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ABSTRACT Exploring coexistence of multiple attractors brought by the multistability for circuits and
systems has a significant meaning in the theoretical researches and practical applications for chaos. In this
article, a succinct fourth order Chua’s circuit is proposed by replacing the negative resistance with an ordinary
positive resistance in a traditional fourth order one. The two-dimensional stability analysis for equilibrium
points shows that this circuit possesses one unstable saddle-focus point with index 1 and two stable node-
focus points. Coexisting bifurcation models, multiple attractors and the corresponding attraction basins are
revealed by a series of numerical simulations. The clear crisis scenario of the coexisting limit cycles of
period-3 bridging the coexisting single-scroll attractors of chaos and the double-scroll one is observed by
the bifurcation analyses. The dual-mode experimental verifications by the analog and digital circuits are
carried out on the self-made printed circuit boards, which validate the simulated dynamical behaviors with
the combination of physics and engineering.

INDEX TERMS Succinct fourth order Chua’s circuit, multiple attractors, crisis scenario, dual-mode
experimental verifications, microcontroller.

I. INTRODUCTION
Chaos is an important interdisciplinary research theme in the
field of mathematics, physics, and engineering [1]. In recent
years, the study for multistability [2], [3] and even extreme
multistability [4]–[6] in the chaotic system has become a hot
spot, where the coexisting bifurcation models and multiple
attractors [7], [8] can be observed by numerical simulation
or experimental measurement. As a study focus among the
nonlinear circuits, the classical third order Chua’s circuit
[9], [10] demonstrates the chaos phenomenon perfectly in
theory and practice [11], [12]. On the basis of this classical
circuit, the various forms of generalized Chua’s circuits and
systems [13]–[26] build a deep recognition of chaos for the
academia further. In these studies, the new features such as
stable equilibrium points [14]–[17], multi-scroll attractors
[18]–[21], multiple attractors [17], multiple scroll coexisting
attractors [22], SC-CNN-based mode [23] and inductorless
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implementation approaches [24]–[26] have been revealed in
succession. The fourth order Chua’s circuit is also a form
of generalized Chua’s circuit, yet the related reports are not
often noticed. In 2020 [27], a fourth order Chua’s circuit is
obtained by concatenating a parallel resistance-capacitance
network with the inductance in the classical third order
Chua’s circuit, where the double-scroll attractor, coexisting
single-scroll attractors and limit cycles brought by period-
doubling bifurcation mechanism can be found. Similar to the
classical Chua’s circuit, this fourth order circuit possesses
three unstable saddle-focus points. In 2004 [28], a fourth
order Chua’s circuit was constructed via concatenating an
additional inductance with the resistance in the classical
Chua’s circuit. And at the same time a parallel negative resis-
tance was added to the LC parallel resonance in this fourth
order Chua’s circuit. Under this circuit construction, chaotic
[28], hyperchaotic [28] and periodic bursting [29] oscillation
behaviors were discovered. Yet the physical implementation
of a negative resistance needs to adopt an op amp [17], which
increases the complexity of the hardware circuit. Obviously,
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it is meaningful for chaotic circuit to simplify the physical
implementation [30]. On the other hand, a valuable ques-
tion is whether a fourth order Chua’s circuit can generate
multistability phenomenon. For these two factors, a succinct
fourth order Chua’s circuit is presented in the article, where
an ordinary positive resistance is used to replace the negative
one in the traditional fourth order Chua’s circuit [28]. Accord-
ingly, the features of stable equilibrium points and multiple
attractors are discovered in this new circuit, thus enriching
our awareness to fourth order Chua’s circuit.

For validating the basic physical realizability of chaotic
circuit, experimental verification by analog circuit is often a
necessary step during the course of study. However, due to
the influences from the objective factors such as the parasitic
parameters of electronic components and the detection capa-
bility of the instruments, sometimes the success for analog
circuit experiment is hardly guaranteed. Obviously, sufficient
verification is the fundamental guarantee of the correctness
for the theoretical study. Therefore, it is meaningful to intro-
duce the verification mode of digital circuit to overcome this
inadequacy of analog circuit. Besides, the reliable engineer-
ing realizability by digital circuit offers great convenience to
the industrial applications of chaos. With the development
of digital electronic technology, the microcontroller is effec-
tively introduced into discrete chaotic map [31], and even
continuous chaotic systems [32]–[34]. Based on these, a type
of 16-bit microcontroller MSP430F5438A with low power
consumption is used for the design of digital circuit in this
article, which forms the dual-mode experimental verifica-
tions for the new chaotic circuit together with the analog
circuit.

