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ABSTRACT Conventional fuzzy clustering algorithms present several disadvantages with respect to image
segmentation, including a tendency to arrive at local optima and a relatively high sensitivity to noise and
initial cluster centers. To address these issues, we herein propose a kernel-based intuitionistic fuzzy clustering
approach combining an improved grey wolf optimizer with a kernel-based intuitionistic fuzzy C-means
clustering (IGWO-KIFCM) algorithm capable of carrying out differential mutations for image segmentation.
The proposed method extracts spatial information from images and then applies a kernel-based intuitionistic
fuzzy clustering objective function to improve the robustness of the algorithm against noise. To cope with the
initial sensitivity and local optima issues, we develop an improved grey wolf optimizer based on differential
mutation for the global optimization of the cluster centers. A comparative optimization assessment using six
classic functions reveals that the improved grey wolf optimizer algorithm outperforms both the grey wolf
optimizer and mean grey wolf optimizer algorithms in terms of searching ability and does not easily run
into local optima. Moreover, the IGWO-KIFCM algorithm surpasses several other algorithms with respect
to clustering performance across multiple datasets, and achieves good results in segmenting images with
various types of noises.

INDEX TERMS Differential mutation, grey wolf optimization, image segmentation, intuitionistic fuzzy
clustering, spatial information.

I. INTRODUCTION
The fuzzy C-means (FCM) clustering algorithm is an unsu-
pervised clustering analyzer based on the use of fuzzy sets.
Because it can retain a high amount of information from
an original image, it has been widely applied in areas such
as fruit image recognition [1] and medical image segmen-
tation [2]. Whereas conventional fuzzy sets consider only
differences in set element membership, intuitionistic fuzzy
sets (IFSs) apply hesitation and non-membership, thereby
improving the ability of fuzzy sets in describing and pro-
cessing complex and uncertain knowledge to reveal more
accurately the fuzzy essence of objects. IFSs and the FCM
algorithm can be combined to obtain an intuitionistic FCM
clustering algorithm (IFCM) [3] that can process fuzzy infor-
mation more effectively than conventional FCM algorithms.
When the IFCM algorithm is applied to image segmenta-
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tion, the spatial information of the image is not consid-
ered, given that IFCM algorithms are sensitive to noise and
wild values [4]. The kernel-based IFCM clustering algorithm
(KIFCM) has been proposed as a tool for overcoming the
sensitivity of the IFCM to image noise [5]. In [6], an adaptive
FCM algorithm based on local noise detecting and image
spatial information is shown to improve the noise sensitivity
of the traditional fuzzy clustering algorithm during image
segmentation. However, the KIFCM algorithm is vulnera-
ble to noise when applied to image segmentation due to
insufficient consideration of the spatial information of the
image, such that it cannot segment images with complex
textures or backgrounds. Similar to the traditional FCM algo-
rithm, the KIFCM algorithm is sensitive to the initial value
of the clustering center and prone to falling into local optima
rather than global optima.

In recent years, the swarm intelligence optimization algo-
rithm has been widely applied to the clustering problem.
This algorithm can effectively overcome the drawbacks of
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the traditional clustering algorithm, which is sensitive to the
initial value of the clustering center and easily falls into
the local optimum. The grey wolf optimizer (GWO) has a
strong ability to seek local optima and a fast convergence,
but is rather weak in terms of searching for global optima
when solving certain complex problems. To overcome these
issues, many improved GWO (IGWO) algorithms have been
proposed. For instance, optimization can be strengthened by
incorporating crossover and mutation operators into GWO
[7], whereas Levy flight can be adapted to GWO to cope with
population diversity [8]. Despite significant improvements on
GWO, it remains prone to falling into local optima, a slow
recovery rate, and imbalance between global exploration and
local development capabilities.

Therefore, to further improve the robustness of the KIFCM
algorithm to image noise, we designed a strategy to extract
robust spatial information from images with the goal of estab-
lishing a kernel-based IFC objective function that incorpo-
rates robust spatial information from images. To address the
disadvantages of the KIFCM algorithm in terms of sensi-
tivity to initial cluster centers and the tendency to run into
local optima, we drew inspiration from [9] in developing
a strategy to update wolf pack locations based on dynamic
random differential mutation for the optimization of cluster
centers. By applying these methods, the proposed algorithm
is expected to expand the global optimization range, improve
local optimization precision, increase the probability of the
algorithm jumping out of the local extreme value, and carry
out more accurate image segmentation.

