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ABSTRACT Real-time tele-haptic applications require capturing, compressing, transmitting, and displaying
haptic information, which includes tactile and kinesthetic information. To achieve a high quality of service
(QoS), real-time haptic data stream synchronization between local and remote environments is required.
However, transmission of data over a computer network is often affected by network impairments, such as
network delay, jitter, and packet loss, thus leading to system instability and poor performance. Current predic-
tion algorithms for networked haptics comprise perceptual data reduction, traffic prioritization approaches,
congestion control approaches, and radio resource allocation. However, the mentioned prediction algorithms
either do not consider packet loss and time-varying delays (i.e., jitter) in their experimental setup, or only
consider packet loss or delays. In real-world network environments, both packet loss and delays often
occur simultaneously. In this work, a network adaptive Trust Strategy Prediction (TSP) algorithm was
modified to work under both network impairments. The objective of the TSP is to maintain real-time
haptic synchronization (haptic data stream synchronization) between the haptic interactive environments,
by compensating network impairments using selective and specific prediction strategies, according to
changes in the network’s characteristics. The experimental results demonstrate that TSP offers greater
accuracy and smaller inconsistencies in terms of the predicted position, compared to the dead reckoning
prediction and velocity estimation, which is often employed with filtering techniques.

INDEX TERMS Communication network, haptic data prediction algorithm, tele-haptics, Trust Strategy
Prediction.

I. INTRODUCTION
A key focus for current haptics research involves distributing
haptic interactions remotely, which are defined as networked
haptics (also known as tele-haptics). Tele-haptics [1], [2]
is a technology that enables remote physical interactions
with convincing touch experiences. It involves capturing,
compressing, transmitting, and display of haptic information,
including tactile (object identification or tactile dimensions),
and kinesthetic (sensation of position/orientation) informa-
tion. This information is transmitted over a computer net-
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work, between physically distant human beings, or between
a local user and a remote location. Typical tele-haptic appli-
cations encompass medical [3], [4], simulation [5], [6], inter-
active gaming [7], and so forth.

Haptics require laws or policies to specify the action and
reaction between forces (i.e., forces with Cartesian vectors)
and motion (i.e., kinematics with Jacobian transpose) [9].
In an idealized transmission, the haptic data of both local and
remote environments are updated and synchronized in real
time. Unlike other types of network traffic such as text, graph-
ics, audio, and video, which have met a relatively high quality
of service (QoS) requirements, haptic transmissions have not
reached such a high level of sophistication [2]. In many
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situations, network impairments such as network delay and
packet losses are unavoidable, which leads to lowered QoS,
due to poor performance, unreliability, instability, and low
fidelity during the haptic interaction. Delays can cause the
remote operation to be ineffective, as real-time feedback is
crucial. However, under certain circumstances, the delay time
can be predicted from parameters which are independent of
delay [10].

One approach to deal with the issue of real-time inter-
actions which are affected by network impairments is to
compensate it by using predictive algorithms [11]. Previ-
ous research studies in relation to the prediction of haptic
data have resulted in significant improvement in the QoS,
alongside the maximum compensation of network impair-
ment effects (network delay and packet losses) [6], [12], [13],
[14]. Haptic data generally consists of two interactive param-
eters, which are the position (including position/coordinate,
velocity, acceleration, and orientation) and force (including
resistance force, torque, and momentum). Positional data is
used to exchange the state of the spatial location between the
haptic environments, to determine movement, as well as to
identify the collision contact points, where the force reac-
tions occur. Without having regular and accurate positional
updates, the presented force toward the user can become
unrepresentative, and possibly unstable. This is the focus of
our paper – positional data. A new network-adaptive Trust
Strategy Prediction (TSP) is proposed to compensate for
network impairments, by predicting the real-time haptic data.
The TSP framework is adopted from our previous work [51],
which predicted the velocity and yank estimations using posi-
tional data, based on historical haptic data and connectivity
information. The results have been shown to produce better
accuracy and less inconsistency, compared to the two well-
known and popular positional prediction techniques used
in networked haptics, which are the Dead Reckoning (DR)
position estimation, and the Velocity Estimationwith filtering
(VE+F) technique [6], [7]. Both DR and VE+F techniques
have been commonly applied in tele-haptics, for the aspect
of maintaining hard real time, and upholding the consistency
of the smoothness, respectively [15]–[19]. DR is seen as a
fundamental technique, especially in predictive navigation,
and has been frequently used in the haptic area when dealing
with transmission delays and position estimation. The VE+F
has been used to filter the noise when dealing with high
sampling in haptic transmissions, to enhance the smoothness
of the user experience.

