a 3D representation
with varied scales and dimensions to represent. How to
bring them into the same common representation space
is an essential aspect of implementation.

2) Translation refers to the process of explaining how-to
transform or convert data from one modality to another
when heterogeneous. The relationship betweenmodali-
ties is often subjective. For example, translating a video
to its corresponding text description.

3) Alignment is the mapping of the direct correlations
between sub-elements from two or more different
modalities. For example, we may want to align the
streaming video and its subtitles. To overcome this
challenge, we measure the similarity between other
modalities and deal with possible long-range depen-
dencies and ambiguities. Alignment and representation
can be considered as overlapping tasks with a marginal
difference.

4) Fusion is the method of integrating or fusing informa-
tion from two or more modalities to perform a predic-
tion. For example- for audio-visual speech recognition,
the lip motion’s visual description is combined with the
speech signal to predict spoken words. The information
coming from different modalities may have varying
predictive power, importance, contribution, and noise
topology, possibly missing data in at least one of the
modalities.

5) Co-learning is the process of sharing knowledge and
information between multiple modalities. It is primar-
ily applied when one modality is a rich source of infor-
mation, whereas the other is a poor information source.
The knowledge between modalities can be exchanged
and shared to enrich the modeling process, such as in
Transfer Learning.

Multimodal data fusion is often prone to overfitting as
we have data from various sources and variable learning
rates that generalize differently. The overfitting problem
can be addressed by implementing a dynamic and adaptive
fusion scheme and a regularization technique such as gradi-
ent blending that computes the optimal blend of modalities
based on their overfitting behavior [88]. Explainability in the
multimodal setting is vital to have a comprehensive global
view of data and address the associated challenges [89].
Table 3 describes modality representations, architectural
requirements, and pre-trained models in multimodal vision
and language paradigm.

B. MULTIMODAL DATA FUSION TECHNIQUES
Depending on the level at which the fusion of input modal-
ities occurs in the network, the multimodal data fusion

TABLE 3. Representation and pretraining of vision and language
modalities.

mechanisms are classified as early fusion (data or feature
level fusion, late fusion (decision level fusion), and hybrid
(intermediate or joint) fusion. The fusion mechanisms are
highly data, task, and application-specific; hence, the appro-
priate and optimal fusion mechanism is critical. The data
fusion methods are broadly classified into early, late, and
hybrid fusion approaches.

1) EARLY FUSION
Early fusion is a traditional way of integrating data before
its analysis. It has two methods. The first method is fus-
ing data by removing the correlations. The second method
is to combine data at its lower-dimensional latent sub-
space [99]. Statistical solutions such as Principal Component
Analysis [100], Independent Component Analysis [101], and
Canonical Component Analysis [102] are proposed for fusion
by reducing the data dimensions. Early fusion is applied and
performed on unprocessed raw data. Features are extracted
before fusion for modalities with variable sampling rates to
avoid complexity. Syncing of data sources is also difficult
when they are either in discrete and continuous forms. So,
converting data sources into a fixed representation is too dif-
ficult and time-consumingwith early fusion techniques [103].
Early data fusion is assumed to be conditional dependent,
but there is a high correlation among multiple modalities;
for example, MRI is associated with depth. Modalities are
associated at a higher level of abstraction [103]. The out-
comes of individual modality are expected to be processed
irrespective of each other. Features are fused using simple
concatenation [104], pooling, and gated units [105]. In reality,
modalities have different dimensions for fusion. The major
drawback of using early fusion is that- it removes a large
amount of data from the modalities before fusing it. The
method fails in the synchronization of time stamps. This
problem can be solved if we collect the data at similar
sampling rates. Different solutions to overcome this prob-
lem are proposed, combining sequential and discrete events
with continuous data through training, pooling, and con-
volution [106]. An early fusion approach is schematically
represented in Fig. 1.
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FIGURE 1. An early fusion approach.

2) LATE FUSION
Late fusion uses individualmodality sources for fusion during
decision-making. It is drawn from the ensemble classifiers
using the techniques of bagging and boosting [42]. When
the modal data sources are uncorrelated in terms of sampling
rate, data dimensionality, this technique can be used. Even
though there is no such proof that late fusion is better than
early one, many researchers prefer late fusion over early
fusion [51].Optimal integration of modalities, involve rules
such as the Bayes rule [107],max-fusion [108], average-
fusion [109], a majority vote for this approach. Late fusion
methods are common as they resemble human cognitive
abilities and can be integrated to generate a single com-
mon decision. Once we go to the higher abstraction level,
the importance of content decreases; hence, the actual fusion
level plays a vital role [84]. A late fusion approach is schemat-
ically depicted in Fig 2.

FIGURE 2. A late fusion approach.

3) HYBRID FUSION
The deep neural network acts as a building block for inter-
mediate fusion. It is the most widely used approach [110].
It changes input data to higher-level abstraction. Hybrid
fusion learns a joint representation of different modalities.
The fusion takes place at the commonly shared representation
layer. The loss is propagated back to the feature extractor
network during the training process [111]. Various modalities
can be combined using slow or gradual fusion. However, this
kind of fusion may lead to model overfitting and fail to learn
the different correlations. Deep multimodal fusion perfor-
mance is improved by reducing the data dimensions. After
constructing a shared representation layer, PCA [100] and
auto encoders [46] are used. Hybrid data fusion is far superior
to early and late fusion. A ‘‘slow or gradual fusion’’ approach
to integrating multiple fusion layers by fusing modalities
from their high to low contribution performs well [112].
A hybrid fusion approach is depicted in Fig 3. A compar-
ison of early, late, and hybrid fusion approaches is shown
in Table 4.

C. RECENT DATA FUSION TECHNIQUES
In the last few years, more sophisticated approaches to fuse
multimodal data are reported in the literature. These are

FIGURE 3. A hybrid fusion approach.