The rest of this article is organized as follows. In Section II,
the new succinct fourth order Chua’s circuit is established.
The corresponding stability of equilibrium is discussed, rang-
ing from the normalized typical parameters to two-parameter
plane. In Section III, the analysis of multi-stable dynamics
for this new circuit is carried out by a series of numerical
computation. In Section IV, the design schemes and the test
results of dual-mode experiments with analog and digital
circuits are expounded. In the end, some conclusions are
given by Section V.

II. THE SUCCINCT FOURTH ORDER CHUA’S CIRCUIT
In this section, the succinct fourth order Chua’s circuit is pro-
posed and the corresponding mathematical model is deduced.
Through the variable substitutions and parameter transforma-
tions, a normalized model is derived further. The correspond-
ing stability of equilibrium points is discussed, ranging from
the normalized typical parameters to two-parameter plane.

A. CIRCUIT STRUCTURE AND STATE EQUATIONS
The new succinct fourth order Chua’s circuit is drawn in
Fig. 1, where an op amp and ten passive elements are applied.
The unit linked with blue color is a reduced piecewise-
linear Chua’s diode, which is obtained through a negative
impedance converter (NIC) [24], [35]. Compared to the

FIGURE 1. The constitution of the new circuit.

fourth order Chua’s circuit reported by [28], the adoption of
positive resistance instead of negative one for R3 simplify the
circuit and cut down the cost. At the same time, the equivalent
series resistance (ESR) of the inductance L2 is considered,
a low resistance R2 is introduced to this circuit. The physical
behaviors of the circuit can be represented by four state
variables of v1, v2, iL1, and iL2 corresponding to four dynamic
elements.

To nonlinear component RN, the mathematical relationship
for vN and iN can be expressed as [24]

iN = f (vN) = SbvN +
1
2
(Sa − Sb)(|vN + EP| − |vN − EP|)

(1)

By setting Rb = Rc, the parameter transformation relations
can be derived as

Sa = −
1
Ra
, Sb =

1
Rb
, EP =

Ra
Ra + Rb

Esat (2)

Here Esat stands for the output saturation voltage of amplifier
U .
For a fourth order chaotic circuit, four coupled ordinary

differential equations about corresponding state variables can
be established. According to the laws of Kirchhoff, the math-
ematical model for the circuit shown in Fig. 1 is deduced as

C1
dv1
dt
= iL1 − f (v1)

C2
dv2
dt
= −

v2
R3
− iL1 − iL2

L1
diL1
dt
= v2 − v1 − R1iL1

L2
diL2
dt
= v2 − R2iL2

(3)

where the nonlinear function f (v1) is denoted with (1).

B. NORMALIZED MODEL AND STABILITY OF
EQUILIBRIUM POINTS
To simplify the analysis, a series of variable substitutions and
parameter transformations are introduced, as listed by

x = v1/EP, y = v2/EP, z = R1iL1/EP, w = R1iL2/EP,

τ = t/ (R1C2) , α1=C2/C1, α2 = R1/R3, α3=R2/R1,

β1 = R21C2/L1, β2 = R21C2/L2, ma = SaR1, mb = SbR1
(4)
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Thus model (3) is reconstructed as a normalized form,
as given by 

ẋ = α1 [z− F (x)]
ẏ = −α2y− z− w
ż = β1 (y− x − z)
ẇ = β2 (y− α3w)

(5)

where the dimensionless piecewise-linear function F(x) is
represented as

F(x) = mbx +
1
2
(ma − mb)(|x + 1| − |x − 1|) (6)

Different from some chaotic systems with infinite equi-
libria [6] and even line equilibrium [4] based on nonlinear
component memristor [36], the fourth order Chua’s circuit
has finite equilibrium points. Aimed at normalized model (5),
three equilibrium points can be achieved through algebraic
computation, as expressed by{

Q0 = (0, 0, 0, 0)
Q±=(± (1+ α2α3 + α3) k,±α3k,∓ (1+ α2α3) k,±k)

(7)

Here k = (mb−ma)/[(1+α2α3+α3)(mb+ 1)−α3] and it’s
easy to see that Q+ and Q− are symmetrical about origin of
coordinates.