The remainder of this paper is organized as follows:
Section II reviews the related works, Section III discusses
the proposed framework, Section IV describes the experi-
mental platform and testing scenarios, Section V shows the
outcome of the results, and finally, a conclusion is presented
in Section VI.

II. RELATED WORK
A critical requirement in networked haptic interaction is to
produce a natural and smooth gesture, body movement, and

a tactile or touch sensory feedback between the haptic envi-
ronments, without the restriction of distance. Nevertheless,
it is recognized that it is difficult to maintain a satisfactory
user experience, whenever there are network impairments
[13]. The researchers in [6], [7], [22] have carried out user
experience quality surveys based on the mean opinion score
tests, to evaluate the effect of haptic interaction under the
influence of network impairments. Their evaluations have
highlighted various network impairments, such as delays
(including constant delay and variable delay), packet losses,
low throughput, and background traffic interference. The
performance and usability of the tele-haptic system in real-
life scenarios are affected by network impairments, which
include, but not limited to, network delays, jitters, and packet
losses [20]. Different forms of network impairments affect
DHVE interactions in different ways. For instance, the pres-
ence of network delays will result in the de-synchronization
of the user’s visual experience, and the complimentary haptic
force feedback they receive within a virtual environment.
In a non-jitter network, the data packet transmission is in
a sequence interval, which will enable the receiving com-
puter to process the data smoothly. A jitter network thus,
will result in an inconsistent time delay and the receipt of
an unsequenced data packet, down to the milliseconds(ms)
during the transmission process. Jitters can create an unstable
virtual environment (user experiences oscillating wave-like
movements on the surface of virtual objects) [21].

A. HAPTIC TRAFFIC HANDLING APPROACHES UNDER
DIFFERENT NETWORK ENVIRONMENTS
With the set of tight real-time constraints in haptic applica-
tions, many researchers have made significant efforts to mini-
mize network impairments by applying the Quality of Service
(QoS) methodology in order to prioritize haptic traffic over
networks [11], [30]–[32]. Methods involving the application
of traffic classification and prioritization mechanisms to the
transmission of multi-modal data through a QoS-enabled IP
network have yielded significant improvements in a user’s
haptic experiences, byminimizing network impairments [33],
[34]. Marshall et al. [33] applied these mechanisms to man-
age haptic traffic congestion using the class-based weight
fair queue (CBWFQ), as well as implementing the Diffserv’s
code point (QoS) mechanism. The utilization of the CBWFQ
resulted in a significantly lowered end-to-end haptic delay,
from 200 milliseconds to 40 milliseconds. Marshall et al.
[35] applied the expedited forwarding, and assured that the
forwarding classes treatments in a network employed the
class-based weighted fair queuing in order to assign higher
priority for the haptic traffic, thus, yielding a lower delay
compared to other types of network traffic. However, this
approach is applicable in managing prioritized networks, but
not in non-guaranteed network channels, such as the general
Internet.

For non-guaranteed network channels, Eid et al. [36]
and Osman et al. [37] proposed an end node application
layer-based data communication framework for multi-model
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traffics (including haptic data) over a non-guaranteed/best
effort network. They proposed multiplexing/multiple buffer-
ing to intelligently utilize the limited network throughput
based on traffic prioritization policies. Their approach of
adjusting the transmission rate according to the network
impairments have shown significant improvement over data
interleaving, but it could also lead to fluctuations in the haptic
sequence intervals due to variations in the haptic update
rate, consequently, causing a distrupted haptic experience.
Cizmeci et al. [38] proposed a multiplexing scheme for mul-
timodal tele-haptics. Bilateral tele-haptic occurs in a global
control loop, that requires low-delay positions and force feed-
back exchanges to avoid small delays from jeopardizing the
system’s stability. Hence, it is important to prioritize trans-
mission of haptic data. Their approach allocated resources to
be shared amongst haptic, video, and audio, while prioritizing
haptic signals over communication links with congestion and
time-varying transmission rates. Gokhale et al. [39] proposed
a lossless, network aware transport layer congestion control
protocol, that adjusted the packet rate based on the congestion
levels in the shared network.

