
Received March 6, 2021, accepted March 22, 2021, date of publication March 31, 2021, date of current version April 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3070132

A Sliding Window-Based Approach for Mining
Frequent Weighted Patterns Over Data Streams
HUONG BUI 1,2, TU-ANH NGUYEN-HOANG 1,2, BAY VO 3, (Member, IEEE),
HAM NGUYEN 3, AND TUONG LE 4,5
1Faculty of Computer Science, University of Information Technology, Ho Chi Minh City 700000, Vietnam
2Vietnam National University, Ho Chi Minh City 700000, Vietnam
3Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam
4Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
5Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

Corresponding author: Ham Nguyen (nd.ham@hutech.edu.vn)

ABSTRACT The mining of frequent weighted patterns (FWPs) that considers the different semantic
significance (weight) of items is more suitable for practice than the mining of frequent patterns. Therefore,
it plays a vital role in real-world scenarios. However, there exist several limitations when applying methods
for mining FWPs designed for static data on growth datasets, especially data streams. Hence, this study
proposes an algorithm for mining FWPs over data streams. First, we introduce the concept of mining FWPs
over data streams via a sliding window model. Then, we introduce a modification of the weighted node
tree (WN-tree) named SWN-tree that has the ability to maintain the information over data streams. Next,
this study develops a method for mining FWPs over data streams employing a sliding window model based
on SWN-tree. This method is called FWPODS (Frequent Weighted Patterns Over Data Stream) algorithm.
Finally, we conduct empirical experiments to compare the performances of our approach and the state-of-
the-art algorithm (NFWI) for mining FWPs over data streams. The results of experiment indicate that our
approach outperforms the NFWI algorithm when running in batch mode in a sliding window.

INDEX TERMS Pattern mining, data streams, frequent weighted patterns, sliding window model.

I. INTRODUCTION
Mining frequent patterns (FPs) [1], [2] is a topic in arti-
ficial intelligence that has attracted much research interest
in recent times. Currently, many variations of FPs such as
frequent weighted patterns (FWPs) [3]–[9], erasable pattern
mining [10]–[13], high utility pattern mining [14]–[17], and
high average utility pattern mining [18], [19] have been
developed, with many different usage scenarios. In several
situations, items in a transaction database can have different
importance levels. In mining FWPs, the term ‘‘weight’’ is
often used to refer to the importance level of an item. For
instance, in retail applications, products with high prices can
contribute more to total revenue even though they appear in
only a few transactions. In these scenarios, the concept of
FWPs [3]–[9] is more suitable for practice than traditional
FPs, because it considers the different weights of items.
Therefore, it plays a crucial role in such scenarios. Several
practical systems, like market data analysis, web traversal
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pattern mining, and biomedical data analysis, can employ
and take advantage of the techniques of mining weight-based
patterns. Specifically, each website has a different influence
in mining web traversal patterns or some genes that hold
special importance in biomedical data analysis to find rare
genetic diseases.

In addition, data can be continuously generated at a high-
speed in real-life applications. Therefore, discovering pat-
terns over data streams is a great challenge because a massive
amount of data cannot be stored in limited memory. Utiliz-
ing the methods for mining FWPs over data streams may
be impractical due to the limited memory and computing
capacity of the system. To overcome this critical drawback of
the traditional algorithms, this study develops a cost-effective
algorithm for mining FWPs over data streams. The main
contributions of this study are as follows. (i) The concept of
mining FWPs over data streams via a sliding window model
is first introduced in this study. (ii) The SWN-tree for a data
stream, an extension of the weighted node tree (WN-tree),
is developed. (iii) An FWPODS algorithm based on the
WN-list structure generated from SWN-tree is designed
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for mining FWPs over a data stream. (iv) The empirical
experiments are conducted to compare the performances of
FWPODS and NFWI for mining FWPs over a data stream.
The experimental results confirm that FWPODS outperforms
the state-of-the-art batch NFWI algorithm when running in
batch mode using a sliding-window.

The article is structured as follows. Section 2 surveys
related works on mining FWPs in a static dataset, min-
ing patterns over data streams, and N-list-based struc-
tures. The FWPODS algorithm is developed in Section 3.
Section 4 presents extensive experiments to evaluate and
compare the performances of the proposed algorithm and the
NFWI algorithm on mining FWPs over data streams. Finally,
Section 5 concludes and discusses future work.