TABLE 4. Comparision between early, late and hybrid fusion techniques
based on prominent features.

presented in this section. The fusion of unimodal embedding
spaces into a common joint or shared representation possess-
ing knowledge of semantic visual attributes and contextual
language features is necessary to perform various multimodal
integrated tasks [113]. The most common and widely used
multimodal fusion pooling techniques reported in the lit-
erature are concatenation, element-wise multiplication, and
weighted sum [10]. The model learns intra model features
than the intermodal one; the greedy layer-wise pretraining
approach is also used in different settings [46]. The tensor
fusion network, where the unimodal, bimodal, and trimodal
interactions are modeled using a 3-fold Cartesian product,
is presented in [114]. It imposes high computational require-
ments and complexity on the system. All the modalities
are used without any extraction. The low-rank multimodal
fusion technique [115] addresses the shortfall of tensor fusion
networks by using low-rank tensors for fusion but results in
a complex architecture with a lot of computation and pro-
cessing. Tensor-based multimodal fusion techniques provide
excellent performance, but some approaches only consider
‘‘bilinear or trilinear pooling,’’ which considers high-order
correlations but results in very high dimensionality issues
large outer product computation. [116], [117], which lacks
exploiting the multilinear fusion power [118]. Feature fusion
at a single instance ignores the local inter-model correla-
tions, leading to performance degradation [118]. A slow,
gradual fusion approach fusing modalities from higher to
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lower predictive power is recommended [112]. Multimodal
deep learning performance is improved by maximizing the
variation in mutual information of different channels [119].
Other approaches such as Multimodal Tucker fusion decom-
pose and form a low-rank matrix decomposition overcomes
bilinear polling’s drawbacks by reducing complexity through
tucker decomposition [120]. Memory-based fusion for multi-
view sequential learning models the modality-specific and
cross-modal interactions for multi-view datasets in [121].
Dynamic adaptive fusion scheme where the network decides
the optimal way to fuse the modalities dynamically is pre-
sented in [122]. Cross-modal fusion by exploiting correla-
tion across modalities by exchanging modality sub-networks
is interpretable to a large extent [123]. Channel exchang-
ing fusion that can model the inter and intra model trade-
off during fusion with a parameter-free dynamic approach
and sub-network channel exchange [124] are proposed. The
multimodal fusion task has also been modeled as a neural
architecture search algorithm to find an appropriate search
space and a suitable architecture to fuse the modalities [125].
A neural network-based model architecture based on global
workspace theory from cognitive science is proposed to
cope with uncertainties in data fusion with attention models
across different modalities [126]. Deep-HOSeq Deep net-
work with higher-order common and unique sequence infor-
mation is proposed for sentiment analysis that models the
inter and intra modalities with no reliance on attention mech-
anism [127]. Deep learning-based multimodal data fusion
results can be optimized by including the model explainabil-
ity, interpretability, justification, and reasoning capabilities
for better and improved performance and predictions [128].
A summary of recent multimodal data fusion approaches is
presented in Table 5.

This section provided a review of the traditional and
recent methods for multi-modal data fusion techniques. Var-
ious multimodal applications are also provided. However, all
the ways, especially the AI-based approaches, employ the
black-box models, which are hard to interpret. The under-
lying functioning of these networks is not evident, and it
becomes difficult to justify the outcomes of such models.
It is necessary to bring in the explainable AI techniques to
understand and explain such methods working and processes.
It is even more challenging in a multimodal setting due to
various scales of representations, alignment and resolutions
than a single modality setting, as discussed previously. In the
next section, we present the review of the existing explainable
AI methods and their applications in multimodal AI tasks,
with specific reference to vision and language tasks.

III. EXPLAINABLE AI (XAI)
XAI is a multidisciplinary field involving different perspec-
tives from social science, cognitive science, psychology, and
human-computer interaction [50]. Artificial Intelligence sys-
tems powered by deep neural nets have achieved state-of-the-
art results in various domains including, Computer Vision,
Natural Language Processing, and Speech recognition [129].

TABLE 5. Recent multimodal data fusion techniques.

But the primary focus lies on building intelligent systems
achieving higher accuracy and predictive power, neglect-
ing the trust and transparency aspect [130]. The underlying
complexity and hidden layer processing in the deep neu-
ral nets make them opaque and black box models with an
accuracy and interpretability tradeoff, i.e., more performing
models are less interpretable [26]. It is hard to understand,
interpret, and explain these models’ internal processing and
decision-making processes, limiting their social acceptance
and usability [30]. In general, systems are interpretable if
humans understand and interpret their working mechanism
and decision-making process by asking questions like why
the system made a particular prediction? Why answer the
interpretability aspect, and how justifies how the system came
up to a specific decision answer the explainability part [27].

‘‘Interpretability is the degree to which a human can under-
stand the cause of a decision and can consistently predict the
model’s results’’ [6]. Deep neural nets lack interpretability
as it is difficult to analyze which modalities or features are
driving the predictions [28].In real-world scenarios impact-
ing human lives by automated algorithmic decision assis-
tance such as in legal, healthcare, finance, transport, military,
and autonomous vehicles, we expect AI systems to provide
their predictions with proper evidence and justification [32].
The system’s explanation should be human interpretable and
understandable, mapping the human mental model to build
trust, transparency, reliability for success and failure, robust,
fair, and unbiased applications underlying ethical machine
learning principles [131], [132]. Explainability is a legal
concern to comply with the EU General Data Protection
and Regulation (GDPR) act asking for ‘‘Right to explana-
tion’’ to the users of an automated decision-making sys-
tem [133]. To understand the inner working and learning
mechanism, model debugging- to analyze the right/wrong
predictions, design improvement, detect and mitigate adver-
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sarial attacks [16], i.e., artifacts in the datasets required in
handling bias and fairness issues in the models explainability
has become a prime concern to be addressed. The XAI field
is continuously evolving and is critical in developing new AI
algorithms and methods to explore how the models work and
why they succeed or fail, to improve their design driving us
towards the responsible AI paradigm of the future [24].

AI models are often right but sometimes for the wrong rea-
son. However, the justification for the decision is often absent
or vague [134]. Explainability in deep neural nets can be
introduced in three different model training and development
stages, namely in premodeling, modeling, and post-modeling
phase [24].

A. LEVELS OF EXPLANATION MODELLING
1) Pre modeling-The explainability is included before

the model development process. It primarily involves
understanding and describing the data using exploratory
data analysis, dataset documentation, dataset summa-
rization, explainable feature engineering techniques,
data collection without biases, and good experimental
design to ensure clarity.