Many have turned to ‘‘Tactile Internet’’, as a newly
emerged form of the Internet, which is said to be ‘‘an
ultra-responsive and ultra-reliable’’ network connectivity,
which enables the transmission of physical haptic experi-
ences remotely. The creation of the ‘‘Tactile Internet’’ aims
to achieve a round-trip of 1ms, at an outage of approx-
imately 1 ms per round trip (the expectation for reliable
real-time haptic interaction) [22]. Due to this reason, the
‘‘Tactile Internet’’ highly relies on the fifth generation (5G)
mobile network, which can support a round-trip latency of 1
ms (faster than 4G, which has a latency of 20 ms) [40].
To achieve ultra-low-delays, Condoluci et al. [41] developed
a soft reservation strategy for uplink (UL) scheduling of the
LTE-based networks for tele-haptic operations. The simula-
tion results showed that the proposed strategy reduced the
round-trip delay by an average of 10ms, compared with the
legacy solution, which exploited the shorter Transmit Time
Interval (TTI) proposed in [42], and envisioned in the 5G
system. Aijaz [43] studied the haptic communication over
5G networks, specifically from a radio resource allocation
perspective. They identified the key requirements of the radio
resource allocation for haptic communications in the 5G-
enabled human-in-the-loop mobile networks, which were a
bounded delay, to ensure stable global control loop, a mini-
mum rate allocation, joint, and symmetric resource allocation
in the uplink and downlink. They formulated a power and
resource block optimization problemwhich captured the QoS
requirements, while accounting for specific constraints for
the symmetric design case, which was the most dynamic
haptic interaction scenario. They formulated a sum utility
maximization problem under similar constraints for percep-
tual coding design cases. They proposed two different low-
complexity greedy heuristic algorithms in both design cases
to fulfill these requirements. The proposed algorithms had a
polynomial-time complexity, and had also outperformed the

classical algorithms, in meeting the haptic communication
requirements.

B. HAPTIC DATA PROCESSING USING REDUCTION
APPROACHES
Yap and Marshall [22] investigated the QoS for DHVEs,
by considering the force, visual, and textual traffic under
network impairments conditions (packet delay, jitter, loss)
over DiffServ networks. Their results showed that for optimal
experiences, the DHVE network traffic needed to main-
tain a transmission rate of 1000 packets per second, with
a maximum of 50ms delay, which was less than the 2ms
packet delay variation (jitter), and less than the 10% packet
loss. With such a high sampling frequency and transmission
rate, the occurrence of the packet congestion and losses in
the network increased. In order to enable a robust solution,
Brandi et al. [23], [24] proposed a perceptual haptic data
reduction scheme which kept the estimated impact below
human perception thresholds. The authors used packet loss
probabilities and round-trip time as parameters to predict
unacceptable cases on the sender’s side. However, their
model assumed that the use of the time-invariant channel
characteristics over time, which did not reflect the real-
world packet-switched networks. In their next study, they
improved the model by reducing the complexity of the
binary tree, with a negligible increase in the packet payload.
Hinterseer et al. [25] presented the first psychophysically
motivated data reduction technique (Deadband principle),
which transmitted data based on the previously transmit-
ted data for haptic data streams. This approach reduced
the packet rate without compromising the immersive depth
of the system. The human perceptible force magnitude
was set as the threshold for the data reduction algorithm.
Bhardwaj et al. [26] investigated the human perceptible force
using an adaptive sampling strategy to predict the haptic
feedback based on human response time. In a closed loop
system, every data reduction influences the system’s stability.
You and Sung [48] proposed the use of a floating-point
haptic data compression to reduce the bandwidths used for
haptic data transmissions. This compression mechanism was
based on the concept that bit representations of consecutive
floating-point numbers would change slightly from that of
the most significant bit. In addition, an OR operation is
then used to extract relevant bits from the floating-point
numbers, and a prediction method is subsequently used to
produce a smaller difference between the two consecutive
floating-point numbers. This method allowed for transmis-
sion of haptic data, even in the presence of limited band-
width. To guarantee the stability of the tele-haptic system,
Hirche et al. [27] proposed a data reconstruction algorithm
that included the passivity in dead-band control algorithms.
However, they did not consider time-varying delays and
packet losses in their experiment setup, and certainly did not
impair the system’s transparency. Xu et al. [28] combined
the time domain passivity approach (TDPA) with that of
the perceptual dead-band (PD)-based haptic data reduction
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for the time-delayed tele-haptics, and proposed an energy
prediction (EP) scheme. Their approach increased the data
reduction, and improved the system transparency for the time-
delayed tele-haptic communication. However, the energy
predictor was less adaptive to the time-varying delay and the
packet losses. Xu et al. [29] reviewed the model-mediated
teleoperation (MMT) approach, which guaranteed both the
stability and the transparency of the system, in the presence
of communication delay. This approach had an efficiency
which was highly dependent on the prior knowledge of the
environment. With prior knowledge, the model’s parameters
can be estimated in real time. This approach rendered the
feedback locally without delay, with accurate approximation
of the remote environment. However, this approach cannot
work efficiently in a complex environment.