II. RELATED WORK
A. MINING FREQUENT WEIGHTED PATTERNS
Initially, Tao et al. [3] introduced two concepts: trans-
action weight and weighted support, and developed an
approach to mine FWPs based on two concepts. Specifically,
the authors [3] defined the transaction weight as the aver-
age of the items’ weights in this transaction. Meanwhile,
the weighted support of an itemset is determined by the
percentage of the total weight of the transactions contain-
ing that itemset over the grand total of the weight of all
transactions. This model has the advantage of preserving
the downward closure property that can help to prune the
search space easily. The proposed method [3] utilizes a strat-
egy of creating and checking candidates naively, and there-
fore it is time-consuming to scan the database many times.
Recently, many powerful methods for mining FWPs have
been introduced. Vo et al. [4] presented the algorithm WIT-
FWI-DIFF, which is based on the diffset strategy combined
with the WIT-tree data structure, to rapidly mine FWPs. The
authors [4] developed some theorems to rapidly calculate
weighted supports, givingWIT-FWI-DIFF impressive results
in their experiments. After that, Nguyen et al. [5] utilized
the IWS structure to optimize the tidsets storage space for
accelerating the computation of mining FWPs. Based on this
structure, the IWS algorithm was introduced. The experi-
mental results confirmed that the IWS algorithm achieved
good processing time on sparse datasets. The limitation of
IWS is its inefficient performance on dense data such as
the Connect dataset. Therefore, Lee et al. [6] used two new
prefix tree structures FWI-treeW and FWI-treeT, to propose
two algorithms FWI∗WSD and FWI∗TCD, respectively, for
mining FWPs effectively. Later, using the N-list-based struc-
ture, Bui et al. [7] proposed the algorithm NFWI for mining
FWPs, Vo et al. [8] presented TFWIN+ for mining top-rank-
k FWPs, and Bui et al. [9] developed NFWCI for mining
frequent weighted closed patterns (FWCPs).

B. MINING PATTERNS OVER DATA STREAMS
In 2002, Manku and Motwani [20] first proposed the prob-
lem of mining FPs over data streams. Currently, there are

many algorithms, of both precision and approximation types,
to mine FPs over data streams, and they can be put into
three major groups: landmark-based [21], [22], time-decay
based [23], [24], and sliding-window based [25]–[28] mod-
els. The landmark-based models only consider data from
a landmark which is determined by a specific time point.
For instance, the time of starting or restarting a data stream
can be set to be a landmark. Yu et al. [21] utilized the
Chernoff Bound to come close to the FP set in a land-
mark. Zhi-Jun et al. [22] proposed a lattice structure, called
a frequent enumeration tree (FET). FET uses equivalence
classes (EC) to manage and organize patterns that appear in
the same transaction. To avoid storing all patterns in memory,
for each EC only the minimum and maximum patterns are
retained. In models based on time-decay, the arrival time
is used to value the significance of factorial data to focus
on recent data. Chang and Lee [23] introduced the estDec
algorithm which diminishes the effect of old transactions
on the current mining result of a data stream by assigning
lower weights to them. After that, Woo and Lee [24] used
the dampedmodel to mine frequent maximal patterns (FMPs)
over a data stream using the estMax method, which is mod-
ified from the estDec algorithm. Finally, many algorithms
using the sliding window model were proposed to mine
FPs over data streams. Each of them scans data only once
at the initial data window to build an initial structure and
then effectuates the process of mining patterns based on
the built structure over sliding windows. Chiu et al. [25]
proposed an incremental mining algorithm, DSM-CITI, for
discovering frequent inter-transaction patterns from data
streams over sliding windows. Deypir and Sadreddini [26],
Deypir et al. [27] proposed the pWin algorithm based on a
sliding window model for mining FPs over data streams with
limited memory. pWin retains the information of patterns in
a stream using a prefix-tree-based structure that facilitates
quick searching of the patterns. Chen et al. [28] used the
SWP-tree, a summary data structure, and a time decay model
for mining FPs in a varying-size sliding window of online
data streams. Algorithms based on the sliding window model
have also been suggested for the problems of mining other
kinds of patterns over data streams, includingmining erasable
patterns [10]–[12], mining high-utility patterns [14], [15], and
mining high-average-utility patterns [18].