2) During modelling-Development of inherently explain-
able models, such models are explainable by design
and typically employ intrinsic methods. Hybrid mod-
els such as deep KNN, Contextual Explanation Net-
work [135], Self-Explaining Neural Network [136],
joint prediction and explanation, and architectural
adjustments through regularization techniques [137]
are examples.

3) Post hoc Modelling is implemented after the model is
developed by extracting explanations for already devel-
oped models through perturbations [138], Backpropa-
gation methods [14], and proxy models [139], as it can
be freely applied to any model without any constraints.

B. SCOPE OF EXPLANATION
The explanation’s scope is either local or global, depend-
ing on whether the explanation is derived from a single
data instance or the entire model. Often local explanations
are preferred over the global as they derive predictions for
a particular data point rather than the model as a whole.
XAI taxonomy is represented in Fig4. depicting the explain-
ability stages, scope, and working principle [27].

C. MODEL SPECIFIC EXPLANATION
Model-specific explanations apply to a specific model.
Human interpretable explanations such as gradient-based
methods [140], [141] have been proposed for the convolution
neural networks. However, they do not focus on the entire
region in an image to address a query.

D. MODEL AGNOSTIC EXPLANATION
Model agnostic methods [142], [143] that are independent
and irrespective of the model have general modularity in
design and can be applied for other domains. Various post

FIGURE 4. XAI Taxonomy.

hoc explainability approaches, such as partial dependent plot
(PDP) [144], show themarginal effect of the final predictions’
features. Individual conditional expectation (ICE) plot [145]
visualize the dependence of features on the final prediction
for unique data points, providing more insights than the PDP
approach of averaging on all data points. Permutation feature
importance works because a particular feature is important
if alteration of that feature results in large model errors.
Local interpretable model-agnostic explanations (LIME) is a
perturbation-based method applied for a single data point and
observes a change in the output based on the corresponding
shift in input [143]. Shapley values [146] are used when each
data point’s contribution is variable in the final prediction.
However, they work in a collaborative environment for deriv-
ing final predictions. Prototypes and criticisms help in mini-
mizing the overgeneralization of the dataset. A prototype is a
data point that represents the entire dataset. Criticism is a data
point that is not well represented by the prototype; both proto-
type and criticism describe the data and lead to interpretable
predictions [147]. Influence functions show the influence of
each feature on the final prediction. They are used to under-
standmodel behavior, model debugging, detect dataset errors,
and even create adversarial attacks [148]. In [149], model
agnostic D-RISE, a visual explanation method for the pre-
dictions of object detectors irrespective of the model’s inner
working is presented. Human importance aware network-
tuning (HINT) [150] method improves visual grounding by
attending to the same visual features in an image which
humans find important for predictions are few further exam-
ples of model agnostic methods.

E. FEATURE ATTRIBUTION BASED METHOD
Feature attribution-based methods highlight image regions
that are significant contributors in decision-making; however,
it lacks semantic reasoning and interactions. Following meth-
ods are reported in the literature.
Visualization techniques focus on highlighting the input

features most contributing and affecting the model’s out-
put. They are classified into back propagation-based and
perturbation-based methods.
Back propagation-basedmethods look for relevant features

based on gradients passed through the network. Visualization
techniques such as weighted activations in Class Activation
Mapping (CAM).
Gradient-based methods like saliency maps that focus

on pixel intensities are based on high contributing fea-
tures [140]. Gradient Input [151] improves the sharpness
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of the attribution maps. The attribution is computed using
the input’s partial derivatives concerning the input and
multiplying them by themselves. Grad-CAM [14] captures
class-specific gradient information in layers to produce a
localization map of important features. Integrated Gradi-
ent [152] computes the model’s prediction output gradient to
its input features and requires no modification to the original
deep neural network. DeepLift [151]calculates contribution
scores based on reference activations or methods based on
mathematical decomposition. Layer wise-Relevance Propa-
gation (LRP) [153] computes backward relevance propaga-
tion to highlight the contributing features. Shapley Additive
explanations (SHAP) [147] . Shap is the average contribution
of all data points in a prediction. All these methods require
access to the model parameters and thus an understanding of
the model architecture.
Perturbations-based Methods: Visualize feature relevance

by comparing output between inputs and altered or changed
copy of the input like Occlusion sensitivity, RISE [149],
LIME [143], etc. to identify sensitive features for prediction
are proposed.

F. DISTILLATION METHODS
Distillation methods are classified into local approximation
models that build an approximate local model to derive
insights for predictions based on a single data point exam-
ple LIME. The model translation method builds a surrogate
model on top of the original model whose interpretation is
expected. E.g., decision trees that are inherently explainable.

G. INTRINSIC METHOD
Intrinsic methods are inherently explainable. They self-
explain using models’ attention mechanisms that focus
on important visual and textual regions. Joint training
approaches that jointly model the predictions and explana-
tions fall under this category and are further discussed in
section 5. Fig 5. represents the taxonomy of various unimodal
and multimodal deep explainability methods, which are pre-
sented here. Different deep learning-based XAI techniques
are presented in Table 6.

IV. EXPLAINABILITY IN MULTIMODAL DATA
A. SIGNIFICANCE OF EXPLAINABILITY IN MULTIMODAL
DATA
Multimodal explanations play a vital role in building intel-
ligent systems powered with understanding and reasoning
capabilities inherent and integral to humans [159]. In real-
world settings, systems that are performing and explain-
able are desired. Unimodal vision or language systems offer
either image-based visualizations of important input features
or text-based post hoc justifications incapable of providing
introspection and reason in multiple situations and scenar-
ios [160]. In contrast, the multimodal setting of explanation
explores the complementary and explanatory strengths in
the different modalities, leveraging improved explanations
that can justify, localize the evidence better supporting the
final decision and offer significant benefits over unimodal

FIGURE 5. Methods for explaining deep neural nets.

FIGURE 6. Multimodal explainability workflow pipeline.

approaches [4]. In specific scenarios, language modality may
provide more insights and valuable information than the
visual one to understand the concept and rationale better and
vice versa [4], showcasing the complementary behavior of
modalities in which one modality assist in enhancing the
performance of the other. Multimodal sources extract more
and comprehensive information from varied sources. Hence,
they can offer diagnostic strengths that help understand the
model working mechanism, model debugging i.e.to identify
flaws in the model and ensure whether the model works
as intended. The multimodal explainability models can also
identify adversarial attacks and defense mechanisms [161],
fairness and bias [13], providing scope for troubleshooting,
rectification, improving overall model performance, predic-
tive and explanatory power.

