IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 8, 2021, accepted March 22, 2021, date of publication March 31, 2021, date of current version April 12, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3070180

Multi-Robot Sensor Fusion Target Tracking

With Observation Constraints

THULIO G. S. AMORIM', LEONARDO A. SOUTO',
TIAGO P. DO NASCIMENTO 12, (Member, IEEE),
AND MARTIN SASKA?2, (Member, IEEE)

ILaboratory of Systems Engineering and Robotics, Universidade Federal da Paraiba, Jodo Pessoa 580480-180, Brazil
2Department of Cybernetics, Czech Technical University in Prague, 166 36 Prague, Czech Republic

Corresponding author: Tiago P. Do Nascimento (tiagopn@ci.ufpb.br)

This work was supported by the Czech Science Foundation (GACR) under Project 20-10280S.

ABSTRACT In Mobile Robotics, visual tracking is an extremely important sub-problem. Some solutions
found to reduce the problems arising from partial and total occlusion are the use of multiple robots. In this
work, we propose a three-dimensional space target tracking based on a constrained multi-robot visual data
fusion on the occurrence of partial and total occlusion. To validate our approach we first implemented a
non-cooperative visual tracking where only the data from a single robot is used. Then, a cooperative visual
tracking was tested, where the data from a team of robots is fused using a particle filter. To evaluate both
approaches, a visual tracking environment with partial and total occlusions was created where the tracking
was performed by a team of robots. The result of the experiment shows that the non-cooperative approach
presented a lower computational cost than the cooperative approach but the inferred trajectory was impaired
by the occlusions, a fact that did not occur in the cooperative approach due to the data fusion.

INDEX TERMS Visual tracking, multi-robot systems, data fusion, particle filter.

I. INTRODUCTION

Object detection is a well-known research area in Computer
Vision, while object tracking and its various applications are
well researched in Mobile Robotics as well. Given the initial
state (for example, position and dimensions) of a targeted
object in a first image frame, the detected object is tracked by
the target states in the following image frames [1]. According
to [2], efforts have been directed towards the deployment of
groups of networked autonomous mobile robots that interact
autonomously with one another and with the environment to
significantly improve the efficiency, performance, reconfig-
urability, and robustness that individual vehicles currently do
not have.

When there is an interaction between robots, the com-
munication between them allows the possibility of merging
the data collected from the environment. Data fusion is an
advanced technique for combining information from various
sources in order to obtain more accurate results [3]. Data
fusion systems are now widely used in several areas, such as
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sensor networks, robotics, video and image processing, and
intelligent system design [4].

Although much effort has already been put into the tracking
community, robust long-term tracking is still a challenging
problem and an active research topic due to changes in light-
ing and posture, objects that have complex movements, total
or partial occlusion and real-world scenarios [5]. Tracking
objects or people moving in large spaces, where the field of
view of common sensors is relatively small when compared to
the monitored area, is best achieved using cooperative, static,
or dynamic sensor teams, for example, mounted on mobile
robots [6]. Due to these facts, recent work on tracking seeks
to develop methods that allow the use of multiple sensors.
In this work, however, we propose a method of fusing data
captured from the environment using different robot sensors,
making the visual tracking of an object in three-dimensional
(3D) space robust to partial and total occlusions. Thus, our
contributions can be summarized as follows:

1) A multi-robot tracking sensor fusion system using
pinhole-type RGB cameras with a constrained field of
view;

2) A modified particle filter to track an object subject to
occlusions and constrained field of view;
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3) The application of the particle filter only in the viewing
space provided by the camera, avoiding the need for a
global map.

Finally, our work is structured as follows. The following
section we briefly discuss about the related works. In sec. 11
we explain our proposed approach in a detailed manner.
The following section (sec. IV) shows our experiments
that validated our approach. Finally we conclude our work
on sec. V.

Il. RELATED WORKS

Estimating the position of objects of interest is an impor-
tant subproblem in many real-world robotic applications.
The challenge, however, is to deal with the limitations of
the sensors used to detect targets [5]. Usually, several static
wireless sensors are employed to improve tracking accuracy
and increase the size of the surveillance area. Unlike static
sensors, whose density and detection range are fixed, mobile
sensors (robots) can cover larger areas over time without
the need to increase their number [7]. In this case, the task
becomes to move the sensor so that the target falls within
its field of view. The use of multiple robots can increase the
effective field of view of the sensor and therefore should,
in theory, allow for superior performance.