C. N-LIST-BASED STRUCTURES
Deng et al. [29] first introduced a vertical data structure,
the N-list structure, that conserves critical information of
frequent itemsets. This structure originates from an FP-tree-
like coding prefix tree called PPC-tree. In this study, the
authors developed the PrePost algorithm for discovering FPs
based on the N-list structure. After that, Deng and Lv [30]
presented an improved version of PrePost named PrePost+

that uses the Children-Parent Equivalence pruning technique
to reduce the candidate search space. Next, Vo et al. [1]
proposed the NSFI algorithm employing the N-list structure
combined with the concept of subsuming to enhance the
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performance of the mining task. For the problem of min-
ing frequent closed patterns (FCPs), Le and Vo [31] pro-
posed two theorems to quickly check the closed properties
of FPs using the N-list structure. Utilizing the two theorems
above, the NAFCP algorithmwas presented for mining FCPs.
Vo et al. [32] then developed an approach for the problem of
mining FMPs using the N-list structure. Bui et al. [7] pro-
posed the WN-list structure, an extended version of the N-list
structure, and the NFWI algorithm for the problem of mining
FWPs. The results of experiments in this study confirmed
that NFWI performs better than the existing approaches for
mining FWPs. Later, using the WN-list structure combined
with an early pruning strategy, Vo et al. [8] and Bui et al. [9]
proposed TFWIN+ and NFWCI for mining top-rank-k FWPs
and FWCPs, respectively.

III. FWPODS: MINING FWPS OVER DATA STREAM
A. SLIDING WINDOW MODEL FOR MINING
FWPS OVER DATA STREAM
Let WD be a weighted database. This database contains of a
set of transactions T = {t1, t2, . . . , tm}. Let I = {i1, i2, . . . , in}
be a set of items, and W = {w1, w2, . . . ,wn} be a set of
corresponding weights of items in theWD. Each ti includes a
number of items and I is a superset of ti.
The example weighted database is shown in Tables 1 and 2.

This example is used throughout this study. Table 1 describes
a dataset including a set of 6 transactions T = {t1, . . . , t6}.
In these transactions, there are 5 items {A, B, C , D, E}.
Table 2 presents the weights of these items.
Definition 1: The transaction weight of tk ∈ T denoted by

tw(tk ) is determined by the following equation:

tw (tk) =

∑
ij∈tk wj

|tk |
(1)

TABLE 1. An example WD.

TABLE 2. The weights of items.

In other words, tw(tk ) is the average value of all weight
values of items belonging to tk .
Definition 2: The total transaction weight of the weighted

database denoted by TTW is the sum total of all transaction
weights and is identified as follows.

TTW =
∑

tk∈T
tw(tk ) (2)

where T is the set of all transactions in theWD.
Definition 3: Given an itemset X . The weighted support of

X denoted by ws(X ) is computed by the following equation.

ws (X) =

∑
tk∈t(X ) tw(tk )

TTW
(3)

where t(X ) is the set of the transactions containing X .
Example 1: From Tables 1 and 2, and Definition 1,

we determine the transaction weight of t2 as follows: tw(t2) =
0.5+0.3+0.7

3 = 0.5. Similarly, we determine the transaction
weight of all remaining transactions in the example weighted
database. The results are presented in Table 3. The total
transaction weight of the weighted database is 2.98, as shown
on the last line in Table 3.

Based on Tables 1 and 3, and Definition 2, we identified
the weighted support of itemset BC as follows. Because BC
appears in four transactions {2, 4, 5, 6}, therefore, ws(BC)=
0.5+0.56+0.42+0.5

2.98 ≈ 0.66. We have items that have been
sorted by descending weighted support in Table 4.

In the sliding-window model, a panel includes several
transactions and there are many panels in a window. For
instance, consider a window size of 5 transactions and a
panel size of 1 transaction for the example WD in Table 1.
Figure 1 presents the two windows: window 1 (the left side)
and window 2 (the right side). Window 1 consists of the first
5 transactions (T1 to T5). Window 2 is acquired by sliding

TABLE 3. The transactional weights in the example weighted dataset.

TABLE 4. The weighted supports of items.
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FIGURE 1. The sliding-window model for the example dataset with a
window size of 5 and panel size of 1.

window 1 forward by 1 transaction. This step ends by adding
T6 into and removing T1 from window 1 to create window 2.

The problem examined in this study is mining FWPs over
data streams, and thus to find all weighted patterns such
that its weighted support satisfies a user-defined minimum
weighted support threshold (min_ws), i.e. FWPs = {X ⊆
I |ws(X ) ≥ min__ws} in each window.