The primary explainable goal for an opaque, black box
explanatory system such as deep neural nets is to answer how
and why the model makes a certain prediction by inspecting
the driving factors behind their decisions [162]. In reality,
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TABLE 6. Different XAI techniques for explaining deep neural nets.

it is found that many explanatory systems are based on scien-
tific modeling than explanation generation [163] and hence
are not user-centric and role-based. They do not satisfy the
needs of different stakeholders [131]. For instance, consider
the task of interpreting an X-ray for diagnostic purposes; the
radiologists are keen on mapping the visual evidence in the
image to predict the diagnosis. On the other hand, the general
clinician is more interested in the final text-based justifica-

tion of the case. This demands justifications that are role-
based, satisfying the requirements of different stakeholders
simultaneously, and show the interplay between multimodal
interactions required for building interactive explanation
interfaces followed with feedback mechanism able to incor-
porate change in the system [89]. Evolution of vision and
language tasks transformed from simple tasks requiring pro-
cessing of fused multimodal embeddings such as image cap-
tioning. VQA to complex tasks such as visual common sense
reasoning requires higher-order reasoning and a deep under-
standing of semantic context [164]. Such tasks demand the
model to comprehend natural language and identify objects
in the scene and capture inherent relationships between indi-
vidual entities present in the input. The model’s ability to
reason their predictions has become essential, leading to the
emergence of Explainable AI for multimodal settings [57].
Human visual explanations can help systems know where
to attend human textual explanations and how they attended
image regions to complement multimodal explanations [7].

B. INTROSPECTION AND JUSTIFICATION SYSTEMS
Deep learning-based explanatory systems are broadly clas-
sified into justification [17] or introspection-based sys-
tems [155], [165]. Humans understand the justification-based
explanations, but it lacks in deriving the causal aspect and
interpretation [35]. The introspection-based systems focus on
the network’s internal behavior but are not well understood
by humans. In real-world settings, justification, and intro-
spection, both systems are desired [160] as the generation
of lucid explanations improves human understanding and
performance significantly [166].

V. MULTIMODAL EXPLAINATION METHODS
In this section, we provide the classification of deep learning-
based multimodal explanation techniques based on the
approach they follow to explain visual and textual modalities
into attention-based, counterfactuality-based methods, inter-
active approaches, and attribute-based methods following the
taxonomy represented in Fig. 5.

A. ATTENTION BASED APPROACHES
Attention-based approaches focus on certain factors in the
data more than others by assigning more weight and impor-
tance. In multimodal tasks, such as visual captioning, visual
question answering, or visual entailment, attention mecha-
nisms play a crucial role in the alignment and fusion across
different modalities [86]. In the attention-based approaches,
such as in visualization methods like Grad-CAM, the atten-
tion features provide the explanation. Attention mechanisms
are primarily used for the VQA task to attend or focus the
image region on answering the query correctly. The VQA
task of answering free-form natural language questions about
images is explored in [167]. Efforts primarily focus on build-
ing interpretable models with a specific interest in exploring
the input images or text in questions. TheVQAmodel looks at
these texts or images while answering the question. In [168],
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guided backpropagation and occlusion-based visualization
techniques are employed to showcase vital regions on the
image and text on which the VQA model focuses. To val-
idate if explanations make VQA models more interpretable
to humans in [15], the authors have proposed metrics for
failure and knowledge prediction and found that human in
loop (HIL) approaches make the model more understandable
to humans.

The pioneering work in generating multimodal explana-
tions was proposed by Park et al. [4] based on Teaching
AI to Explain its Decision (TED) approach [158]. ‘‘The
Pointing and Justification model’’ (PJ-X) for the visual ques-
tion answering using VQA-X and activity recognition task
using ACT-X datasets use attention mechanisms to explain
the answer of a VQA task with textual explanations and
corresponding visual regions. They pass attention masks
between modules and explore modalities’ complementary
and diagnostic strengths, emphasizing the value-generating
multimodal explanations. But this kind of model provides
an indirect, inconsistent explanation of the model’s internal
working; identifying model flaws and requires a dataset that
is augmented with explanations annotations. In [169], authors
developed a multimodal approach generating explanations
supporting deep network decisions in attentive pointing maps
and text. In this model, a clinical diagnostic decision is
conveyed with visual pointing and textual explanation in a
coordinated fashion with a ‘‘visual word constraint’’ model.
In [170], authors proposed a faithful multimodal explanation
framework with a ‘‘bottom-up and top-down attention mech-
anism’’ to have consistent visual and textual explanations by
segmenting the image for precise localization, demonstrat-
ing rationales improve human understanding and quality of
explanations. In [171], the authors used a supervised attention
model that trains human rationales to generate explanations.
The VQA task requires different capabilities at varying lev-
els. [172] discusses the state-of-the-art VQA models per-
form well on perception and reasoning questions but provide
inconsistent explanations modeling a task. ‘‘Sub-Question
Importance-aware Network Tuning (SQuINT)’’ forces the
model to attend the similar areas of the image when answer-
ing the reasoning and the associated perception sub-question,
thereby improving performance and consistency. Efforts have
been made to leverage explainability in the task of VQA by
using attention-based textual and visual explanations using
parse trees. Hierarchical patterns to provide valid expla-
nations and answer-specific sub-streams in sequential data
using visual-textual attention.

In [173], a module for spatial grounding in VQA is
proposed. This model addresses several visual recognition
challenges, including the ability to infer human intent, the
reason both locally and globally about the image, and effec-
tively combines visual, language, and spatial inputs. In [174],
authors evaluated the effect of explanations on the user’s
mental model for the VQA task by proposing an explainable
VQA system using spatial and object features using the BERT
language model on user perception of competency. They

generated visual and textual explanations to complement
the knowledge base, enhancing the model’s prediction and
interpretability. Multiple tasks, image attention, and knowl-
edge base improve the overall model performance. In [175],
authors have introduced a ‘‘self-critical training’’ method that
ensures that image explanations of correct answers map more
than other competitors’ image areas mapping with the human
mental model and decrease the incorrect answer probability
in this region. In [176], the joint probability in VQA is max-
imized by ‘‘Hierarchical Feature Network (HF-Net),’’ where
each hierarchical feature combines the attention maps with
low-level semantics. Textual explanations are also generated
for self-driving cars using an attention mechanism [72] and
video description tasks. In [177], the proposed action justifi-
cation model is based on the common-sense evidence using
conditional variation autoencoder (CVAE), which provides
better results than attention approaches and has improved
grounding between humans and agents. In [178], authors
have proposed an approach to enhance VQA performance by
comparing competing explanations.