Accordingly, the Jacobi matrix of Eq. (5) on the three
equilibrium points (7) is calculated as

J (c) =


−α1c 0 α1 0
0 −α2 −1 −1
−β1 β1 −β1 0
0 β2 0 −β2α3

 (8)

where c = ma for Q0 and c = mb for Q±. The secular
equation for matrix (8) on these equilibrium points can be
represented as

P (λ) = λ4 + a1λ3 + a2λ2 + a3λ+ a4 = 0 (9)

where

a1 = α1c+ α2 + α3β2 + β1
a2 = α1β1 (1+ c)+ (α1c+ β1) (α2 + α3β2)

+α2α3β2 + β1 + β2

a3 = (α1c+ β1) (α2α3β2 + β2)

+α1β1 (1+ c) (α2 + α3β2)+ β1 (α1c+ α3β2)

a4 = α1β1β2 [(1+ c) (1+ α2α3)+ α3c] (10)

To the circuit given in Fig. 1, the typical parameters of the
discrete components are listed as Ra = 1.8 k�, Rb = Rc =
20 k�, R1 = 1.9 k�, R2 = 10 �, R3 = 20 k�, C1 = 5.8
nF, C2 = 55 nF, L1 = 2 mH, L2 = 20 mH. According
to parameter transformations in (4), the normalized typical
parameters can be calculated as

α1 = 9.482759, α2 = 0.095, α3 = 0.008947368,

β1 = 99.275, β2 = 9.9275,

ma = −1.055556, mb = 0.095 (11)

By endowing system’s initial states (x(0), y(0), z(0), w(0))
with different values, the phase portraits for model (5) in
x−y plane are simulated by MATLAB ode23 algorithm with
normalized parameters (11), as given by Fig. 2. It can be
concluded that four coexisting attractors including double-
scroll attractor of chaos, the limit cycle with large amplitude,
left-right point attractors can be triggered with appropriate
initial values.

Under normalized typical parameters (11), the specific
results for equilibrium points (7) can be achieved as{
Q̄0 = (0, 0, 0, 0)
Q̄± = (±1.059308,±0.009386,∓1.049922,±1.04903)

(12)

The corresponding eigenvalues related to these three equi-
librium points can be calculated numerically from Eq. (9),
as listed by

Q̄0 : λ1 = 1.8298, λ2 = −88.609,

λ3,4 = −1.3351± j1.4025

Q̄± : λ1,2 = −0.1634± j3.0254, λ3 = −87.2328,

λ4 = −12.8002 (13)

Thus, Q̄0 is one unstable saddle-focus point of index 1 with
only one positive real part for all the four corresponding
eigenvalues [37], [38] and Q̄± are two stable node-focus
points. The numerical analysis indicates that these features
of stability for equilibrium points Q0 and Q± can be found
in a large scale of parameters. On the basis of normalized
typical parameters (11), when the parameter α1 varies from
8.2 to 9.75 and β2 varies from 9 to 10.5, the maximum value
spectrum for the real parts of four eigenvalues related to the
equilibrium points Q0 and Q± are drawn by Fig. 3 (a1) and
(a2) respectively. Similarly, when the parameter α2 varies
from 0.05 to 0.3 and β1 varies from 80 to 120, the maximum
value spectrum for the real parts of four eigenvalues are drawn
by Fig. 3 (b1) and (b2) respectively.

III. THE ANALYSIS OF MULTI-STABLE DYNAMICS
In this section, coexisting bifurcation models, multiple attrac-
tors and the corresponding attraction basins are revealed by
a series of numerical computation. Further, two-parameter
dynamical behaviors are analyzed in the parameter planes
corresponding toFig. 3. Thus, the two effects from the param-
eters and the initial values for this circuit are discussed in a
comprehensive way.