With respect to a single robot, teams of robots are obvi-
ously less prone to failure, able to operate simultaneously
in larger areas. The exchange of information between robots
allows data to merge [8], [9]. Furthermore, since the appear-
ance of a target and the environment changes dynamically,
the majority of existed visual tracking algorithms tend to
drift away from targets. To address this issue, Dou et al. [10]
proposed a robust tracking algorithm by integrating the gener-
ative and discriminative model. The object appearance model
is made up of a general target model and a discriminative clas-
sifier. For the generative target model, the authors adopt the
weighted structural local sparse appearance model combining
patch-based gray value and Histogram of Oriented Gradients
feature as the patch dictionary. By sampling positives and
negatives, alignment-pooling features were obtained based
on the patch dictionary through local sparse coding. Then
they used a support vector machine to train the discriminative
classifier. The proposed method was also embedded into a
Bayesian inference framework for visual tracking.

In mobile robot applications, fusion refers to any stage of
the integration process where a real combination of different
sources of information occurs. The main advantage of data
fusion is improving data authenticity or availability [4].
Although a wide variety of methods have been
proposed [11], [12], long-term object tracking is still a chal-
lenging problem when dealing with occlusion, out-of-view,
scale, and illumination variation. To address these challenges,
Hu et al. [5] proposed a robust visual object tracking method
based on binocular vision. Their method formulated the
object tracking problem in a multi-cue fusion framework
which allowed the system to recover from tracking drift and
occlusion.

52558

In contrast, applications that use data fusion should take
precautions in relation to problems that may arise from the
combination of the data [13]. Among these problems, we have
imperfect data. According to Khaleghi er al. [4], imperfect
data appears because the data provided by the sensors is
always affected by some level of inaccuracy, as well as uncer-
tainty in the measurements. Data fusion algorithms must be
able to express these imperfections effectively and exploit
data redundancy to reduce their effects. In this same line of
research, the work of Leang et al. [14] presented a descrip-
tion of a generic framework for combining and/or selecting
on-line the different components of the processing chain of
a set of trackers, and examines the impact of various fusion
strategies.

Uncertainty arises if the robot lacks critical information to
perform its task. The ability to deal with uncertainty is critical
to building successful robots [3], [7]. Probabilistic models
have become popular due to their robustness in the presence
of uncertainty, which makes them capable of handling large
amounts of sensor noise and occlusion [6], [15]. One of the
probabilistic models that are widely used to perform visual
tracking within Robotics is the Particle Filter.

Particle filters have become popular tools for solving the
tracking problem [16]. Its popularity stems from its simplic-
ity, flexibility, ease of implementation, and modeling success
in a wide range of challenging applications and has been
used extensively in recent years [6], [17]-[19]. The work of
Truong et al. [19] is an example. Their work presented an
algorithm for single object tracking using a particle filter
framework and color histograms. Color histograms were
embedded in the particles, and the distances between his-
tograms were used to measure the likelihood between tar-
gets and observations. One downside of color histograms
is that they ignore spatial information, which may produce
tracking failure when objects appear that are similar in
color. To overcome this disadvantage, the authors proposed a
salience-based weighting scheme for histogram calculation.
Given an image region, first, its salience map is generated.
Next, its histogram is calculated based on the generated
salience map.

Ill. MODIFIED PARTICLE FILTER APPROACH
COOPERATIVE TARGET TRACKING

In this work, we propose a multi-robot sensor fusion based on
a modified particle filter for object tracking. Although there
exists a similarity to the work of Ahmad and Lima [6], our
approach differs on the existence of the constraint of the field-
of-view and the fact that the use of a global map becomes
needless. Furthermore, we demonstrate that our approach is
robust to occlusion.

It is well known in the literature that the particle filter is
an approximation technique for calculating posteriors [20],
assuming that an x state evolves over a discrete-time in a
stochastic dynamic system. The idea is to represent the later
state through a hypothesis set X; in which each hypothesis is
represented by a particle. A particle x; consists of a concrete
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instantiation of the state x at time instant ¢ together with
the weight w; that determines how close to the true state the
instance is.

A. THE MODIFIED PARTICLE FILTER

As an object of interest, a spherical object was used with
its surface composed almost entirely of a single color. This
object was selected because the image processing in order to
detect the object tends to have a lower computational cost due
to its simplistic characteristics. However, the implementation
is not attached to the object of interest that was selected,
so much so that the object of interest can be replaced only by
changing the detection step according to the characteristics of
the new object and making little or no change on the rest of
the implementation.

The representation of the object of interest consists of a
point in 3D space that is the center of mass of the spher-
ical object. Regarding the appearance model, global visual
representations of color and outline of the spherical object
were used. Generative methods were used as a search strategy,
that is, it was sought to detect the object of interest only
by determining the degree of similarity between it and the
candidates found in the environment.