In [22], Zellers et al. has provided explanations for visual
common sense reasoning through multiple choices. They
proposed a Visual Commonsense Reasoning (VCR) task that
answers a text question based on an image and provides
reasoning accordingly. Both the answers and justifications
are provided in multi-way generating explanations along
with decisions. Thus VCR is more suitable to be applied
for prototype model debugging to audit the model reason-
ing process. In [179], the multiword answer and rationale
model for ViQAR are generated that goes beyond VQA in
abstraction and reasoning abilities. An interpretable predic-
tion attention-based mechanism is recently used in [160] for
predicting anticancer compound sensitivity using attention-
based convolution encoders for the task of drug discovery.

Despite the wide use and benefits exploration, challenges
persist with attention mechanism as visual explanations gen-
erated using attention mechanisms do not explain if the
model attends the right area. The region in the image to
be focused on answering a particular question is not fixed.
Lack of ground truth for evaluation of explanations imposes
several restrictions. Attention maps do not look for the same
area as humans do. Attention’s explanatory power is ques-
tionable [180] as they lack an association with the atten-
tion weights and gradients mapping for generating faithful
explanations.

B. COUNTERFACTUAL EXPLANATIONS
Human thinking is contrastive and causal in the form of
cause and effect. We ask why a particular X decision is
taken and why not Y instead. For example, suppose a spe-
cific loan application is rejected. In that case, we are more
interested in the measures and minimum possible changes
to be undertaken to flip the decision to be accepted in the
future. Multimodal explanations based on counterfactuality
provide recommendations that provide actionable insights
and recourse [181]. Specifying the minimal desired changes
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required to flip the decision in favor of the user, mapping well
with the human mental model leveraging the class-specific
and discriminative features and enhancing the model trust,
transparency, accountability, reliability, social acceptance,
and usability [182]. Interactive machine learning with a
human-centered AI approach paves the way towards multi-
modal causal learning [35]. Some efforts in this direction are
highlighted. In a vision-language setting, the visual explana-
tion is the region with high positiveness or negativeness to
measure how the target classifier changes corresponding to
the negative class when a specific area is removed from the
input using accuracy. The textual explanation is compatible
with the visual counterpart and measures how the target clas-
sifier changes corresponding to the negative class when a spe-
cific region is removed from the input using accuracy [183].

In [18], a textual explanation model is proposed to inves-
tigate why the model predicted a class x instead of class X
based on counterfactuals. They offered a ‘‘phrase-critic
model’’ using explanation annotations and its counterparts.
The model improves the textual explanation quality, but
explanations are not accurate and faithful to the underly-
ing model. In [184], a counterfactual visual explanation is
generated based on the paper by Hendricks et al. [18]. The
explanations are directly generated from the base model
from the model’s neurons and are accurate for the underly-
ing model, and are without additional attribute annotations.
In [160], a multimodal data classification model is built to
classify a video to a particular class and justify why it is
not classified to the other class-based on counterfactuality.
Kanehira et al. [183] developed a complementary explana-
tion model by applying a joint training approach to gen-
erate a prediction and explanation, maximize the modality
interaction information, and ensure that the explanations are
complementary to each other. There is persistent language
bias in VQA models. In [185], a counterfactual setting is
employed where visual ground truth input is considered to
be absent in a particular case. Similarly, studying the effect
of visual biases synthesized similar but different images than
ground truth that learned how and why the output change
with visual distortions. For visual captioning, counterfactual
explanations help analyze the models’ working mechanism
and the reasons behind certain predictions. Counterfactual
explanations emphasize that observations, present or missing,
lead to a specific output. In [186], counterfactual resilience
in image descriptions is obtained by parsing entities, seman-
tic attributes, and color information separately. Contrastive
learning provides neural models with self-supervised compe-
tence using relevant and irrelevant pairs. It improves multi-
modal representations in pretraining handling noise and bias
in the data [187].

C. INTERACTIVE APPROACHES
An interactive approach to explanation leverages trans-
parency in machine learning systems [188]. Interpretability
is also explored by analyzing the accuracy in prediction for
VQA in interactive systems. In [189], an interactive active

attention-basedmodel is proposed, that alters themodel atten-
tion and provides user feedback if the forecast is incorrect by
combining model explanation and annotation and evaluating
the model explanation on the metric of user trust, mental
model, and usability. In [89], the authors suggested the use
of virtual agents to generate better multimodal explanations.
Alipour et al. [189], evaluated multimodal explanations for
VQA with and without explanations and established that
explanations improve accuracy if the VQA system is wrong.
They introduced an ‘‘active attention’’ mechanism, consid-
ering different attention maps. The generated explanations
and annotations with a feedback loop are combined to rectify
wrong answers [189]. In [190], the authors have proposed
XAlgo, an interactive algorithm explaining the system’s
internal state through question answering. Explanation-based
conversational systems are designed to provide better expla-
nations than conventional report-based systems for customer
relationship management with an interactive approach for
multisensory fusion [191].

D. GRAPH BASED APPROACHES
Reasoning out the question-answering task is carried out
with learning question-specific graph-based interactions in
the image scene graph [192]. Visual Reasoning task requires
machines to ideally look beyond the face value of any image
to capture correct relations and context before generating
suitable descriptions. In [193], semantic attributes are present
in the scene with semantic bottleneck based on context. The
Context Semantically Interpretable Bottleneck (CSIB) pro-
vides a clear and interpretable explanation of each prediction
by making the decision process of CNN more interpretable.