B. SWN-TREE
In a recent study, Bui et al. [7] proposed the WN-list data
structure for mining FWPs. First, an algorithm for creating
the weighted node tree (denoted byWN-tree) of the weighted
database is developed. Each node in this tree consists of five
information 〈name, weight, pre, pos, child-list〉. In which
name is the registered item, weight is the sum total of tw
values of the transactions traversing the node, pre is the
rank order of the node with a pre-order depth-first search,
pos is the rank order of the node with a post-order depth-
first search, and child-list is the child nodes of this node.
The algorithm generates theWN-list structure fromWN-tree.
The WN-tree’s major weakness is that it cannot update the
tree when one or more transactions are removed or inserted
as the sliding-window moves forward. Consequently, the
WN-tree structure is not appropriate for mining FWPs over
data streams. To address this issue, the current study develops
the SWN-tree to efficiently mine FWPs over data streams, as
follows.
Definition 4: (SWN-tree) An SWN-tree (R), is a tree where

nodes contain six elements as follow:

〈name,weight, pre, pos, child − list, parent〉 (4)

where: (a) name is the item identifier, (b) weight is the sum
total of tw values of the transactions containing the item,
(c) pre is the pre-order rank of the node in depth-first search,
(d) pos is the post-order rank of the node in depth-first search,
(e) child-list is the list of child nodes of this node, and
(f) parent is the parent node.

The proposed SWN-tree construction algorithm
(Algorithm 1 - Fig. 2) does not remove unsatisfied items.
As a result, the SWN-tree uses more memory storage than
the WN-tree. The main superiority of the SWN-tree is that
the mining algorithm only generates a tree once, and then this
tree can be utilized for mining in various thresholds without
recreating the tree. This feature has been created to enable the

FIGURE 2. Construction of the SWN-tree.

FIGURE 3. SWN-tree for T1 in the example dataset.

FIGURE 4. SWN-tree for T1 to T2 in the example dataset.

algorithms to mine FWPs over data streams. Moreover, this
study also uses a list of nodes (denoted by TAIL) to retain
the last nodes of all products in SWN-tree. TAIL helps to
quickly update SWN-tree when one or more transactions are
removed.

To illustrate the algorithm building the SWN-tree, the first
five transactions in Table 1 are used. In the first step,
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FIGURE 5. SWN-tree for T1 to T5 (Window 1) in the example dataset.

FIGURE 6. The algorithm for maintaining SWN-tree.

transaction {A, C , D, F} with tw(T1) = 0.45 is inserted into
the SWN-tree. The sorted transaction of T1 is {C , D, A, F}.
The result of this step is shown in Fig. 3. Next, the transaction
T2 = {A, B, C} is inserted with tw(T2) = 0.5 into the SWN-
tree. The sorted transaction of T2 is {C , B, A}. The resulting
tree of the second step is shown in Fig. 4. After that, each
transaction from T3 to T5 is added into the tree with the same
way. The SWN-tree as determined after adding the first five
transactions (Window 1) of the example dataset is presented
in Fig. 5.

C. MAINTAINING SWN-TREE OVER DATA STREAM
This section presents the Maintaining-SWN-tree algorithm
for maintaining information about FWPs in a data stream
using the SWN-tree structure (Algorithm 2 – Fig. 6).

Sliding the window over data streams is performed in
two steps. First, the transaction(s) of the current window
is inserted into the tree. Then, the last transaction(s) in the

FIGURE 7. SWN-tree for T1 to T6 in the example dataset.

FIGURE 8. SWN-tree for T2 to T6 (Window 2) in the example dataset.

TABLE 5. The features of given datasets.

previous window is removed from the tree. Figure 7 shows
the SWN-tree after Algorithm 2 inserts transaction T6. Then,
T1 will be removed from the SWN-tree that is presented
in Fig. 8.

D. FWPODS ALGORITHM
This section presents the FWPODS algorithm for mining
FWPs over data stream (Algorithm 3 – Fig. 9).
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FIGURE 9. The algorithm for mining FWPs over the data stream.

FIGURE 10. Runtime on Accident with min_ws = 20%, window_size =

340,000 and panel_size = 1.