II. RELATED ALGORITHMS
A. GWO ALGORITHM
The GWO algorithm simulates the stringent hierarchical sys-
tem of a grey wolf pack and its collective hunting habits. It is
possible to divide a grey wolf population by status into four
categories from high to low, namely, α, β, γ , and ε. In the
solution space, these can bemapped onto the optimal, second-
best, third-best, and candidate solutions, respectively. In par-
ticular, α, β, and γ are leaders in terms of hunting behavior,
which occurs in three stages—stalking and approaching prey;
chasing and closing around the prey; and, finally, attacking
and killing. The closing around behavior can be described
mathematically as follows.

D =
∣∣C ⊗ Xp(t)− X (t)∣∣ (1)

X (t + 1) = Xp(t)− A⊗ D (2)

A = (2× r1 − 1)× a (3)

C = 2× r2 (4)

a = 2− 2t/MaxDT , (5)

where D is the distance between the prey and the wolf; Xp(t)
and X (t) are the location vectors of the prey and wolf, respec-
tively; A and C are coefficient vectors; a is the rate of linear
convergence, which decreases linearly from two to zero as the
number of iterations increases; r1 and r2 are random variables
in the interval [0,1]; and MaxDT is the maximum number

of iterations. The respective hunting behaviors can then be
described using the following mathematical expressions:

Dα = |C1 ⊗ Xα(t)− X (t)| (6)

Dβ =
∣∣C2 ⊗ Xβ (t)− X (t)

∣∣ (7)

Dγ =
∣∣C3 ⊗ Xγ (t)− X (t)

∣∣ (8)

X1 = Xα(t)− A1 ⊗ Dα (9)

X2 = Xβ (t)− A2 ⊗ Dβ (10)

X3 = Xγ (t)− A3 ⊗ Dγ (11)

X (t + 1) = (X1 + X2 + X3)/3, (12)

where Dα,Dβ , and Dγ are the distances between wolf ε and
wolves α, β, and γ , respectively. Equation (12) indicates the
current location of wolf ε.

B. KIFCM
It has been shown in [5] that the KIFCM algorithm can be
updated as follows:

J =
N∑
i=1

C∑
j=1

umij
∥∥ϕ(xi − ϕ(vj))∥∥2 + N∑

i=1

π∗i e
1−π∗ , (13)

where π∗i =
1
c

c∑
k=1

πki is the degree of hesitation concerning

whether the i-th element belongs to the k-th cluster center
and φ is a non-linear mapping function from the lower-
dimensional input space to the higher-dimensional character-
istic space.

Based on the definition of a kernel by Mercer, we obtain
the following:

d2(xi, vj) =
∥∥ϕ(xi)− ϕ(vj)∥∥2

= K (xi, xi)+ K (vj, vj)− 2K (xi, vj). (14)

Equation (13) can therefore utilize any kernel function that
satisfies the requirements set by Mercer. As Gaussian kernels
are superior at suppressing image data noise, they can be
used to calculate the distance between each data point and
the cluster center, which is K (x, x) = 1. Thus, (14) becomes

d2(xi, vj) =
∥∥ϕ(xi)− ϕ(vj)∥∥2 = 2− 2K (xi, vj). (15)

Substituting (15) into (13) produces the following KIFCM
objective function:

J = 2
N∑
i=1

C∑
j=1

u∗mij (1− K (xi, vj))+
N∑
i=1

π∗i e
1−π∗ . (16)

The optimal solution for (16) can then be calculated to
obtain the iteration expressions for obtaining membership u∗ij
and cluster centers v∗j as follows.

u∗ij =


(
1− K (xi, vj)

) 1
m−1

C∑
j=1

(
1− K (xi, vj)

) 1
m−1


−1

+ π∗ij (17)
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v∗j =

N∑
j=1

u∗ijxj

N∑
j=1

u∗ij

(18)

π∗ij =


1− 2m0

m0
uij(k), 0 ≤ uij(k) ≤ m0

(1− 2m0)+ (2m0 − 1)uij(k)
1− m0

, m0 < uij(k) < 1.

(19)

Finally, the iteration termination condition can be set as
|Unew − Uold | < η to obtain the final matrix of cluster centers
and memberships.