The tracking system that implements the two approaches is
described by means of the flowchart presented in Fig. 1. The
visual tracking of the object of interest occurs through the use
of a particle filter. The following definitions were used:

« The state to be estimated consists of the global position
of the center of mass of the object of interest in 3D space;

« A particle x; consists of instantiating the global position
of the center of mass of the object of interest in 3D space
at time ¢;

« An observation z; represents the global position of the
center of mass of the object of interest in 3D space
estimated at time 7;

The first step is to initialize the particles and the weights
associated with each one. In particle filter visual tracking,
the plausible positions of the object are represented by par-
ticles that are estimated through observations. Each obser-
vation is generated by processing the data collected by the
sensors. Therefore, the settings of the sensors that are used to
obtain information about the environment are decisive in the
creation and distribution of the particles.

As shown in Fig. 2, the field of view of a Pinhole camera
is determined by the horizontal opening angles a;, and ver-
tical a, and the maximum d,,;, and minimum d,,;, capture
distances. The maximum and minimum capture distances
consist of the maximum and minimum distance, respectively,
in which the object of interest can be from the camera in
relation to the optical axis.

In Fig. 3, some information about the field of view was
highlighted. The main one is that given a point P = (x, y, z)
in 3D space, the value that variable z assumes delimits the
possible values that variables x and y can assume that make
point P to still be found within the field of view. Based on
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FIGURE 1. Tracking system in a 3D space. The contributions are within the
Particle initialization block and the cooperative tracking blocks (except
the Resampling block).
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FIGURE 2. Field of view configuration.

trigonometric relationships, equations 1 and 2 were obtained,
which were used to generate particles within the camera’s
field of view.

. an
min. x; = —tan(?) - Zi, (D
max. x; = tan(%h) - Zj. ()
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FIGURE 3. Detailed information regarding the field of view.

From the opening angles of the camera and the maximum
and minimum capture distances it is possible to determine if a
point in 3D space is within the field of view. Having V as the
set of all points that are within the field of view of a camera
and P = (x, y, z) as any point belonging to 3D space, point P
belongs to set V if the following statements are true:

dmin < 7 < dpax, 3)
ap an
—tan(?) 7<x< tan(?) - Z, “4)
a, a,
—mn(E) 2 <y< tan(E) - Z. (5)

Using the previous statements it was possible to gener-
ate particles within the camera’s field of view. Note that
the initialization algorithm can generate particles below the
ground line, that is, points below the positive part of the
Y-axis of the camera within the randomness of the algorithm.
However, the most important thing in our approach is that
the particles are initially sparse. After generating the particles
within the camera’s coordinate system, they are taken to the
global coordinate system. Algorithm 1 describes the particle
initialization algorithm. The horizontal opening angles aj, and
vertical a, of the Kinect version 1.0 color sensor are 57°
and 43°, respectively. As minimum distance d,,;, and max-
imum d,,, the values of 0.8 and 4.0 meters were used.
The camera translation variables 7.y, #., and 7., represent the
difference between the position of the camera’s center of
mass and the position of the robot’s center of mass in which
the camera is fixed in the global coordinate system. The
values of the translation variables of the robot ¢, ,, and
0 represent the pose in the global coordinate system. The
rand (inf , sup) procedure consists of a function that generates
a random number from a uniform distribution with a lower
limit equal to inf and an upper limit equal to sup. The variable
M represents the number of particles.

In order for the data obtained through the sensors to be
used by the particle filter, processing must take place so that
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information about the state that seeks to be observed can be
generated. This processing is carried out within the detection
stage of the object of interest and results in the global position
of the object of interest’s center of mass in 3D space, that is,
a z observation. The data may or may not generate a good
observation, since there will be measurements from which
it is not possible to extract any information about the state
being observed. Observations are differentiated according to
criteria that measure this information and these criteria are
called the degree of confidence.

Algorithm 1 Particle Initialization Algorithm

1: Input: (dpin, dmax, @h» Ay, texs teys Lezs trxs try, 0, M)

2: Xo=0

3: form=1toM do

4:  {Particles are created in the coordinate system of the
camera}

cam; = r and(dmin; dmax)

camy, = r and(—1; 1) - tan 3 - cam;

camy = r and(—1; 1) - tan 5 - cam,

{Passes the particles to the coordinate system of the
robot (Eq. 22)}

9:  roboty = camy + tex

10:  roboty = camy + f.y

® AW

11:  robot; = camy + I,
12:  {Passes the particles to the global coordinate system
(Eq. 24)}