A. COEXISTING BIFURCATION MODELS AND MULTIPLE
ATTRACTORS
According to the results in Section II, the dynamical behav-
iors to the new fourth order circuit are obviously sensitive
about initial values. By endowing system’s initial states (x(0),
y(0), z(0),w(0)) with five groups of values, the corresponding
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FIGURE 2. The phase portraits with normalized parameters. (a) the double-scroll chaotic attractor under (x(0), y (0),
z(0), w(0)) = (0, 0, −1, 0), (b) the limit cycle with large amplitude, left-right point attractors under (x(0), y (0), z(0),
w(0)) = (1, 0, −1, 0), (−1, 0, 1, −1), (1, 0, −1, 1).

FIGURE 3. The graphical maximum value spectrum for the real parts of four eigenvalues related to the
equilibrium points Q0 and Q±. (a1) the equilibrium point Q0 under the changes of α1 and β2, (a2) the
equilibrium points Q± under the changes of α1 and β2, (b1) the equilibrium point Q0 under the changes of α2
and β1, (b2) the equilibrium point Q± under the changes of α2 and β1.

bifurcation diagrams created with the local maximum for
variable x about the parameters α1 and α2 are drawn in Fig. 4
(a1) and (b1) respectively, where the other parameters are
taken from normalized typical parameters (11). Correspond-
ingly, the first two Lyapunov exponents about the parameters
α1 and α2 computed with Wolf’s method [39] are drawn in
Fig. 4 (a2) and (b2) respectively, where a set of unique initial
values (x(0), y(0), z(0), w(0)) = (0, 0, −1, 0) is selected.
Observed from Fig. 4 (a1) and (a2), multiple bifurcation

behaviors can be found with the increase of α1 and some
main conclusions can be drawn. For the initial values (0,
0, −1, 0) and (0, 0, 1, 0), the system develops from coex-
isting point attractors to coexisting limit cycles of period-

1, and then evolves into coexisting single-scroll attractors of
chaos through coexisting period-doubling bifurcation mod-
els. Bridged by a broad window of coexisting limit cycles
of period-3, the system turns into double-scroll attractor of
chaos. Such an interesting crisis scenario triggered by coex-
isting limit cycles of period-3 is consistent with the related
report from literature [26]. During the interval of double-
scroll chaotic oscillation, boundary crisis occurs many times,
which are triggered by a series of tangent bifurcations with
double-band periodic oscillation of period-7, period-5 and
period-3. When α1 > 9.55, the limit cycle with large ampli-
tude emerges. For the initial values (−1, 0, 1, −1) and (1, 0,
−1, 1) which are close to the two stable equilibrium points
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FIGURE 4. Multiple dynamical behaviors of model (5). (a1) bifurcation diagrams for x about α1, (a2) Lyapunov
exponent spectra about α1, (b1) bifurcation diagrams for x about α2, (b2) Lyapunov exponent spectra about α2.

Q±, left or right point attractor in wide intervals can be
triggered. For the initial value (1, 0, −1, 0) which is far from
Q±, the limit cycle with large amplitude can be triggered. The
similar dynamical behaviors with the increase of α2 can be
observed fromFig. 4 (b1) and (b2), but this process is inverted
compared with Fig. 4 (a1) and (a2).
For better observing of the above multiple bifurcation

behaviors, the coexisting multiple attractors with a series
of representative values for α1 are simulated numerically,
as shown in Fig. 5. It should be noted that these phase
portraits of the limit cycle with large amplitude are drawn
partly for clarity. As far as the coexisting oscillation behaviors
with small amplitude are concerned, Fig. 5 (a), (b) and (c)
express the evolution of period-doubling bifurcation path to
chaos, and Fig. 5 (e) presents double-scroll attractor of chaos
while Fig. 5 (d) expresses the interesting transitional char-
acteristics from coexisting single-scroll attractors of chaos
to double-scroll one as coexisting limit cycles of period-3,
and Fig. 5 (f), (g) and (h) express double-band limit cycles
which are successively sampled from the periodic windows of
period-7, period-5 and period-3. Furthermore, for these oscil-
lation behaviors with small amplitude in Fig. 5 and Fig. 2 (a),
the expanding capability of the attractors is strengthened
gradually and the contraction capacity is weakened gradually
with the increasing of parameter value α1. During this pro-
cess, single-band oscillation evolves into double-band oscil-
lation. And the dominant oscillation shape develops from
scroll to tendon for the double-scroll attractors, which can
be represented by Fig. 5 (e) and Fig. 2 (a). Accordingly,

the maximum value for the real parts of four eigenvalues in
Fig. 3 (a1) and (a2) increases gradually with the increasing of
parameter value α1, which can be regarded as one explanation
for the above repellent and attractive dynamics. Thus, for the
double-band limit cycles of period-7, period-5 and period-3 in
Fig. 5 (f), (g) and (h), the reduction for the number of periodic
orbits around the equilibrium points Q± is the result of the
weakening of attractive ability from Q±.