III. KIFCM ALGORITHM GUIDED BY GWO WITH
DIFFERENTIAL MUTATION
A. EXTRACTION OF ROBUST SPATIAL INFORMATION
Gaussian noise and salt-and-pepper noise are two common
types of noises in nature. Gaussian noise is, in essence,
normally distributed noise, and images contaminated by
Gaussian noise experience a change in greyscale value con-
forming to a Gaussian distribution. To eliminate the influ-
ence of Gaussian noise on image segmentation, the proposed
algorithm uses the mean of pixels within a neighborhood
window to represent the information for a specific pixel.
Salt-and-pepper noise is noise containing only two greyscale
values. Therefore, images contaminated by salt-and-pepper
noise will experience a change in the greyscale values of a
certain number of pixels to either 0 or 255. The most effective
way to eliminate salt-and-pepper noise is via a median filter.
However, as there will inevitably be pixels whose initial
greyscale values are either 0 or 255, to ensure that authentic
image information is retained, it is useful to develop strategies
that guarantee that these pixels are not removed by the filter
algorithm. With this goal in mind, we propose a new method
to extract spatial information from images to overcome the
effect of noise on image segmentation.

To construct the greyscale filter, we first define
X = {x1, x2, x3, · · · , xn}, an image with n pixels in which the
greyscale value of pixel j is xj. To account for salt-and-pepper
noise, we divide the pixels into three greyscale categories,
namely xj = 0, xj = 255, and 0 < xj < 255. To acquire
new spatial information from the image pixels, we choose a
neighborhood windowwith a diameter of ρ for overall zigzag
sliding and define S5j as the 5 × 5 neighborhood window
with pixel j at its center [10]. The number of pixels with the
greyscale values xj = 0 and 255 within the neighborhood are
denoted by ζ and η, respectively.
When ζ + η = 25, there is a relatively high likelihood

that the greyscale value of pixel j is either 0 or 255. Under
a voting model, the greyscale value with the most presence
would be assigned as the spatial value of j: therefore, if ζ > η,
we define xjnew = 0; otherwise, if ζ < η, xjnew = 255.

On the other hand, when ζ + η 6= 25, the mean s̄ of
the greyscale values of all pixels for which xj 6= 0 and

xj 6= 255 are calculated as the spatial information of pixel j,
and we define

xjnew = s. (20)

If the greyscale values of pixel j, ζ , and η within the
neighborhood meet any of the following three conditions, the
spatial information of the pixels are updated accordingly:

1. xj =0 and ζ + η ≥ 2: This suggests a large likelihood
that the greyscale value of pixel j equals one, in which case
the spatial information of j is updated as follows:

xjnew = s
[
1− (

ζ

25− η
)3
]
. (21)

2. xj = 255 and ζ +η ≥ 2: This suggests a large likelihood
that the greyscale value of pixel j equals 255, in which case
the spatial information of j is updated as follows:

xjnew = 255(
η

25− ζ
)3 + s

[
1− (

η

25− ζ
)3
]
. (22)

3. xj 6= 0, xj 6= 255, and ζ + η ≥ 2: This case corresponds
to the highest likelihood that there is salt-and-pepper noise in
other pixels in the neighborhood, in which case j is updated
as follows [10]:

xjnew =
ζ

25
s
[
1−

ζ

25− η

]
+
η

25

{
255(

η

25− ζ
)3 + s

[
1− (

η

25− ζ
)3
]}

+
25− ζ − η

25
s. (23)

Equation (20) both eliminates the influence of Gaussian
noise using a mean filter and removes the effect of salt-and-
pepper noise contamination. Equations (21) and (22) attempt
to retain the effect of the original pixels with greyscale values
of 0 or 255 on the spatial information to effectively avoid any
loss of image information, whereas (23) takes the contamina-
tion of other pixels in the neighborhood by salt-and-pepper
noise into account.