13:  worldy = cos 6 - robot,—senf) - robot,

14 world, = cos 6 - robot, + sen6 - robot,
15:  world, = robot,

16:  {Apply translations}

17:  world, = worldy + t,y

18:  worldy, = worldy, + ty,

19:  world, = world,

20: xg"] = (worldy, world,, world,)
21 Xo =X()+(x(gm], AL/[>

22: end for

23: return Xp

B. OBJECT DETECTION

Inside the particle filter, observations are used to correct
W; weights. At the end of this procedure, the degrees of
confidence are used to determine the degree of confidence
about observation «. The degree of confidence about « obser-
vation plays an important role within the particle filter as it
is used during weight correction. In the stage of detecting
the object of interest, the image from the Kinect is taken as
input. As an initial step, the stages of image formation and
acquisition together with digitization are carried out through
the Robotic Operating System (ROS). Every image generated
by the sensor is sent to ROS, which in turn passes it on to
the system responsible for tracking the object of interest. But
before any operation on the image, a smoothing operation
by a median filter is performed in order to reduce the noise
present in the image using a 5x5-size mask. Then, the image
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is converted from the RGB color for HSV in order to facilitate
the passage of the object of interest’s perceived color by the
user to the system.

As the object of interest has a distinct color, this informa-
tion is used to differentiate it from other objects present in the
scene [21], [22]. For this, a threshold operation is performed,
which is described by equation 6 where variable I represents
the input image, variables I(x,y)y and I(x,y)s represent,
respectively, the value of hue’s components and saturation
of the pixel coordinates (x, y) of the input image / and the
variable Iy, represents the output image of the threshold
process. This operation receives the image in the HSV color
space and returns a binary image where each pixel of the
input image that is within the threshold generates the assign-
ment of the maximum value for the pixel of the output image
of the same position or the assignment of the minimum value
if contrary. The values used in the threshold were obtained
empirically.

1, if55>1(x,y)g =25
and I(x, y)s > 45, (6)
0, else.

Iseg(xv y) =

As an operation of the post-processing step, the opening
morphological operation is performed with the purpose of
removing sets of pixels of dimensions smaller than the struc-
turing element since it is expected that the object of interest
always has a fixed minimum size. The structuring element is
described as

B=1|1 1 1]. )
1

Then, an operation is performed to find the contours within
the binary image. This operation outputs the contours found
in the input image separated into sets of connected pixels. The
next operation consists of classifying the contours where each
contour generated by the previous operation is treated as a
single object. For each contour, the smallest possible circle is
found that encloses all its pixels. From the circle’s radius and
area, together with the area bounded by the contour, a value is
obtained that determines how close the contour resembles the
object of interest. This value was denominated as o1 detection
confidence and is calculated by

Aopps
Aesp

where A,ps represents the observed area, which consists of the
area formed by the region that is encompassed by the contour,
and Ay, represents the expected area, which is the area of the
circle that encloses all points of the contour.

The value of the observed area A,ps is obtained by the
formula of the area from Green’s theorem [23], [24] and the
value of the expected area A.g is obtained by equation 9
where the variable 7, represents the radius of the circle that
encloses all points of the contour.

Aep =7 -1, ©)

enc*

, ®)

o] =
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The idea for this step arises from the fact that the object
of interest has attributes that can be easily seen in the
image, and even after the previous operations these attributes
remain despite suffering deformations. Thus, we can compare
attributes extracted from the image with those of spherical
objects in order to determine how close they are to each
other. In the calculation described above, the area of the
object was selected and how it is distributed in the image as
a classification attribute.

After calculating the o) detection confidence of all the
contours found in the image, the contours that have the
a1 detection confidence value less than 0.5 are discarded and,
of the remaining contours, the contour with the highest o
detection confidence value is selected. as the outline of the
object of interest. As a final part of the detection process,
the position of the object of interest in the screen coordinate
system P; = (x;, y;) is taken as the centroid of the smallest
possible circle that encompasses all points of the selected
contour.

C. OBJECT STATE ESTIMATION

The key to estimate object poses is matching feature points in
the captured image with predefined ones of the 3D model of
the object [25]-[27]. Here we use the perspective projection.
Also called the perspective transformation, it is formalized as

u f 0 ¢ O );
Alv]=10 f ¢ O AR (10)
1 0O 0 1 0 |

where (X, Y,Z)T represents the position of a point in 3D
space, (u, v) represents the projection of the point (X, Y, Z)
on the plane image, f* represents the focal length, (c,, c¢y)
represent the coordinates of the main point of the image plane
and . = Z represents the homogeneous scale factor. The
calculations performed in the perspective projection that take
points from the 3D space to the 2D space are necessary to
carry out the reverse process.