B. TWO-PARAMETER DYNAMICAL BEHAVIORS
Two-parameter bifurcation diagram and dynamical map can
reflect the dynamical behaviors of model (5) visually and
adequately. When the parameters α1 and β2 change in accor-
dance with the value ranges of Fig. 3 (a1) and (a2), the two-
parameter bifurcation diagram and dynamical map [40] are
plotted by Fig. 6 (a1) and (a2) respectively. Similarly, when
the parameters α2 and β1 change in accordance with the
value ranges of Fig. 3 (b1) and (b2), the numerical results
are plotted by Fig. 6 (b1) and (b2) respectively. For the two-
parameter bifurcation diagrams (a1) and (b1) described with
the periodicities to variable x, the codes P0, CH and LP
represent the point attractor, chaotic attractor and the limit
cycle with large amplitude respectively. Note here that the
initial values in the four graphs of Fig. 6 are (x(0), y(0),
z(0), w(0)) = (0, 0, −1, 0). Compared with the bifurcation
diagrams triggered by the magenta initial condition and the
corresponding largest Lyapunov exponent spectra in Fig. 4,
Fig. 6 show high consistency at β2 = 9.9275 for (a1, a2) and
β1 = 99.275 for (b1, b2).
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FIGURE 5. Coexisting multiple attractors with a series of representative values for α1. (a) α1 = 8.6, (b) α1 = 8.77, (c)
α1 = 8.85, (d) α1 = 8.915, (e) α1 = 9, (f) α1 = 9.08, (g) α1 = 9.216, (h) α1 = 9.408.

Deserved to be mentioned, the hyperchaos phenomenon is
not discovered in this new fourth order Chua’s circuit. Some
features for the three kinds of fourth order Chua’s circuits in
[27], [28] and this article are summarized in TABLE 1. Obvi-
ously, the disappearance of the hyperchaos phenomenon and

the emergence of coexisting point attractors for the circuit in
this article are two clear dynamical features different from the
circuit in [28]. Furthermore, compared with the classical five-
segment piecewise Chua’s diode, the introduction of three-
segment piecewise Chua’s diode for fourth order Chua’s
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FIGURE 6. Two-parameter bifurcation diagrams and dynamical maps described with the
largest Lyapunov exponent for model (5). (a1) bifurcation diagram on α1-β2 parameter
plane, (a2) dynamical map on α1-β2 parameter plane, (b1) bifurcation diagram on α2-β1
parameter plane, (b2) dynamical map on α2-β1 parameter plane.

TABLE 1. Some features for three kinds of fourth order Chua’s circuits.

circuits doesn’t mean there will be no hyperchaotic behavior,
and this also doesn’t mean that point attractor will certainly
emerge. Clearly these dynamical behaviors depend not only
on the nonlinear characteristic of Chua’s diode but also on the
circuit structure and the corresponding parameters.

C. ATTRACTION BASINS ANALYSIS
For better analysis of the coexisting behaviors for multiple
attractors, the local attraction basins are introduced. When
the normalized typical parameters (11) are adopted, the local
attraction basins in the x(0) −w(0) plane with y(0) = 0 and
z(0) = −1 are drawn, as shown by Fig. 7. (a). And when
the parameter α1 decreases from 9.482759 to 8.85, the cor-
responding local attraction basins are given by Fig. 7. (b).
Compared with the phase portraits in Fig. 2 and Fig. 5 (c)
which have the same parameters values separately, Fig. 7. (a)
and (b) present symmetrical coexisting behaviors further and
the colors of the coordinate points have the same meaning of
dynamics as those used in Fig. 2 and Fig. 5 (c) except for the
red color used to denote the double-scroll chaotic oscillatory
behavior. Obviously, for the local attraction basins, the initial
values near the coordinate values of the two stable equilib-
rium points Q± introduce the system to the corresponding
point attractors. In Fig. 7. (b), symmetrical and intertwined
fractal structures can be observed, which confirms that the
two coexisting point attractors and two coexisting single-

scroll chaotic attractors presented in Fig. 5 (c) are highly
sensitive to the initial values.