To examine the effectiveness of the spatial information
obtained using this method, we added 40% salt-and-pepper
noise and Gaussian noise at a 0.009 variance to the Lenna
image. Fig. 1 shows a comparison of the noise resistance per-
formance using different spatial information. The greyscale
values of the image contaminated by salt-and-pepper noise
in Fig. 1(a) and Gaussian noise in Fig. 1(b) are Xsalt and
XGauss, respectively. Figs. 1(c) and (d) show representations
of the pixels within the neighborhood window following
application of the mean filter and processing of mean and
median spatial information; namely, Fig 1(c) compares the
peak signal-to-noise ratio (PSNR) of X’ with those of Xsalt,
Xmean, and Xmedian; and Fig. 1(d) compares the PSNR values
of XGauss, Xmean, Xmedian, and X’ [11]. The results in the
figures confirm that the robust spatial information obtained
using the proposed filter can effectively suppress the effect
of salt-and-pepper and Gaussian noises.
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FIGURE 1. Comparison of noise resistance performance using different spatial information: (a) Salt-and-pepper noise,
(b) Gaussian noise image Xgauss, (c) Performance comparison of PSNR, (d) Performance comparison of PSNR.

Based on the spatial information xjnew obtained using the
method described above and the application of the KIFCM
algorithm, it is possible to construct a KIFCM objective
function incorporating the filter-derived spatial information
as follows:

J = 2
N∑
i=1

C∑
j=1

u∗mij (1− K (xi, vj))

+ 2τ
N∑
i=1

C∑
j=1

u∗mij (1− K (xinew, vj))+
N∑
i=1

π∗i e
1−π∗ ,

(24)

where τ = 40 is the weight of the spatial information.
By applying Lagrange multiplier optimization to (24), it is
possible to obtain the membership u∗ij:

u∗ij =


(
1− K (xi, vj)

) 1
m−1

C∑
j=1

(
1− K (xi, vj)

) 1
m−1


−1

+ τ


(
1− K (xinew, vj)

) 1
m−1

C∑
j=1

(
1− K (xinew, vj)

) 1
m−1


−1

+ π∗ij . (25)

B. WOLF PACK POSITION UPDATE STRATEGIES BASED ON
DYNAMIC RANDOM DIFFERENTIAL MUTATION
It can be inferred from (12) that changes in the location of
wolf εwill be coupled with changes in the locations of wolves
α, β, and γ . When α, β, and γ are all at their local optimal
locations, the other wolves in the pack are also likely to be
close to local optima, which will affect the search for the
global GWO optima. By incorporating a typical differen-
tial mutation evolution algorithm [10], it is possible to add
a dynamic random differential mutation mechanism to the
GWO algorithm. This mechanism first randomly selects three
grey wolves and then rescales the differential components of
two of them. The rescaled differential components are then
combinedwith those of the third wolf to produce a differential
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disturbance that improves the algorithm’s ability to seek
global optima. The proposed method adopts the following
differential mutation mechanism:

Xi(t + 1) = Xi1(t)+ ϕ(Xi2(t)− Xi3(t)), (26)

where Xi1, Xi2, and Xi3 are the location vectors of any three
wolves in the pack, with i1, i2, i3 ∈ [1,N] that do not repeat,
and a random scaling factor of ϕ = 0.5+ 0.5rand1.

C. GREEDY MECHANISM
Although (12) and (26) can be used to update the locations
of the grey wolves, there is no guarantee that the updated
location vectors will be better fitted than the original vectors.
Therefore, we adopt a greedy mechanism to compare the
degrees of fitness of the new and original solutions and retain
the solution with the better fitness:

Xi(t) =

{
Xi(t), fit(X ′i (t)) < fit(Xi(t))
X ′i (t), fit(Xi(t)) < fit(X ′i (t)).

(27)

D. IGWO PSEUDOCODE
The dynamic random differential mutation procedure is
applied using the following IGWO algorithm:

Input: Wolf pack scale, N; maximum number of iterations,
MaxDT

Output: Xα
1. Initialize locations of N wolves
2. Calculate the degree of fitness of each grey wolf; select

wolves α, β, and γ and record their location vectors,
t = 0

3. while t <MaxDT
4. for i =1 to N do
5. if rand1 < 1-t/MaxDT
6. execute dynamic random differential mutation using

(26) and update locations of grey wolves
7. else update locations of grey wolves using (6) to (12)
8. end if
9. end for

10. calculate the degree of fitness of each grey wolf
11. execute greedy mechanism, update wolves α, β, and γ

and their location vectors
12. t = t + 1
13. end while
14. return Xα
P = 1 – t/MaxDT is the selection probability of the random
difference mutation strategy. The value of 1 – t/MaxDT in
the early search stages is large. The random difference muta-
tion strategy predominantly improves the exploration ability.
In the late search stages, the value of P is small and the GWO
search method predominantly improves the mining capacity.
By IGWO pseudocode, compared with the GWO update
method ((6)–(12)), the random difference mutation strategy
only uses (26) to update the position. The update expression
is simple, and the calculation minimal, so the computational
complexity is small.