The algorithm assumes that we already have the SWN-tree
of the current window (R). When the newly inserted trans-
actions are added, the algorithm’s task is to provide all
FWPs that satisfy the min_ws in the new window. Firstly,
the FWPODS algorithm calls the Maintaining-SWN-tree
algorithm to maintain the SWN-tree (Line 1). Specifically,
the Maintaining-SWN-tree algorithm will add the new trans-
action(s) and remove the last transaction(s) from the SWN-
tree. Secondly, FWPODS scans the new SWN-tree at step 1 to
generate 1-frequent weighted patterns (1-FWPs) that satisfy
the min_ws and WN-list structure (Line 2). The pre and pos

FIGURE 11. Runtime on Accident with min_ws = 30%, window_size =

340,000 and panel_size = 1.

FIGURE 12. Runtime on Accident with min_ws = 40%, window_size =

340,000 and panel_size = 1.

FIGURE 13. Runtimes on Accident in 50 sliding windows with different
values of min_ws.

FIGURE 14. Runtime on Connect with min_ws =70%, window_size =

67,000 and panel_size = 1.

values of each node on the tree are generated to create WN-
lists of 1-FWPs in this step. Next, the algorithm will call
the Find_FWP procedure to mine all FWPs which satisfy
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FIGURE 15. Runtime on Connect with min_ws = 80%, window_size =

67,000 and panel_size = 1.

FIGURE 16. Runtime on Connect with min_ws = 90%, window_size =

67,000 and panel_size = 1.

FIGURE 17. Runtimes on Connect in 50 sliding windows with different
values of min_ws.

the min_ws in the new window. The Find_FWP procedure
that adopts a divide-and-conquer strategy combined with the
WN-list structure presented in detail in Algorithm 3.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTING
The experiments in this study are performed on a laptop
equipped with the Windows 10 operating system, an Intel
Core i7-7500U 32.70GHz and 32 GB of RAM. The NFWI
and FWPODS algorithms are implemented in C# with the.

FIGURE 18. Runtime on Kosarak with min_ws = 0.3%, window_size =

500,000 and panel_size = 1.

FIGURE 19. Runtime on Kosarak with min_ws = 0.4%, window_size =

500,000 and panel_size = 1.

FIGURE 20. Runtime on Kosarak with min_ws = 0.5%, window_size =

500,000 and panel_size = 1.

Net Framework (version 4.8.04084). The experiments are
performed on five benchmark datasets downloaded from [33].
Table 5 shows the features of the given datasets.

According to the column of density (i.e., density= #Aver-
age length of transaction / # of Items), Accidents, Kosarak,
Pumsb, and Retail are sparse (density < 0.1) while Connect
is dense (density ≥ 0.1). Note that the experimental datasets
are modified by setting random values in the range of [1], [10]
to be item weights. The modified version of them is provided
by Bui et al. [7].
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FIGURE 21. Runtimes on Kosarak in 50 sliding windows with different
values of min_ws.

FIGURE 22. Runtime on Pumsb with min_ws = 70%, window_size =

45,000 and panel_size = 1.

FIGURE 23. Runtime on Pumsb with min_ws = 80%, window_size =

45,000 and panel_size = 1.

B. THE PROCESSING TIME FOR TREE CONSTRUCTION
MAINTENANCE
The first experiment compares the processing time of the
FWPODS and NFWI [7] algorithms for tree construction and
maintenance in five experimental datasets. Both algorithms
are performed by threemin_ws values for every dataset which
is shown in the first three parts of each image. In our exper-
iment, for each min_ws value, the window slides 50 times
where the panel size is 1. The last parts of each image show

FIGURE 24. Runtime on Pumsb with min_ws = 90%, window_size =

45,000 and panel_size = 1.

FIGURE 25. Runtimes on Pumsb in 50 sliding windows with different
values of min_ws.

FIGURE 26. Runtime on Retail with min_ws = 0.1%, window_size =

80,000 and panel_size = 1.

the total time of 50 sliding windows with different values of
min_ws.

The results (Figs. 10-29) are almost the same on five exper-
imental datasets. For the first built tree, FWPODS is more
time-consuming than NFWI. However, with the next sliding
windows, the proposed algorithm has a barely significant
runtime while that of NFWI is not improved compared with
the first time. Therefore, the total time on 50 sliding-windows
of FWPODS is much smaller than that of NFWI. Interest-
ingly, the total time on 50 sliding-windows of FWPODS is
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FIGURE 27. Runtime on Retail with min_ws = 0.2%, window_size =

80,000 and panel_size = 1.