Wongwirat and Ohara [44], Wongwirat [45] proposed an
adaptive buffer approach to archive haptic media synchro-
nization in a networked virtual tele-haptic interaction, which
was affected by delay variations. They employed a moving
average smooth filtering technique to calculate an average
delay for the buffering adjustment. Their adaptive delay
variation approach provided a smooth sequence of haptic
update units. However, it sacrificed the real-time constraints
(i.e., the greater the delay, the greater the adaptive buffering
adjustment), and fast recovery from the data’s inconsistencies
(i.e., the greater the moving average of the smoothing filter’s
length, the slower was the response to the new data).

With regards to the concerns for the real-time smooth
haptic update, Sakr and Georganas [6] proposed a predictive
approach that relied on the least-squares and median filtering
techniques in the haptic data reduction sphere. Islam et al.
[12] proposed the use of a Lyapunov-Krasovskii-like function
to solve the stability, in the presence of a variable communi-
cation delay. However, these approaches still had problems
associated to the slow recovery from new data updates, and
did not consider the other common network impairments,
in particular packet losses.

C. HAPTIC DATA PROCESSING USING PREDICTIVE
APPROACHES UNDER NETWORK IMPAIRMENTS
It is quite common to simultaneously encounter both network
delays and packet losses in networks. Therefore, to achieve
real-time haptic data synchronization, both jitters and packet
losses must be compensated. Boukerche et al. [13] proposed
a linear update predictive algorithm, which dealt with packet
losses and delays. However, the prediction used was rudi-
mentary and worked by estimating the position information
inside the lost packet, through calculation of two historical
information updates. This led to a huge positional discrep-
ancy between the predicted and true positions, whenever burst
losses occurred. Brandi and Steinbach [46] proposed the use
of linear regression techniques to improve the prediction for
the packet losses in the haptic communication. However,
the experiment setting limits the coupling with the dead-
band-based data reduction approach, and the low-complexity
error-resilient data reduction scheme, to achieve improved

data reduction and decreased overall signal distortion. In [47],
the authors proposed a hybrid sender- and receiver-based
predictor to mitigate haptic artifacts caused by packet losses.
This predictor was able to keep the signal distortion at the
receiver to a minimum, without compromising the data rate
reduction efficiency. However, this approach only considered
the force and velocity parameter under the packet losses.

Boukerche et al.’s [14] approach focused on the use of
two techniques - a decorator and algorithm, for which the
decorator was controlled to moderate network delays in the
haptic-based stimulated virtual environment. Firstly, a dec-
orator (a visual cue embedded in the haptic virtual object)
was used to inform the user regarding the current condition
of the network delay. Subsequently, the complementary pre-
dictive algorithm was used to make linear predictions for the
appropriate action. These two techniques work hand in hand
to compensate network delays and lost packets, by provid-
ing the necessary calculations for the network delay/packet
losses, as well as by improvising (predicting) its virtual dis-
plays based on its current state of network impairment. This
approach provided the best quality results between remote
users, when using a high loss network. However, it does not
consider non-linear predictive algorithmswhichmay produce
better results than the current proposed linear predictions
[14]. Zhou et al. [30] demonstrated the use of a concept based
on the human arm trajectory characteristics to compensate for
network delays in the case of haptic transmissions. Overshoot
of forward prediction was inserted to cause instability in the
haptic interaction. Therefore, similarly to the behavior of
the human arm trajectory, the predictive algorithm proposed
in this study seeks to lower the overshoot caused by the
forward prediction. This approach overcomes the problems
due to overshoot, as well as skips the step of buffering incom-
ing data. Instead, it transmits predicted data instantaneously
based on current network delays, which in return, improves
the performance of the tele-haptic transmission. Although its
effectiveness is clearly shown in terms ofminimizing network
delays, its implementation on the network jitter still requires
further experimentation. Choi and Jung [49] proposed neural
network-based tele-haptic using Smith Predictors to mitigate
the jitter network. McCoy et al. [19] proposed an extension
of the DR with neural network, termed neuro-reckoning,
and Kusunose et al. [7] proposed an adaptive delta-causality
control scheme with DR prediction to maintain the high
interactivity. However, their DR relied on a single previous
velocity value, to determine the predicted result that did not
work well in the haptic environment, where the velocity was
not always constant, and led to a surge in the peak position
errors. In addition, use of neural networks require significant
processing resources, and additional time to train the neural
network in both local and remote environments, eventually
leading to further processing delays.