In this step, we have obtained the position of the object
of interest in the 2D space of the screen coordinate system in
pixels [28]. Itis necessary to convert the position of the object
from 2D space to the position of the object in 3D space in
the global coordinate system in meters [29]. This conversion
is not performed directly, requiring a few steps to reach the
desired result. The initial step is to convert the screen coordi-
nate system to the camera coordinate system. This operation
takes the position of the object from 2D space to 3D space
using equations 11, 12 and 13, which were derived from

Xt — C
%=471w, (11)
YVt — C
»=4711, (12)
Ze =1 (13)

where x., y. and z. represent the position of the object in
the coordinate system of the camera in space 3D, x; and
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y; represent the position of the object in the screen coordinate
system, z represents the distance between the object and the
camera on the Z axis.

The coordinates of the main point of the image plane
(¢x, ¢y) and the focal length f are the camera intrinsic parame-
ters. The cameras attached to the robots were calibrated using
the ROS monocular camera calibration procedure. After this
conversion, the values are now represented in meters. The
distance of the object in relation to the camera on the Z axis,
which we call z, is necessary for the conversion of 2D to
3D space. After detecting the object of interest, the object’s
previous information and camera specifications are used to
calculate the value of this variable.

The Thin Lens Model simplifies the problem by consid-
ering as if it were a simple one glass element with only the
one central node point. Usually, multi-element camera lenses
have two nodes for each side of lens, while camera lenses
normally have several glass lens elements designed to correct
optical aberrations and distortions. The Thin Lens Model
does work well for practical computing purposes and it is
adopted here. Thus, the focal length is measured from the
sensor plane to the lens node (often inside the lens, but not
always). Lens equations uses the distance d in front of the
field node However, here d is the distance between the lens
and the object. In addition, the standard camera magnification
geometry uses the standard ratios of similar triangles, i.e., the
field dimension angle in front of this lens node is the same
angle (opposite angles) as the sensor dimension angle behind
the lens. The ratio of distances on each side of the lens are the
same as the ratio of the size dimensions on each side of the
lens. These ratios are simply the trigonometry tangents of the
same angle on each side of the lens.

Thus, from the optics theory we have the following rela-
tionship

S z
where f represents the focal distance, z represents the distance
of the object in relation to the camera on the Z axis, I, is
the image dimension, and F;, is the field dimension.

With no loss of generality we can state here that the dimen-
sion we are calculating is the height, and that the field we are
observing is the object of interes. Thus, the same equation can
be written as

Liim - Faim (14)

Ons |

xr
foo7
where Oy, is Object height on sensor, and /, represents the
real height of the object of interest.
In addition, through the linear magnification of a thin lens
we have that

(15)

Ong = , (16)

where [ represents the size of the height of the camera sensor
responsible for capturing the image, /; represents the height of
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the image, and [, represents the observed height of the object
in the image.

Thus, we can obtain the distance by using equations 15
and 16 as follows

Z:f'lr‘lz, (17)
lo : ls

where the values of the variables z, f, [, and /s are represented
in millimeters and the values of the variables /; and [/, are
represented in pixels. The value of the variables f, [; and
Iy of the Kinect version 1.0 are, respectively, 3.099 mm,
480 pixels and 2.87 mm [30]. The real radius of the object
is 0.092356 meters. Using the selected contour’s radius 7,
the value of the variable z, in meters, is calculated as

_ 0.003099-0.092356 480 _ 48.6916 o
= Fore - 0.00287 T

After obtaining the value of the variable z, this value is
used to calculate the value of the confidence variable over
the distance (ce2). The 5 is a value assigned as an exponential
gain that decreases with distance. This means that the greater
the object’s distance from the camera, the smaller its size
within the image, and, consequently, the greater the difficulty
in detecting and classifying it. Thus, this confidence variable
about distance «; is employed as

1
where z represents the distance of the object in relation to the
camera’s Z axis and z,i, represents the minimum distance
at which the object of interest can reach from the camera in
relation to the Z axis whose value used is 0.8 meters.

After obtaining the values of the confidence variables on
detection «; and distance oy, the value of the confidence
variable on observation «y is computed, as shown in equa-
tion 20. The confidence on observation ay is used to assign
to each detection of the object of interest a value that seeks to
determine the quality of this detection.

a = 19)

o =aj 0. (20)

When leaving the screen coordinate system for the cam-
era coordinate system, it is necessary to apply a rotation
to reconcile the screen coordinate system with the camera
coordinate system. As shown in Fig. 4, the directions of the
x and y axis are different. For this reason, a 180° clockwise
rotation around the z axis is applied, as shown in equation 21,
to fix this problem.