1) EXPLAINATION USING SCENE GRAPHS
The scene graph for an image is the graphical representation
of its contents. The nodes are the depicted objects, and the
edges are the relationships between them. In [194], graphs
with only objects and relations are generated. [174] uses
a multimodal approach for generating textual explanations
for the visual question answering task using both image
and language modalities, without collecting any additional
data, and generated natural language explanation for VQA
using scene graph and visual attention mechanism. With
two variants based on region descriptors, objects, and rela-
tions, proved multimodal efficacy approach empirically. This
approach doesn’t rely on manually generated explanation
data, as they use already available annotations from scene
graphs addressing the PJ-X model’s drawbacks, proposed by
Park et al. [4].

2) KNOWLEDGE GRAPHS
Knowledge graphs significantly increase interpretability and
explainability through semantic information and domain
knowledge base infusion in healthcare and educational sec-
tors [195]. A ‘‘Multimodal Knowledge-aware Hierarchical
Attention Network’’ in which a knowledge graph with mul-
tiple modalities and different features is built for the medical
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field. In [196], a comprehensive view on the neuro sym-
bolic AI perceptive is provided and integration of knowledge
graphs in deep learning models for model interpretability is
proposed.

E. ATTRIBUTE BASED METHODS
The significance of attributes in providing explanations is far
more critical, and there are efforts in this direction. In [197],
the authors proposed an explanation model using attributes,
counter attributes with examples and counter visual exam-
ples. To establish the intuitiveness of attributes in building
class discriminative attribute-based multimodal explanations
associating visual features with attribute information and
better text image grounding for the visual common-sense
reasoning task. In [198], the authors proposed the multi-
modal approach for generating the textual justification from
the visual image attributes to represent and explain novel
concepts with minimal supervision. Robust representations
are generalized across different tasks using a spatiotemporal
attention mechanism and a joint training approach for visual
and textual modality in the zero-shot learning paradigm.
In [199], the FLEXmodel is introduced that generates faithful
language explanation for CNN decisions even for unseen
class and provides a rationale. [193] proposed ‘‘Semantically
Interpretable Activation Maps (SIAM).’’

Attribute maps are linearly combined to see what different
features the model has learned and how particular regions
enhance interpretability. Visual common sense reasoning
uses other object detection techniques for better text to image
grounding and assigns attributes to object grounding with
fewer parameters. Activation maps are used in [200] by con-
sidering different class pairs as complementary. Therefore,
they can provide more discriminative cues to generate CAM
using representative classes with discriminative cues using
complementary regions activated for better and accurate
CAM generation. In [201], a model produces attribute-based
textual and visual explanations improving user trust and
model flaws by generating complementary multimodal
explanations. To justify a classification decision in zero-shot
learning (ZSL) paradigmwith a ‘‘joint visual attribute embed-
ding and a multi-channel explanation module’’ to generate
multimodal explanation is proposed. Different multimodal
explanation generation approaches are represented in Table 6.

VI. EXPLAINATION EVALUATION
Evaluation of explanations with metrics and methods is a
major point of concern to leverage explainability and user
confidence as they are task-specific and subjective [25].
Explanation evaluation tasks are categorized into the func-
tionally grounded evaluation, such as depth of a decision tree
evaluation. Human-grounded evaluation asks crowd work-
ers for their preferences for better analysis and feedback.
Application-grounded evaluation involves a human mental
model – e.g., a human expert simultaneously explaining the
outcome of the model [30]. Explanations are diverse and
subjective, making their evaluation difficult without access

TABLE 7. Multimodal explainationation generation approaches.

to the ground truth. Evaluation of explanations without
ground truth based on generalizing ability, persuasibility is
proposed in [212] with criteria for good explanation general-
ization performance, fidelity, faithfulness, relevance, per sua-
bility usability user satisfaction, and causality [213]. Human
users can associate with the cause and effect scenarios.
Better explanations involving novelty and completeness are
desired [47]. Explanations shall support actual model behav-
ior to be accurate. The model simulatability perceptive intro-
duces a ‘‘leakage-adjusted simulatability (LAS)’’ metric for
evaluating textual explanations making human users predict
the output. Human interpretable evaluation of explanation
is based on the accuracy, response time, consistency, and
satisfaction established through simulation, verification, and
counterfactuals [214].

Automated evaluation metrics such as BLEU-4 [215] is
used for automatic evaluation of machine translation that is
quick, inexpensive, and language-independent, that correlates
highly with human evaluation, and that has a little marginal
cost per run., METEOR [216] is an automatic machine
translation metric used for unigram matching between the
machine-produced translation and human-produced refer-
ence translations. ROUGE counts the number of overlapping
units such as n-gram, word sequences, and word pairs
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between the computer-generated summary to be evaluated.
The ideal summaries created by humans, CIDEr [217],
are a human consensus-based image description evalua-
tion metric for automatically evaluating image descriptions.
SPICE [218] is a semantic propositional image caption eval-
uation metric for the automatic assessment of image caption-
ing and improved evaluation compared to Cider, METEOR.
Automated evaluation and human evaluation of explanation
through crowdsourcing are followed for evaluating explana-
tions in [170]. In [219], Explanations are evaluated based on
the novel metric from the student-teacher paradigm that mea-
sures the degree to which the explanations help the student
model simulate a teacher model in an improved way for better
scalability for unseen data.

A schematic workflow pipeline of the fusion methods,
tasks, applications, multimodal predictions, and explanation
generation approaches is presented in Fig 6.

VII. DIVERSE EXPLAINABILITY REQUIREMENTS
Explainability requirements are often user role and goal
specific and hence are diverse [220]. For instance, model
creators might require an understanding of how layers of
a deep network respond to input data to debug or validate
the model. In contrast, non-experts often need a functional
explanation to understand how some output outside a model
is produced. For instance, mode l examiners might require an
understanding of how a model uses input data to predict to
ensure that the model is trustworthy, not biased, or comply
with the regulations [131]. Modular approaches have higher
interpretability. The multimodal task of VQA becomes more
interpretable and coherent with multimodal interpretability,
wherein the answers can be justified in both textual and visual
formats [202].