IV. DUAL-MODE EXPERIMENTAL VERIFICATIONS BY
ANALOG AND DIGITAL CIRCUITS
For verifying the above dynamical behaviors, the dual-mode
experiments of analog and digital circuits are carried out. The
photographs of two experimental scenarios are expressed by
Fig. 8 (a) and (b) respectively, among which all the printed
circuit boards (PCBs) are designed by the authors of this arti-
cle. In the most PCBs, the large grounding plane can not only
restrain the ground bounce noise from the ground itself but
also weaken the mutual inductance coupling noise from the
parallel lines. The digital oscilloscope DSO7054B is used to
capture the various coexisting attractors. For clarity, the point
attractors are captured in ordinary resolution model while the
other attractors are captured in high resolution model.

According to Fig. 1, the analog circuit shown by
Fig. 8 (a) is designed and fabricated with modular design
approach. Here a main circuit and two small inductance
support board circuits are installed on a large support board
with three self-locking power switches. During the exper-
iments, a piece of AD711KNZ op amp chip is selected
and powered with ±15 V DC. When Ra = 1.8 k�,
Rb = Rc = 20 k�, R1 = 1.9 k�, R2 = 2 �, R3 = 50 k�,
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FIGURE 7. Local attraction basins on x(0) −w(0) plane with y (0) = 0 and z(0) = −1. (a) under the normalized typical
parameters (11), (b) α1 decreases to 8.85 on the basis of parameters (11).

FIGURE 8. The photographs of two experimental scenarios. (a) analog circuit, (b) digital circuit.

FIGURE 9. The experiment results by analog circuit. (a) the double-scroll attractor of chaos, (b) the limit cycle with large
amplitude, left-right point attractors.

FIGURE 10. The block diagram of digital circuit experiment system.

C1 = 5.6 nF, C2 = 53 nF, L1 = 2.2 mH, L2 = 22 mH,
these coexisting double-scroll attractor of chaos, limit cycle
with large amplitude, left-right point attractors can be trig-
gered through switching on and switching off the power
supplies for many times, as given by Fig. 9. It should be
mentioned that the capacitance C1 is achieved by connect-
ing several fixed capacitors and a small adjustable capaci-

tor in parallel with a dash of measuring errors. Obviously,
the experiment results are roughly identical to the simu-
lation results in Fig. 2. Although there are some devia-
tions between this set of actual parameters and the typical
parameters given in Section II B, these results confirm the
basic realizability of the new fourth order Chua’s circuit
physically.
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FIGURE 11. The experiment results with a series of representative values for α1 by digital circuit. (a) α1 = 8.75, (b) α1 =
8.94, (c) α1 = 9.04, (d) α1 = 9.1, (e) α1 = 9.2, (f) α1 = 9.28, (g) α1 = 9.41, (h) α1 = 9.62.

It is widely acknowledged that the symmetry ofmathemati-
cal model determines the existence of symmetric paired coex-
isting attractors for chaotic system in theory [41]. However,
the corresponding actual analog circuit may not be very sym-
metric, which will affect the experiment results especially for
left-right coexisting periodic or chaotic oscillation behaviors

with small amplitude. Because of the discrete, parasitic and
asymmetric properties [42] of the actual component param-
eters, it is very difficult to obtain the coexisting multiple
attractors similar to Fig. 5 through this analog circuit with
a lot of experiments. For better verifying of the multiple
bifurcation behaviors about normalized model (5) with the
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change of α1 by hardware circuit, an experimental scheme
with digital circuit is devised and implemented, as given
previously in Fig. 8 (b). In this scheme, the 16-bit microcon-
troller MSP430F5438A with low power consumption is used
to generate the digital chaos signal and the two-channel 12-bit
digital to analog converter TLV5638 is used to complete the
signal conversion, as shown by Fig. 10. Here the two circuits
of voltage transformation from unipolarity to bipolarity are
designed on the basis of the application report numbered
SLAA113A from Texas Instruments Incorporated [43].