X, cos 180° —sen180° 0O O] [x
Yo| _|sen180° cos180° O O |ye
215 o 0 1ooflz] @Y
1 0 0 0 1 1

The next step is to move the position of the object from
the coordinate system of the camera on the robot to the
coordinate system of the base of the robot. This operation
is necessary because, when we talk about cameras fixed in
robots, the positioning of the camera in relation to the robot
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Screen Coordinate Robot Camera

System Coordinate System

FIGURE 4. Performed rotations to transform from the screen coordinate
system to the robot camera coordinate system.

can vary. An example is the Turtlebot robot (see Fig. 5) whose
camera can change position according to the user’s needs.
The positioning of the cameras in relation to the base of the
Turtlebot is identical for all robots used, therefore the same
calculation for changing the coordinate system is applied for
all robots.

FIGURE 5. The object of interest fixed on top of a Turtlebot.

Fig. 6 shows the directions of each axis of the camera and
robot coordinate system. The first rotation is a 90° clock-
wise rotation around the y-axis and the second rotation is a
90° clockwise rotation around the x-axis. This operation is
described in the equation below.

Xy 1 0 0 0
el |0 cos90° —sen90° O
z | |0 sen90° cos90° O
1 0 0 0 1
cos90° 0 sen90° O X,
0 T R I O
—sen90° 0 cos90° O [z |’ @2)
0 0 0 1 1

As the origin of the coordinate systems of the cam-
era and the robot is different, after the rotations, a trans-
lation is applied to take from one origin to the other,
the translation is described by equation 23. The values of the
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FIGURE 6. Performed rotations to transform from the robot camera
coordinate system to the robot base coordinate system.

variables f, f.y and f.; were obtained manually and are,
respectively, —0.125 meters, 0.0 meters and 0.25 meters.

X, L 0 0 o [x

A {0 1T 0 ity |y )
Z| {0 0 1 ||z | (23)
1 0 0 O 1 1

Finally, the position of the object in the local coordinate
system of the robot is converted to the global coordinate
system. This operation aims to ensure that all robots involved
in tracking the object of interest share the same coordinate
system. For this purpose, the robot pose is used. This opera-
tion is described by

!/

Xy cosf —senf 0ty X,
Vi sen 9 cos 6 0 ty| |y
= , 24
2w 0 o 1 ollz]" @
1 0 0 0 1 1

where 7, and ¢, represent, respectively, the robot’s x and y
position in the global coordinate system and 6 represents the
robot’s orientation angle.

The information collected after the end of the estimating
stage, the object of interest’s position in 3D space is passed
on as input to a particle filter. This process aims to improve
the estimation of the object’s position through the use of a
probabilistic model.

As a next step, weights are corrected through observations
and it is at this stage that the non-cooperative and cooperative
approaches are distinguished from each other. The crucial
difference is the set of observations that are used to correct
the weights. While in the non-cooperative approach only the
observation generated by the robot itself is used to perform
the correction, in the cooperative approach the observations
of all members of a team of robots are used by merging the
data obtained by the observations.

In the cooperative approach, for the data to merge, it is
necessary that there is a communication mechanism that
allows the exchange of information between members of the
tracking team. This communication was implemented using
the synchronous communication mechanism known as ROS
services. After the end of the detection and estimation of the
position of the object, the robot makes a request containing
the x,,, y,» and z,, position information of the object of inter-
est, the confidence on observation « and the identifier k. The
code snippet responsible for executing the service stores the
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Algorithm 2 Weight Adjustment Algorithm
1: Input: (o, Br, X;, M, N, k)
2: {Service request - Exclusive step of the cooperative
approach}
3: Send the i robot’s ay, Bx and k
4: {Service response - Exclusive step of the cooperative
approach}
5: Receives «, 8 from the robots within the team
6: {Trust normalization step}
7. forr = 1to N do
8
9

o
o= ZnN=1 An
: end for
10: {Correction of particle weights from observations }
11: form =1toM do
122 forr=1toN do
13: Obtain the p, probability of x™ from the PDF M,
generated by the observation S,
14:  end for
15: ng] = ng] ) Zizvzl Pnn
16: end for
17: {Normalization of weights associated with particles}

18: form = 1to M do
(m] wy"!
19: w. = —/—T7
! oy

20: end for
21: return X;

data generated by the robot and returns the same information
as that of the other robots involved in tracking as a response.

Even when the robot is unable to obtain information about
the object of interest from the data collected by its sensors,
the robot still performs the request but passes the confidence
value on the observation « equal to zero, making sure that its
data does not affect estimating the position of the object of
interest during data fusion. it performs this action in order to
find out if any other member of the team has any information
regarding the object at that time.