FIGURE 28. Runtime on Retail with min_ws = 0.3%, window_size =

80,000 and panel_size = 1.

FIGURE 29. Runtimes on Retail in 50 sliding windows with different
values of min_ws.

nearly unchanged with different thresholds. Meanwhile, with
a lower threshold, the total time on 50 sliding-windows of
NFWI is higher.

C. RUNTIME FOR MINING FWPs OVER DATA STREAMS
This section reports the total runtime for mining FWPs
over data streams on the Accident (Fig. 30), Connect
(Fig. 31), Kosarak (Fig. 32), Pumsb (Fig. 33), and Retail
(Fig. 34) datasets in 50 sliding windows. For very sparse
datasets such as Retail (density = 0.0006) and Kosarak

FIGURE 30. Total runtime for mining FWPs on the Accident dataset
in 50 sliding windows.

FIGURE 31. Total runtime for mining FWPs on the Connect dataset in
50 sliding windows.

FIGURE 32. Total runtime for mining FWPs on the Kosarak dataset in
50 sliding windows.

(density = 0.0002), FWPODS improves the runtime from
10% to 30% compared to the NFWI algorithm (Fig. 34 and
Fig. 32). For the Accident, Connect, and Pumsb datasets,
the proposed algorithm outperforms NFWI with all min_ws
thresholds, and shorten the runtime from 50% to 90% com-
pared to the NFWI algorithm (Fig. 30, Fig. 31, and Fig. 33).

D. SCALABILITY ANALYSIS
In this section, we perform scalability experiments on the
Kosarak dataset with min_ws = 0.3% and increasing values
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FIGURE 33. Total runtime for mining FWPs on the Pumsb dataset in
50 sliding windows.

FIGURE 34. Total runtime for mining FWPs on the Retail dataset in
50 sliding windows.

FIGURE 35. Runtime for tree construction maintenance on the Kosarak
dataset with min_ws = 0.3%, window_size = 600,000 and
panel_size = 10.

of window and panel sizes. Specifically, the selected window
sizes are 500,000 (500k), 600,000 (600k), 700,000 (700k)
and 800,000 (800k), with panel sizes of 1, 10, 100 and 1000,
respectively.

Observing Fig. 18 and Figs. 35-37, we see that FWPODS
always uses less time than NFWI from the second sliding
window and shows stability with different values of win-
dow_size and panel_size. When window_size and panel_size
increase (500k to 800k and 1 to 1000) the processing time

FIGURE 36. Runtime for tree construction maintenance on the Kosarak
dataset with min_ws = 0.3%, window_size = 700,000 and
panel_size = 100.

FIGURE 37. Runtime for tree construction maintenance on the Kosarak
dataset with min_ws = 0.3%, window_size = 800,000 and
panel_size = 1000.

FIGURE 38. Runtimes for tree construction and maintenance on the
Kosarak dataset in 50 sliding windows with min_ws = 0.3% and different
values of window_size and panel_size.

of each sliding window of FWPODS always stays the same
(<1s), while that of NFWI increases steadily from 4s to 7s.
Consequently, the runtimes for the tree construction mainte-
nance and themining process of FWPODS are much less than
those of NFWI (Figs. 38-39). Therefore, FWPODS has good
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FIGURE 39. Total runtimes for mining FWPs on the Kosarak dataset in
50 sliding windows with min_ws = 0.3% and different values of
window_size and panel_size.

scalability in terms of runtime with respect to window size
and panel size.

V. CONCLUSION
This study developed an efficient approach named FWPODS
formining FWPs over data streams. Firstly, we introduced the
concept of mining FWPs over a data stream via a sliding win-
dow model. Then, this study proposed an SWN-tree structure
by extending the weighted node-tree (WN-tree) structure to
be able to maintain the information in data streams. Next, this
study developed the FWPODS algorithm for mining FWPs
over data streams using the SWN-tree structure. Finally,
empirical experiments were conducted to compare the per-
formance of our approach with that of the state-of-the-art
algorithm named NFWI for mining FWPs. The experimen-
tal results confirmed that FWPODS outperforms the NFWI
algorithm when it runs in batch mode in a sliding window.

For future work, mining FWCPs and frequent weighted
maximal patterns (FWMPs) over data streams will be stud-
ied. In addition, parallel and distributed methods for mining
FWPs over data streams will be studied to take advantage
of the development of hardware to improve the mining
performance.
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