Different from the uncertain attractors triggered by the
random initial states of dynamic components in multi-stable
analog circuit, the various certain attractors can be achieved
respectively in microcontroller digital circuit by setting cor-
responding initial values of state variables in program code.
Meanwhile the engineering application for digital circuit is
more reliably realized compared with that for analog circuit.
Hence this digitized implementation approach is meaning-
ful in both rigorous scientific demonstration and potential
engineering application for high order nonlinear multi-stable
system.

Based on a special third order Runge-Kutta method,
a group of difference equations can be achieved from the
ordinary differential equations (5), as shown by

xn+1 = xn + h(kx1 + 4kx2 + kx3)/6
yn+1 = yn + h(ky1 + 4ky2 + ky3)/6
zn+1 = zn + h(kz1 + 4kz2 + kz3)/6
wn+1 = wn + h(kw1 + 4kw2 + kw3)/6

(14)

Here h represents the time step while (xn, yn, zn, wn)
and (xn+1, yn+1, zn+1, wn+1) represent the current point and
the next point respectively. The calculation formulas for the
slopes of the current point and the two forecast points are
expressed as

N = mbxn +
1
2
(ma − mb)(|xn + 1| − |xn − 1|) (15)

kx1 = α1 [zn − N ]
ky1 = −α2yn − zn − wn
kz1 = β1 (yn − xn − zn)
kw1 = β2 (yn − α3wn)

(16)



kx2 = α1 [(zn + 0.5hkz1)− N ]
ky2 = −α2(yn + 0.5hky1)− (zn + 0.5hkz1)

−(wn + 0.5hkw1)
kz2 = β1

[
(yn + 0.5hky1)− (xn + 0.5hkx1)
− (zn + 0.5hkz1)]

kw2 = β2
[
(yn + 0.5hky1)− α3(wn + 0.5hkw1)

]
(17)


kx3 = α1 [(zn + hkz2)− N ]
ky3 = −α2(yn + hky2)− (zn + hkz2)− (wn + hkw2)
kz3 = β1

[
(yn + hky2)− (xn + hkx2)− (zn + hkz2)

]
kw3 = β2

[
(yn + hky2)− α3(wn + hkw2)

]
(18)

where the nonlinear term N is considered as the function of
the current point and not affected by the two forecast points
in the calculations.

According to the above computational methods, a series
of programs with the change of α1 based on the normalized
typical parameters (11) are designed with C language, where
the several initial values corresponding to Fig. 5 and the uni-
fied time step h= 0.005 are introduced. Driven by the crystal
oscillator with 25 MHz clock frequency, the microcontroller
MSP430F5438A performs these programs respectively.
Fig. 11 provides these corresponding experiment results
exported from the TLV5638 PCB circuit with bipolar voltage
outputs. It can be observed that these experiment results are
highly consistent with those simulation results shown by
Fig. 5 under the conditions of appropriate reductions for α1.
Thus, the multiple dynamical behaviors in Section III are
confirmed by circuit experiments.

V. CONCLUSION
In this article, a succinct fourth order Chua’s circuit is pro-
posed based on a traditional fourth order Chua’s circuit. From
the circuit structure, the positive resistance takes the place
of the negative one in the traditional fourth order Chua’s
circuit, thereby reducing the number of op amps and sim-
plifying the circuit. The experimental verification by analog
circuit confirms the realizability of the new fourth order
Chua’s circuit physically. From the stability of equilibrium
points, one unstable saddle-focus point of index 1 and two
stable node-focus points are discovered in the two-parameter
planes based on the normalized typical parameters. From
the dynamical behaviors, coexisting bifurcation models, mul-
tiple attractors and the corresponding attraction basins are
revealed by a series of numerical computation. It is interesting
that the coexisting limit cycles of period-3 build a bridge
between the coexisting single-scroll attractors of chaos and
the double-scroll one. During the interval of double-scroll
chaotic oscillation, the crisis scenarios triggered by a series
of tangent bifurcations with double-band periodic oscilla-
tion of period-7, period-5 and period-3 appear successively.
The experimental verification by digital circuit is carried
out on the 16-bit microcontroller MSP430F5438A, and the
corresponding experiment results confirm those simulated
dynamical behaviors completely. Moreover, the digital and
programmed realization way offers the opportunity for the
engineering application based on chaos [26], [44].
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