On the other hand, our previous work [50] also concen-
trated on real-time tele-haptic control with an evaluation of
the accuracy under the influence of network delays and packet
losses, as well as different transmission rates. A positional
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synchronization algorithm, called the Encoder Referencing
Position Prediction (ERPP), was proposed to achieve better
accuracy by compensating the network impairments, so that
the sets of positional data between the two haptic peers
could be synchronized in real time for haptic manipulation.
The comparison results showed a significant improvement
in terms of accuracy when dealing with constant delays
and packet losses simultaneously, as compared to the DR.
However, the results when dealing with jitters did not show
much improvement. Therefore, the proposed framework pre-
sented in this paper aims to further enhance the real-time
synchronization of the tele-haptic interaction in the presence
of network impairments, such as jitters and packet losses,
whilemaintaining the accuracy and consistency of the smooth
haptic updates. We have adopted the quantitative evaluation
technique of the haptic data prediction proposed in our previ-
ous work [51]. The proposed TSP framework can estimate the
position data of the haptic data using the velocity and yank
estimations. In this paper, we only focused on studying the
position and velocity, because the force data was determined
by the position or velocity.

III. PROPOSED FRAMEWORK
Due to network impairments caused by desynchronized hap-
tic data streams between local and remote environments,
it is a challenge for interactive environments to achieve
realistic haptic interaction. As a result, operators experi-
ence low fidelity in haptic performances, such as coarse,
irregular movement, and abrupt force reflection feedback.
To minimize poor user experiences from the haptic data
de-synchronization, the Trust Strategy Prediction (TSP) was
proposed. TSP is based on the historical position and connec-
tivity information, such as delay duration, and rate of packet
loss, to predict the position in the current time. TSP has been
subsequently used to compensate for network impairments,
especially network delays (including jitter) and packet losses.
Thus, it contributes to the stability and reality of the haptic
interactions over non-guaranteed/best effort networks, like
the Internet.

Fig. 1 shows the overview and flow of the proposed frame-
work, consisting of three different stages; the haptic data han-
dling and sorting, velocity acquisition, and prediction using
the trust strategy. The operation of each stage is thoroughly
explained in sections III.A, III.B, and III.C, respectively.

A. HAPTIC DATA HANDLING AND SORTING
The process of haptic data handling and sorting is meant
to receive haptic data from the network, and keep it timely,
even if it arrives out-of-sequence. Each time a new updated
message is generated by the operator in the local environment,
the remote environment listens to the incoming haptic data as
well. Upon receipt of the haptic data, the remote environment
software agent performs the necessary data sorting to ensure
that the received data is in sequence, while maintaining the
same timeline.

FIGURE 1. The haptic processing flow of the software agent in the remote
environment.

In the remote environment, the received haptic data is
stored in a database with arrays containing each set of data.
For example, in dealing with the 6 degree-of-freedom posi-
tional data, the database will contain 6 arrays used to store
the 6 axes of the positional data. Additionally, the size of
arrays are dynamic, and based on the 5 most recent hap-
tic packets (including any lost packets which are shown as
null in the array). Each grid in the array is represented as
1ms timeslots. Every incoming haptic packet must perform
time validation to keep the array synchronized in real time,
and to discard any stale haptic packets. The time validation
is performed by comparing between the time stamp of an
incoming packet, and the time stamp of the most outdated
haptic packet (known as the fifth packet) in the array. If the
incoming packet’s time is more recent than the fifth packet in
the array, the fifth packet will be deleted from the array, and
the incoming packet retained. Otherwise, the incoming packet
is discarded.

Array rolling is required whenever new haptic data is
saved. The purpose of this is to roll back the array based on
the rolling gap to keep the timeliness. The value of the rolling
gap is obtained from the received time interval1RT, between
the time of last received packet RTt−1 and the time of the new
received packet, RTt, as shown in (1).

1RT = RTt − RTt−1 (1)

Array rolling with the new data can only be saved into the par-
ticular grid of the array. As mentioned previously, the array
grid is divided into 1ms timeslots, and the grid location which
receives the data to be saved is based on the delay value Dt
from (2).

Dt = RTt − STt (2)

where, STt is the packet issued time from the sender, which
has been included in the packet as a time stamp. With these
two equations, the array can only ensure the timeliness and
sequencing, to provide an effective prediction. Fig. 2 illus-
trates a real test scenario, where the local environment sends
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FIGURE 2. An example in detailed processing flow of haptic data
handling and sorting.

the haptic position data to a remote environment over a net-
work encountering jitters and packet losses.

The example in Fig. 2 shows that a haptic data with
the position ‘‘30’’ was received by the remote environ-
ment at 01:00:100 (minutes:seconds:milliseconds), with its
local timestamp 01:00:096. Before storing the received data
in the array, the software agent has to ensure that the
received data is in the same timeline as the last received
data, otherwise it has to perform array rolling. The last
received time in the example was 01:00:098, and the new
received time was 01:00:100. Based on (1), the rolling gap
between the two data arrival times was 2ms. So, the data
in the array is required to roll back 2ms before storing
the new received data into the right timeslot which was
obtained from (2).