VIII. DATASETS FOR VALIDATING THE EXPLAINABILITY
IN MULTIMODAL NEURAL NETS
Multimodal XAI domain remained unexplored due to the lack
of availability of task-specific datasets. Recently efforts in
this direction are started. In [164], a new dataset is proposed
based on Raven’s Progressive Matrices (RPM) for the task of
visual recognition reasoning, comprising images and related
RPM problems, with tree-structured annotations. A counting-
based dataset is sampled from the available VQA 2.0 and
Visual Genome datasets for the task-specific release [192].
This work focused on countable quantitative question answer-
ing for answering specific queries asking how many? In [4],
two novel datasets dedicated to explainability for visual ques-
tion answering (VQA-X) and activity recognition (ACT-X)
tasks comprising textual justifications for each image-text
input pair. The VQA-X dataset has since then been con-
sidered a benchmark for many other explainable models.
In [221], the VQA-e dataset is proposed for VQA pre-
dictions and explanations to improve overall performance.
CUB dataset [222], an attribute-based zero-shot learning
baseline dataset, is significant for attribute-based methods.
VQA-CP [13] for multimodal bias evaluation are some popu-

larmultimodal explanation datasets. The dataset’s availability
makes the explainability goal more understandable and trace-
able in all contexts to leverage future research in the field.

IX. MULTIMODAL BIAS AND FAIRNESS
Modalities exploit at different scales, and their contribu-
tion can vary, laying more importance on a certain modal-
ity over the other, providing suboptimal results. Imbalance
data and feature selection introduce biases in models and
machine learning algorithms, leading to a lack of fairness
and transparency. Familiar sources of bias are through crowd-
sourcing workers and natural perceptions. Bias persists in
word embeddings and at the sentence level. Algorithms often
replicate and amplify the bias in the multimodal datasets.
To detect and mitigate the bias in [223], proposed a regular-
ization approach based onmaximizing functional entropy and
balancing modality contributions. Diversity in multimodal
information often leads to such biases. In [224], how biases
affect automated recruitment systems is demonstrated. Even
after masking the inputs, gender and ethnicity discrimination
based on a bias are present in the records. In the VQA task,
the models often pick up statistical irregularities, introducing
bias leading to memorizing rather than learning the task with
a wrong evaluation [13]. Unimodal biases in the textual inputs
neglect visual information impacting multimodal aspects.
Such biases often lead to massive drops in performance when
confronted with data outside training distributions [225].
Generalized and trivial questions are commonly answered
with prior lingual knowledge instead of querying the image.
Therefore, keyword dependencies over correct image reasons
are necessary to obtain accurate, interpretable models and
are comprehended via attention maps. For the task of image
captioning, visual cues in the training images carry bias.
Most models have a gender bias. Other such efforts focus on
two significant subtasks or gender-neutral captioning in case
of occlusions and correct gender classification otherwise.
Such methods make multimodal frameworks more reliable,
interpretable by allowing the models to provide reasonable
predictions for the right reasons rather than looking for mere
performance, looking at cause and effect aspects [185].

X. ADVERSARIAL ATTACKS ENHANCE INTERPRETIBILITY
In addition to small changes or alterations, perturbations,
called adversarial perturbations, result in adversarial exam-
ples leading to change in output. These adversarial exam-
ples can mislead the classifiers to make wrong classification
decisions. They are so minute that human eyes often missed
them. Adversarial examples can also be used for understand-
ing neural networks. Masking visual modality to see the
partial or complete influence of statistical language patterns
through adversarial attacks classification by attributes, they
are also natural candidates to study misclassification and
robustness [197]. In the interpretation of adversarial exam-
ples, discriminative attributes predict the correct and wrong
class predictions, and adversarial perturbation increases the
network’s robustness. In [226], attention-guided adversarial
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attacks for the VQA model are proposed. The show and
fool algorithm for attacking visual groundingwith adversarial
examples shows that models can be fooled through adversar-
ial attacks despite attention and localization, showcasing the
need to establish strong defense and mitigation mechanisms
against adversarial attacks [227].

XI. OBSERVATIONS AND RECOMMENDATIONS
1) Existing unimodal vision or language systems offer

either image-based visualizations of important input
features or text-based post hoc justifications. Lack of
complete introspection and justification highlights the
need for further exploration of multimodal approaches
for explainability.

2) Natural language explanations can be mutually incon-
sistent. There are persistent inconsistencies and biases
in the multimodal data, such as in visual question
answering. Measures to tackle prevalent bias and fair-
ness issues are of utmost importance.

3) Even if the classifier is very accurate, without having
access to complete explanations to understand how
decisions are made in the model, it is not sure that it
is making decisions for the right reasons. The model
may learn things that should not affect generalization
and focus on faithful explanations complete to model
and substitute task.

4) Building trust by asking questions transparency and
accountability is not enough; we need auditable,
explainable, interactive, augmented, and learning from
human feedback. Artificial intelligence supplemented
with human intelligence with a human in the loop
approaches for better evaluation should be proposed.

5) Confidence that human knows how and why the deci-
sion was made should follow with recourse in case of
dissatisfaction. In case of disagreement with systems
output, measures to change the same should be feasible,
which can be accomplished with the interactive system
design with a feedback loop.

6) Multimodal diagnostic and explanatory capabilities
need to be further explored for inconsistencies to lever-
age comprehensive and fine-grained class-specific and
discriminative feature understanding of relations and
interpretation of explanations with hybrid, composite
approaches to model multiple data modalities.

7) Multimodal explanation generated may not be cor-
related, complete and faithful, i.e., accurate to the
model’s internal decisions and processes. Hence, lack
of proper grounding, reasoning, and context adaptation
will focus on developing new models.

8) Explanations lack addressing the lay users, develop-
ers, domain experts, and stakeholders to simulate the
human cognitive process and user-centric design. There
is a need for interactive, user-friendly, trustworthy, and
diverse multimodal explanations to satisfy different
stakeholders’ needs.

9) Explanations lack proper evaluations on bias, fairness,
trustworthiness, fidelity, generalized ability, causality,
completeness, novelty, and quality in mapping the
human mental model due to the diversity aspect in
the evaluation metrics task-specific subjective nature
of explanation. Different automatic and human evalu-
ation metrics with theoretical backgrounds need to be
developed.

10) Despite the great insights into various explanation
modes’ efficacy, previous studies do not interactively
involve the human subjects and feedback in pro-
ducing these explanations. Involving human subjects
can improve the quality and trust, and usability of
explanation.