TABLE 1. Classic functions.

E. PERFORMANCE ANALYSIS OF IGWO
To test the optimization performance of the IGWO,
we employed the six classic test functions f1 to f6 listed
in Table 1 as objects for comparing the optimization results
of the proposed algorithm with those of GWO [11] and mean
GWO (MGWO) [12]. Specifically, f1 to f3 are unimodal
functions with variable dimensions, whereas f4 to f6 are mul-
timodal functions with variable dimensions.

All of the assessments were carried out using an Intel R©
CoreTM i5-3230M computer with a Windows 10 operating
system, 2.60GHzCPU, and 4GBRAM. The codewas imple-
mented using the MATLAB 2014R programming language.
The size of the population was set to z = 20; 20 independent
executions with a maximum number of 500 iterations were
carried out. The test results are listed in Table 2.

The results listed in Table 2 indicate that the IGWO algo-
rithm obtained much higher accuracy in seeking the optimum
than either the GWO or MGWO algorithm on both the uni-
modal (f1 to f3) and multimodal functions (f4 to f6).

To visually represent the convergence performance of
GWO, MGWO, and IGWO, Fig. 2 shows the convergence
curves of the three algorithms on the test functions f1, f2,
and f5. It is apparent that IGWO achieves a higher speed of
convergence than either the GWO or MGWO algorithm.
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FIGURE 2. Optimization convergence curves of three algorithms on three test functions.

FIGURE 3. Flow chart of IGWO-KIFCM algorithm.

F. IGWO-KIFCM ALGORITHM FLOW
The process flow of the IGWO-KIFCM algorithm is shown
in Fig. 3.

G. IGWO-KIFCM TIME COMPLEXITY ANALYSIS
The IFCM clustering algorithm is divided in such a manner
that the sum of all distances D from each data object P to
its corresponding cluster center is the smallest. Here, D is
calculated as

D = min

 k∑
i=1

∑
p∈Ci

dist (p, oi)

 (28)

TABLE 2. Comparison of algorithm optimization performance using
classic functions.

where Oi is the center of cluster Ci and dist is the distance
function. When k = 1, the time complexity of the algorithm
is O(n2). After introducing the kernel function, when the i-th
initial center point is selected where i ∈ [1, k], the algorithm
running time t is computed as

t = (n+ 1) (i− 1) (29)

The running time of the i-th initial center point is

Ti = mt = m (n+ 1) (i− 1) (30)

The time complexity of the KIFCM algorithm T (n) is

T (n) = O

(
k∑
i=1

Ti

)
= O

(
mk2n

)
(31)

When m = 2, the KIFCM algorithm is expressed
as T (n) = O

(
k2 · n

)
.

The flowchart in Fig. 3 shows that both the initialization
and the robust information extraction in the program are
single line statements with a time complexity of O(j). From
the pseudocode of the IGWO, it can be observed that, in the
for-loop, the outer layer traverses all the data, while the
inner layer finds the optimal clustering center. The IGWO
algorithm is, thus, a two-layer loop with a complexity of
O(k2). Therefore, the time complexity of the IGWO-KIFCM
algorithm is T (n) = O

(
jk2 · n

)
.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EFFECT OF NEIGHBORHOOD WINDOW SIZE ON
CLUSTERING ACCURACY
From Section III.A, it can be seen that neighborhood window
diameter ρ has a direct impact on the noise processing effect.
The smaller the ρ value, the lower the amount of spatial
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FIGURE 4. Clustering accuracy of algorithms with different ρ under different types of noise.

FIGURE 5. Segmentation of lifting body image (salt-and-pepper noise at 0.01 density): (a) Gaussian noise image, (b) IFCM,
(c) KIFCM, (d) IGWO-KIFCM algorithm.

TABLE 3. Comparison of clustering performance of different algorithms.

information involved in the calculation, and the clearer the
image details. The optimal range of ρ values is found by
adding salt and pepper, Gaussian, and combined salt and
pepper andGaussian noises to the lifting body image to test ρ.
Let ρ be 3, 5, 7, and 9 for testing. Fig. 4 shows the correspond-
ing broken-line diagram of the change of image clustering
accuracy with ρ under different noise levels. It can be seen
from the figure that the optimal values of ρ are 5 and 7.