B. ACQUISITION OF VELOCITIES
After the array reaches the current timeline, the process of
velocity acquisition is then entered. This helps to obtain
the maximum three sets of velocity from the latest received
position data, by using (3), the pseudo code for this, as shown
in Fig. 3.

Vt =
POSt − POSt−1
STt − STt−1

(3)

where, Vt is the estimated velocity between the new
received position POSt and previous received position

FIGURE 3. Pseudo code for obtaining three latest sets of velocity from
the array.

FIGURE 4. TSP algorithm consists of three behaviors for the inspection of
incoming data.

POSt−1, with the elapsed time duration between the new
sent timestamp STt and previous sent timestamp STt−1.
The pseudo-code ensures that the three latest velocities are
acquired.

C. TRUST STRATEGY PREDICTION (TSP) MODELING
After the three velocity values have been acquired, the TSP is
then executed to provide smooth movement and consistency
of the haptic interaction, while maintaining the accuracy
of the data prediction. The flow chart in Fig. 4 shows the
overview of the TSP, and that it indicates each behavior
produces a different predicted result, which relies on various
network characteristics and haptic update patterns. Every
incoming haptic data needs to go through this process and
subsequently, the execution of the haptic update will be based
on the predicted results from one behavior. TSP uses three
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FIGURE 5. The scenario in untrusted behavior where the new velocity is
out of the eligible update range.

predictive behaviors; untrusted, trusting, and trusted behav-
ior. They are described in the following sections.

1) UNTRUSTED BEHAVIOR
The condition of the untrusted behavior is to prevent an abrupt
motion from large velocity discrepancies, due to the latest
incoming positional data. This phenomenon could possibly
occur due to the burst packet losses, and a large gap between
the variable delays (i.e., jitter), for example, whenever there is
a wide range in the delay spread, or a low delay interspersed
amongst the higher delays, which may trigger an abrupt
motion. Therefore, the data with low delay needs to be held
until it can be smoothly updated to the remote environment.
As Fig. 5 illustrates, an eligible velocity update range is
defined based on the last known valid velocity, known as the
‘‘previous velocity’’, if the new velocity falls within the eli-
gible update range. The eligible velocity update range (EUR)
is shown in (4).

EUR =

{
EURMIN = V t−1 −

(
V t−1 × CAP

)
EURMAX = V t−1 +

(
V t−1 × CAP

) (4)

where, EURMAX and EURMIN are the maximum and min-
imum values of the EUR, and Vt−1 is the previous veloc-
ity. CAP is the arbitrary prediction constant, which is set to
0.05 for the best performance of the prediction under varying
delays in the experiments. The value of CAP was obtained
using several trial and error runs, using the experimental
platform. If the new velocity is out of the range and it is
marked as untrusted, it means that an unexpectedly large
inconsistency could have occurred when it is affected by the
new received data. Hence, the latest received data is held and
not used as a valid data, until it is within the EUR. Before that,
the prediction is still based on the previous velocity values.

2) TRUSTING BEHAVIOR
After verifying the new velocity as that of an eligible velocity,
the second behavior, which is the trusting behavior, is used
to deal with the rough and inconsistent values that could be
caused by the new velocity, which is out of the trusted range
(TR). The TR velocity is shown in Fig. 6, and was obtained
based on the two latest previous velocities, and the received

FIGURE 6. Trusting Behavior where the new velocity is within the eligible
update range but out of the trusted range.

FIGURE 7. Trusted Behavior where the new velocity is within the trusted
range and it is a valid velocity.

time of the new velocity. The formula is shown in (5).

TrustedRange =

TRMIN = V t−1 −

(
V t−1 ×

DT
100

)
TRMAX = V t−1 +

(
V t−1 ×

DT
100

) (5)

where, TRMAX and TRMIN are the maximum and minimum
limits of the trusted range. If the new velocity is out of
the trusted range, a replacement of a new velocity which is
based on a weighted moving smoothing average technique,
is obtained from (6). The calculated result will be used as the
current velocity to predict the current position, at the current
time.

V REPLACE =

∑3
n=1 V n−3 (n)

6
(6)

where, VREPLACE is the new velocity obtained by using a
weighted moving average formula based on two previous
velocities, and the new velocity. The denominator in (6) is the
total weight applied in the velocities. The new velocity will
be used as the current velocity, to update the current position
of the remote object.

3) TRUSTED BEHAVIOR
In the last behavior of the TSP, the trusted behavior, it is meant
as a go-ahead process to predict the current position based
on the new velocity (without interference by untrusted and
trusting behaviors), when the new velocity value is within
the eligible updated range, where the trusted range is shown
in Fig. 7. Therefore, the current velocity is same as the new
velocity.With a valid current velocity, the current position can
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then be predicted based on (7).