One of the advantages of using ROS services is the simplic-
ity of use and the speed at which information is exchanged.
In contrast, the information that is recorded within the service
needs to be updated frequently so that it is as close to the cur-
rent state of the environment. After initialization, the weight
of each particle is corrected based on the observations of each
of the robots. Unlike the original particle filter design, more
than one observation is used during the weight correction
process where each observation is responsible for a part of
this correction. This part is determined by the degree of
confidence in the observation.

As a first step in correcting the weights, the degree of
confidence in the o observation is normalized so that each
one of them becomes the part of the correction that the
B observation is responsible for. The correction algorithm is
detailed in Algorithm 2. For each S observation a probability
density function My is generated with normal distribution of
average u equal to the position estimated by observation B
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and covariance of distribution o as described in equation 25.
The correction of the weight of a particle x,[m] according to
the observations and obtained by the sum of the corrections
generated by each observation § where the correction gener-
ated by the observation B is calculated as the probability of
xt[m] obtained by the multiplied probability density function
M;, by the degree of confidence in the oy observation.

le—3 0 0
o=1| 0 le3 o |. (25)
0 0 le~3

The weight correction is applied to the prediction by mul-
tiplying the probability obtained through the observations by
the weight of each particle. Finally, weights are normalized.
After normalization, low variation re-sampling, or low vari-
ance re-sampling, is performed [7]. Right after re-sampling,
the most likely position of the object of interest is estimated
by the weighted average of the particles by the weights as
shown in equation 26.

N
1 -
= > g wi, (26)
i=1

As a final step in the particle filter, a prediction is made
about the position of the object of interest in the next instant
of time. In this work, no motion model was implemented
that could be used to estimate the next position of the object
of interest through the instantiations represented by the par-
ticles. Within the prediction stage, we seek to predict the
next position of the object by randomly moving the current
position stored in each particle. For each coordinate, its value
is changed at random by adding a value obtained from a
sample of a uniform distribution with a half-open interval of
[—0.5, 0.5) meters. All previous steps, with the exception of
initializing the weights, are repeated until the visual tracking
task is finished.

IV. EXPERIMENTS AND RESULTS

To test the two visual tracking approaches, an experiment
was carried out in which an environment was created for the
execution of a task of tracking a spherical object by a group
of robots. The setup of the environment can be seen in Fig. 7
and Fig. 8 where the dashed line represents the path that was
planned to be made by the spherical object. The position of
the objects present in the environment and the poses of the
robots involved in the visual tracking were determined based
on the following criteria:

« The objects were positioned within the environment in
order to generate partial and total occlusion on the obser-
vations of the robots at certain points in the trajectory of
the spherical object since the data fusion seeks to bypass
this problem.

o The relationship between the positions of the objects
and the poses of the robots was idealized so that none
of the robots could obtain the complete trajectory of
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FIGURE 7. Setup of the environment designed to carry out the
experiment. The dashed line represents the trajectory that was planned
to be made by the object of interest. The variable Cpp;; represents the
position of the centroid of object i in the global coordinate system in
meters, the variable Dgp; ; represents both the width and length of
object i in meters, and P; = (x;, y;, 0;) represents the position x; and y; in
the global coordinate system in meters and the orientation angle 6i in
radians of robot i.

FIGURE 8. Experiment setup.

the spherical object, but the fusion of the data would
generate this trajectory.

e The minimum-maximum distance, which can be
inferred by visual tracking during the trajectory of the
spherical object, between the position of the object and
any of the robots is, respectively, 1.0 and 4.0 meters.

In order to avoid errors arising from the estimation of
the robot pose, considering that the robot pose is used to
estimate the position of the object in 3D space, each robot
was positioned in the environment manually and its pose was
passed to the tracking algorithm directly, without using an
inference algorithm. None of the tracking robots move during
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the experiment. The spherical object was fixed on top of a
robot that did not belong to the tracking team so that it was
possible to carry out the previously planned trajectory. The
robot was given the command to perform the trajectory that
would form a square with 2 meters on its side from the origin
of the global coordinate system directing towards the X+ axis
rotating counterclockwise.

The odometry data of the robot that was responsible for
displacing the object were obtained to compare the trajectory
of the spherical object inferred by the visual tracking with
the trajectory actually performed by the object. The trajectory
obtained through odometry was considered as the ground
truth of the experiment and it is used to validate the trajec-
tories inferred by each robot.

To generate the results, every 30 milliseconds, counting
from the beginning of the experiment, the positioning esti-
mation error of the spherical object in the space of the world
was calculated as the Euclidean distance, in meters, between
the position of the spherical object inferred by tracking and
the position obtained by odometry. The error of estimating
the position in the world space of each robot during the
experiment is shown in Fig. 9. When a robot cannot infer
the position of the object, the last position of the object of
interest is given as undefined, the error value is not computed
or displayed in the chart.