11) Multimodal explanations lack robustness and are prone
to adversarial attacks through small input perturba-
tions. An adversarial defense mechanism shall be
established to combat the situation.

12) Measures to tackle the language bias and fairness issues
in the data due to diverse information from multiple
modalities are carried out on a broad scale.

13) There is a need to evaluate the multimodal explanations
on the grounds of causality and visual grounding.

14) An explanation lack infusion of the prior domain
knowledge base required in the decision-making pro-
cess and explanation where knowledge graphs provide
a promising direction.

XII. DISCUSSIONS AND FUTURE DIRECTIONS
Multimodal research has achieved much success in various
downstream tasks. However, there is still a long way to
meet up to the human level performance as challenges per-
sist with representation, alignment, translation, fusion, and
co-learning. Lack of common sense and reasoning, contex-
tual adaptation, labeled data requirements, development of
novel and improved architectures, and evaluation metrics
are still prevalent. No explanation theory is foundationally
established and is more domain-specific, explaining with
analogies and examples, multiple modalities, contrastive and
counterfactuals explanations show promising edge in this
way as an explanation is as vital as a prediction and are
jointly modeled. The explanation structure shall be based
on the human mental model and evaluated with a human in
the loop approach to better understand outcomes. An enor-
mous scope of improvement exists for building interpretable
and explainable models for multimodal settings; instead of
explaining the model predictions in a post hoc manner inher-
ent and self-explainingmodel should be developed leveraging
visual and textual modalities integrated benefits [228]. The
type of explanation appealing to humans is not established;
multimodal interactive explanations with user feedback can
improve quality and user satisfaction. Interacting with expla-
nations of machine learning models is an enabler for sci-
entific discoveries for human-computer interaction. Due to
the engagement of multiple modalities, multimodal expla-
nations leverage the ability to satisfy different stakeholder’s
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requirements with a global context enabling the develop-
ment of vigilant AI systems that offer trust and improved
transparency in the decision-making process. Combining
knowledge-driven and data-driven approaches results in inter-
pretability and accuracy in the models. Multimodal explana-
tions involving different visual and textual modalities will
better understand the semantic and context in a human-
understandable format. Explainability in multimodal nets
becomes a prime requirement in critical domains such as
medical, legal, finance, autonomous vehicles, robotics, and
other fields with diverse modality involvement. The user-
centric interactive approach in design backed up with respec-
tive domain knowledge leads to quality explanations fostering
new facets and a better understanding and traceability of
model working and decisions with XAI in hand to achieve
integrated interpretability.

Contrastive learning, probabilistic graphical models like
causal networks and counterfactuals open a vast arena
of interpretable and transparent deep learning algorithms,
thereby reducing overall bias and increasing the system’s
reliability. Simultaneously, it opens the requirement for novel
reasoning-based datasets for models and relevant metrics
quantifying the separation from ground-truth data and mea-
suring the higher-level reasoning and cognition capabilities
over complex datasets. Adversarial attacks tend to enhance
the system’s robustness and interpretability, encountering the
need for defense mechanisms.

Recently OPEN AI have reported multiple algorithms rel-
evant to this body of work which are presented in next
subsection.

A. OPEN AI DALL- E AND CLIP MODELS
Multimodal learning aims to learn concepts through several
modalities. After GPT 3, openAI came upwith a transformer-
based architecture that combines image and language with
Dall E and CLIP models. Unlike a biological neuron, a mul-
timodal neuron can represent abstract features and concepts
in a high-level theme compared to a single feature repre-
sentation. Understanding the literal, symbolic and conceptual
meaning is a crucial development in multimodal learning.

Dall E [229] is a transformer-based image generation
model from text captions that fills the gap between vision
and text for a wide range of concepts explained in natu-
ral language. It uses a 12-billion parameter version of the
GPT-3 transformer model to interpret natural language inputs
and generate corresponding images from text captions simi-
lar to CLIP building visual concepts through language. The
second breakthrough in Multimodal AI introduces Open AI’s
CLIPmodel [230] trained on image sentence similarity scores
connecting images and text model that stands for contrastive
language image pretraining classifying image text pairs.
Inspired by the zero-shot learning paradigm, it uses a single
pretraining task to generalize to other interest domains. This
multifaceted neuron’s working is interpreted by different fea-
ture visualization and data example techniques with computa-
tional efficiency due to the transformer-based approach. Still,

it cannot generalize for all the tasks. Despite the performance,
the CLIPmodel is subject to associative bias in the underlying
data. The Middle East neuron was associated with terrorism.
An immigration neuron responded to Latin America target-
ing a specific group of people, and typographic adversarial
attacks are reported on this model, raising severe concerns
about its social acceptance. There is still an urgent require-
ment to analyze the models’ societal impacts concerning the
data biases that they carry. Multimodal explainability feature
visualization and data examples techniques play a promising
role in understanding the working mechanism and detecting
and dealing with the underlying biases and adversarial attacks
on these models.

OpenAI investigates their recent CLIPmodel’s inner work-
ings via faceted feature visualization and deduces findings
that some neurons in the last layer respond to distinct con-
cepts across multiple modalities. The neuron fire for pho-
tographs, drawings, and signs depicting the same concept,
even when the images are vastly distinct. They identify and
investigate neurons corresponding to persons, geographical
regions, religions, emotions, and much more. Both DALL·E
and CLIP represent significant advancements in transformer
models. Indeed, they are important milestones for the com-
puter vision community.

XIII. CONCLUDING REMARKS
This review described and categorized the different explain-
ability methods and techniques in a multimodal setting. The
importance of explainability techniques concerning diverse
image and text modalities in vision and language settings is
fascinating. The context, reasoning, and semantic attributes
harnessed by different explanation methods focus on the
proper distinction. Crucial aspects of bias fairness and adver-
sarial defensemechanisms alignedwith explainability inmul-
timodal nets are highlighted. To derive the full benefits of
multimodal setting, new benchmarks and diagnostic datasets
play a prime role. Explainability is a prominent aspect in a
multimodal environment, establishing trust and transparency
in the working mechanism understanding and tracing model
flaws. Recently the pace with which the field is evolving,
the upcoming developments are tremendous. We hope our
survey is a step to provide a roadmap for further improve-
ments and research directions in this active domain.
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