POSP

=


POSt−1 + V t−1 (T − STt−1) , if (UntrustedBhv.)
POSt + V REPLACE (T − STt) , if (TrustingBhv.)
POSt + Vt (T − STt) , if (TrustedBhv.)

(7)

where, T is the current time. After the current predicted
position POSP is obtained, the software agent in the remote
environment will update and execute the predicted position
toward the interacting object.

IV. EXPERIMENTAL PLATFORM
The objective of the experimental implementation is to study
the effects of different levels of jitters and packet losses on
the haptic control over the network. The combination of the
packet losses, delays, and jitters are meant as network factors
which are applied in the experimental platform, to simulate
the real network phenomenon. These network impairments
are generated in simulations, with no correlation between the
samples, and thus leads to unpredictability. The experimental
setup consists of two haptic environments, which are, local
and remote. The local environment consists of a Phantom
Omni haptic device [52], which serves as the motion con-
troller and a local software agent, which runs on a Core
i5 CPU, with 3.2GHz clock speed, and a 16GB DDR3 ram.
Both the haptic device and the local software agent are inter-
connected with the IEEE 1394 FireWire cable. The remote
environment consists of a custom-made 6 degree-of-freedom
tele-robot assembled by aluminum frames, and with its joints
attached by the HiTec servos [53], as well as remote-based
software agents running on a Core i3 CPU, with a 3.4GHz
clock speed, and a 4GB DDR3 ram. Both the tele-robot and
remote software agent are interconnected with a universal
serial bus connection link. Both environments are Internet
Protocol (IP) networks, connected via a network emulator
called the NetDisturb [54], which is used to emulate the net-
work impairments in the traffic flowing between the two hap-
tic environments. The network emulator runs on a Pentium
4 CPU with a 2.8GHz clock speed, and a 512MB SD ram.
The software agents and network simulator are connected by
a 1000BASE-T category 5e cable. The User Datagram Pro-
tocol (UDP) is used as the network’s transmission protocol
for the packet exchange, at a rate of 1000 packets/second.
Fig. 8 shows the experimental setup used to perform the
evaluation of the algorithm.

To compare the performances between the DR, VE+F and
proposed TSP, the communication models and their associ-
ated parameters had been pre-defined to conduct the testing
under the network impairments of variable delays (including
different ranges of jitters) and packet losses. The NetDisturb
applied a continuous uniform distribution [54] to generate the
random jitter values, across three defined parameters; alpha
(minimum additional delay in ms on top of constant delay),
beta (maximum additional delay in ms on top of constant

FIGURE 8. The overview of experimental setup.

delay), and constant delay. Table 1 shows the NetDisturb jitter
settings used in the 20 sets of testing scenarios (TS) based on
different packet loss rate settings, and variable delays. The
TS was repeated 20 times, capturing at least 30347 packets
every time. The jitter model was based on the addition of
a delay to the selected packets. Packets without impairment
were queued immediately. The percentage of the lost packets
were configured according to the TS, with the burst losses
ranging from 10% to 40%, out of 1000 packets/sec.

V. DISCUSSION OF THE RESULTS
In this evaluation, three important parameters, which were the
maximum inconsistency, maximum, and average discrepancy
from THE predicted result, were compared between the three
predicted techniques, which were the DR, VE+F, and the
proposed TSP, under the influence of different jitter settings
and packet loss rates. The inconsistency was the absolute
difference between the current predicted position, and last
predicted position. This was used to verify the smoothness
of the movement. The larger the inconsistency value, the less
smooth the movement. The degree of discrepancy was the
absolute difference between the predicted and real positions
of the sources in the same timeline. This determined the
accuracy of the prediction technique used. The joint angular
degree (◦) from the Phantom Omni’s x-axis (known as turret
left+) was used as the measurement unit of the predicted
response for this test bed.