B. CLUSTERING EXPERIMENT OF IRIS DATASET
To investigate the clustering ability of the proposed algo-
rithm, we compared its clustering optimization performance
on the Iris dataset with the performance of the IIFCM [13],
NIFCM [14], and BFWCOM [15] algorithms. The follow-
ing conditions were set: maximum number of iterations =
200, m = 2, iteration error = 0.00005, and Gaussian kernel
σ = 0.4. Each algorithm was run independently 20 times.
Table 3 lists the results produced by each algorithm, where
it can be seen that the IGWO-KIFCM algorithm has good
clustering performance when processing Iris datasets and has
some practical value.

C. CLUSTERING EXPERIMENTS WITH ADDITIONAL UCI
DATASETS
To further verify the effectiveness of the IGWO-KIFCM
algorithm in clustering real datasets, five UCI datasets other

TABLE 4. Rand index RI (%) for different clustering algorithms on UCI
datasets.

than the IRIS dataset were selected for the experiments, and
the experimental results are presented in Table 4.

The Rand index (RI) was chosen as the index for evaluat-
ing the classification accuracy of the algorithm’s clustering
results.

RI =
faa + fbb
n(n− 1)

× 2 (32)

Here, faa is the total number of samples that belong to the
same class in the original dataset and remain in the same class
in the clustering results, fbb is the total number of samples
that belong to different classes in the original dataset and
remain in different classes in the clustering results, and n
is the number of samples. It can be observed in (32) that
RI ∈ [0,1], and the larger the value, the better the clustering
effect.

As shown in Table 4, in comparison with several other
algorithms, the IGWO-KIFCM algorithm has the highest
Rand index on all the above five UCI datasets. This indicates
that it has good clustering performance when processing real
datasets and has some practical value.

D. IMAGE SEGMENTATION EXPERIMENT
To evaluate the effect of visual segmentation by the pro-
posed algorithm, we performed image segmentation with the
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FIGURE 6. Segmentation of lifting body image (Gaussian noise at 0.003 variance): (a)Gaussian noise image, (b) IFCM,
(c) KIFCM, (d) IGWO-KIFCM algorithm.

FIGURE 7. Segmentation of lifting body image (Gaussian noise at 0.003 variance + salt-and-pepper noise at 0.01 density):
(a)Mixed noise image, (b) IFCM, (c) KIFCM, (d) IGWO-KIFCM algorithm.

TABLE 5. Comparison of segmentation accuracy under different noises.

number of clusters set to two and the maximum number of
iterations set to 100. Figs. 5, 6, and 7 show the results of
segmentation of images with Gaussian, salt-and-pepper, and
mixed noise, respectively. The results demonstrate that the
algorithm was able to overcome the impact of all three types
of noise and to successfully distinguish the object from the
background in each case.

Table 5 shows the accuracy of image segmentation under
different noises. It can be seen from this table that the
proposed algorithm is superior to the IIFCM, NIFCM, and
BFWCOM algorithms in terms of noise suppression. This is
because the proposed algorithm fully considers the character-
istics of Gaussian and salt-and-pepper noises when obtaining
image spatial information, and then designs a targeted robust
information extraction strategy that can effectively suppress
the influence of Gaussian, salt-and-pepper, and mixed noises
during digital image segmentation.

V. CONCLUSION
To overcome the disadvantages of conventional IFCM algo-
rithms in terms of sensitivity to noise and initial cluster
centers, in this study we developed a kernel-based intuition-
istic fuzzy clustering image segmentation algorithm using
an improved grey wolf optimizer with differential mutation
(IGWO-KIFCM). After robust image spatial information is
input to the objective function of the KIFCM algorithm,
the IGWO applies dynamic random differential mutation to
enhance the ability of the algorithm to search for a global opti-
mum. The results of clustering optimization on six functions
using the Iris dataset demonstrated that the IGWO is capable
of effectively coping with the problems of KIFCM clustering
optimization. The proposed algorithm also achieved good
results in segmenting images with various types of noise.

Future work will focus on optimizing the efficiency of
the IGWO-KIFCM algorithm as well as conducting effective
mining of image spatial information in a larger area to further
improve its noise suppression ability.
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