The results of the non-cooperative approach shown
in Fig. 9 have peaks of error that arise due to partial occlusion.
The partial occlusion affects the information of the spherical
object that is obtained through the detection steps that ends
up influencing the calculation of the distance of the object in
relation to the camera around the Z-axis, which ultimately
influences the estimation of the position of the object in
3D space in the global coordinates.

These peaks stop happening in the cooperative approach.
This is due to the fact that when an observation suffers from
partial occlusion, the value of the confidence variable on
the observation « decreases, making the influence of that
observation on the estimation of the position of the object
of interest during the data fusion be less influential than the
influence of the other robots with a better observation of the
object. This, in turn, leads to the attenuation of the error.

The main difference between the non-cooperative and the
cooperative approach is the fact that, despite the partial and
total occlusions that each robot suffers, in the cooperative
approach all robots are able to keep track of the spheri-
cal object during the whole experiment. In contrast, in the
non-cooperative approach, there are time intervals in which
one or more robots are not able to estimate the spherical
object’s position.

One of the negative points of the cooperative approach
was the increase in the computational cost for performing
the tracking. Considering an execution as the set of oper-
ations that are performed on the inputs to infer the posi-
tion of the object of interest, the algorithm responsible for
the non-cooperative approach had, on average, 24.07 runs
per second. In contrast, the algorithm responsible for the
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FIGURE 9. Every 30 milliseconds, counting from the beginning of the experiment, the error of estimating the position of the spherical object in world
frame was calculated as the Euclidean distance, in meters, between the position of the spherical object inferred by tracking and the position of the
spherical object obtained by odometry. The graphics in the left column represent the error in the space of the tracking world of the spherical object in the
non-cooperative approach, while the graphics in the right column represent the error in tracking the spherical object in the cooperative approach in the
world space. When a robot is unable to infer the position of the object, the last position of the object of interest is given as undefined, the error value is

neither computed nor displayed on the graph.

cooperative approach had, on average, 8.67 runs per second,
as shown in Table 1. This decrease is justified by the increase
in computational cost caused by operations related to infor-
mation exchange between members of the tracking team.
Despite having an average value of executions per sec-
ond greater than that of the cooperative approach, the non-
cooperative approach obtained a considerable percentage of
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executions in which the position of the spherical object cannot
be inferred, as shown in Table 2.

In the cooperative approach, the position of the object
was not lost because during the whole experiment, at least
one of the robots had an observation of the spherical object
without any type of occlusion and this information was passed
on to the others. Another positive aspect of the cooperative
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FIGURE 10. The graphs at the top represent the histogram of the estimation error of the position of the spherical object in the space of the robot world
during the non-cooperative approach. The graphs at the bottom represent the histogram of the estimation error of the position of the spherical object in

the space of the robot world during the cooperative approach.

TABLE 1. The average number of executions per second of the tracking
algorithm for each approach by each robot, considering an execution as
the set of operations that are performed on the inputs to infer the
position of the object of interest.

Non-cooperative ~ Cooperative

Robot 1 23.86 9.41
Robot 2 23.72 9.36
Robot 3 24.62 7.23
Average 24.07 8.67

TABLE 2. Percentage of runs in which the position of the spherical object
cannot be inferred.

Non-cooperative ~ Cooperative
Robot 1 11.02% 0.0%
Robot 2 27.37% 0.0%
Robot 3 54.74% 0.0%
Average 31.04% 0.0%

approach was the decrease in the frequency of errors greater
than 0.4 meters in comparison with the non-cooperative
approach, showing that the fusion of the data generates a
correction in the estimation of the object of interest’s position.
This can best be seen in Fig. 10 where the graphs at the top
represent the histogram of the estimation error in the robot
world space during the non-cooperative approach and the
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graphs at the bottom represent the histogram of the estima-
tion error in the robot world space during the cooperative
approach.

V. CONCLUSION

In this manuscript, we presented a modified particle filter
applied to a constrained target tracking multi-robot system.
The robots were not able to move and the camera used had a
limited field of view. Nevertheless, we proposed an approach
that was able to overcome occlusion, regardless of the exis-
tence of a map of the environment. The particle filter was able
to track a spherical object in 3D space, minimizing the error of
observation through the cooperative version of the modified
particle filter. As future works, we aim to expand the form
of the detected object to a generic contour. Another future
work is to use our approach in multi-rotor unmanned aerial
vehicles (multi-rotor UAVs) for human detection or multiple
target detection, and thus consider input noise such as camera
vibration and illumination variation.
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