All results are presented in the column charts, as shown
in Fig. 9. The x-axis of the charts represents each prediction
technique under the influence of each testing scenario, while
the y-axis represents the position discrepancy, as stated by
the unit of angular degree (◦). Since the average plots of the
discrepancy is well below that of the maximum inconsistency
and maximum discrepancy, it was connected for better visual
representation. Fig. 9(a) and (b) show the comparative perfor-
mances of the TSP, DR, and VE+F when operating under the
influence of the network impairment, as defined in TS1 to
TS4, and TS5 to TS8, respectively. Both figures represent
the results under the influence of small levels of jitter, with
different rates of packet losses (from 10% to 40%). Fig. 9(a)
shows the predictive performance when affected by 20ms of
jitter and Fig. 9(b) shows the performance when affected by
40ms jitter. In Fig. 9(a) and (b), the results show that TSP can
maintain the average degree discrepancy below 0.15, with DR
and VE+F being at 0.43◦ and 0.16◦, respectively. TSP main-
tained the maximum inconsistency and degree discrepancy
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FIGURE 9. Comparison of Prediction Techniques with (a) up to 20ms variable delay with 10% packet loss in TS1, 20% in TS2, 30% in TS3, and
40% in TS4; (b) 10ms to 50ms variable delay with 10% packet loss in TS5, 20% in TS6, 30% in TS7, and 40% in TS8; (c) 20ms to 100ms variable
delay with 10% packet loss in TS9, 20% in TS10, 30% in TS11, and 40% in TS12; (d) 30ms to 150ms variable delay with 10% packet loss in
TS13, 20% in TS14, 30% in TS15, and 40% in TS16; (e) 40ms to 200ms variable delay with 10% packet loss in TS17, 20% in TS18, 30% in TS19,
and 40% in TS20.

below 2.45◦ and 1.9◦, while DR wasup to 6.5◦ and 5◦. VE+F
was up to 3.2◦ and 2.7◦, respectively.
The results shown in Fig. 9(c), (d), and (e) compared

the relative predictive performance, when operating with the
larger ranges of jitters, as well as packet losses. The test

scenario in Fig. 9(c) was under the influence of packet losses,
and the 80ms jitter with 20ms minimum delay. The result
illustrates that the TSP can keep the maximum inconsistency
below 2.5◦, while the DR and VE+F were up to 5.2◦ and
3.2◦, respectively. In terms of accuracy, TSP maintained the
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TABLE 1. Different attributes of variable delay with jitter settings and rate of packet loss in testing scenarios.

average and maximum degree discrepancy below 0.47◦ and
4.17◦, while DR was up to 0.97◦ and 8◦. The VE+F was up
to 0.5◦ and 5.3◦, respectively. Fig. 9(d) was performed under
a 120ms jitter, with a 30ms minimum delay, and the result
indicated that the TSP can keep the maximum inconsistency
below 4.5◦, while the DR and VE+F were up to 6◦ and 5.7◦,
respectively. In terms of accuracy, the TSP maintained the
average and maximum degree discrepancy below 0.77◦ and
4.3◦, while the DR was up to 1.43◦ and 6.6◦. The VE+F was
up to 0.82◦ and 4.88◦, respectively. Fig. 9(e) was performed
under a 160ms jitter, with a 40ms minimum delay, and it was
the largest frequency range among the testing scenarios. TSP
was still able to maintain a maximum inconsistency below
6◦, while the DR and VE+F were up to 12◦. Moreover, TSP
achieved a better accuracy of 1.26◦ on an average discrep-
ancy. DR and VE+F were up to 2.17◦ and 1.34◦. Fig. 9 also
shows that the discrepancy was not proportional to the packet
losses across all scenarios. The reason for this could be that
the limiting factor for discrepancy was the variable delay
and jitter, in contrast with the effects of packet losses which
seemed to be insignificant.

VI. CONCLUSION
A new technique termed Trust Strategy Prediction was pro-
posed to compensate haptic positional information used
by tele-haptic applications, when operating under network
impairments, especially for variable delay (jitters) and packet
losses. The objective of the new technique is to achieve
better accuracy, and minimize inconsistencies in terms of
haptic synchronization, by considering the real-time con-
straints imposed by interactive haptics. The proposed algo-
rithm adapts to changes in the interconnecting network, and
responds to the incoming haptic data streams based on a trust
strategy, with three behaviors; untrusted, trusting, and trusted
behavior. The trust strategy conforms to the current trend
of haptic interaction, and reacts to the appropriate behavior.
With this approach, each behavior will react differently, and
hence produce different predictions.

An experimental platform was used to compare the pre-
dictive performances of the TSP with other well-known hap-
tic predictive techniques (DR and VE+F). The comparison
platform used the accuracy of the haptic positional data for
evaluating the predictive algorithms. The evaluation results
showed that for every type of network impairment scenario
examined, the proposed TSP produced a greater accuracy
for the position prediction, while maintaining its consistency
(smoothness of movement), as compared to the prediction

seemingly being based on conventional dead reckoning, and
moving smoothing techniques.

This work focused on the haptic treating algorithm which
will benefit subjective experiments. Future work, this will
involve haptic user perceptions for the evaluation on tele-
haptic manipulation, with the proposed TSP involving human
subjective experiments. Moreover, with the current trend of
Tactile Internet, an evaluation of the proposed TSP under
wireless, or hybrid wired, is to be carried out. The behavior
and stability of the TSP under communication impairments
and data compression techniques will be included in future
work. The future work will involve comparison of TSP per-
formances with model-mediated tele-haptic techniques.
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