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ABSTRACT This paper presents the first, novel, dynamic, resilient, and consistent Blockchain COngestion
ContrOL (BCOOL) system for vehicular networks that fills the gap of trustworthy Blockchain congestion
prediction systems. BCOOL relies on the heterogeneity of Machine Learning, Software-Defined Networks
and Network Function Virtualization that is customized in three hybrid cloud/edge-based On/Offchain smart
contract modules and ruled by an efficient and reliable communication protocol. BCOOL’s first novel module
aims at managing message and vehicle trustworthiness using a novel, dynamic and hybrid Blockchain Fog-
based Distributed Trust Contract Strategy (FDTCS). The second novel module accurately and proactively
predicts the occurrence of congestion, ahead of time, using a novel Hybrid On/Off-Chain Multiple Linear
Regression Software-defined Contract Strategy (HOMLRCS). This module presents a virtualization facility
layer to the third novel K-means/Random Forest-based On/Off-Chain Dynamic Service Function Chaining
Contract Strategy (KRF-ODSFCS) that dynamically, securely and proactively predicts VNF placements and
their chaining order in the context of SFCs w.r.t users’ dynamic QoS priority demands. BCOOL exhibits
a linear complexity and a strong resilience to failures. Simulation results show that BCOOL outperforms
the next best comparable strategies by 80% and 100% reliability and efficiency gains in challenging data
congestion environments. This yields to fast, reliable and accurate congestion prediction decisions, ahead of
time, and optimizes transaction validation processing time. Globally, the Byzantine resilience, complexity
and attack mitigation strategies along with simulation results prove that BCOOL securely predicts the
congestion and provides real-time monitoring, fast and accurate SFC deployment decisions while lowering
both capital and operational expenditures (CAPEX/OPEX) costs.

INDEX TERMS Blockchain, congestion prediction, random forest, K-means, machine learning (ML), net-
work function virtualization (NFV), software-defined networks (SDN), quality of service (QoS), VANETs.

I. INTRODUCTION
Traffic congestion is unavoidable and is the root cause of road
rage and huge delays. Approximately 1.35 million people die
every year as a consequence of road traffic accidents directly
linked to traffic congestion [69], [70].

Vehicular Adhoc Networks (VANets) was developed to
provide safety and reduce congestion and road accidents
by sending warning messages using vehicular applica-
tions based on congestion control protocols [17]. Vehicular
applications are classified into two categories: 1) safety
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applications (e.g. collision and security distance warning)
that aim at increasing drivers’ awareness to emergency sit-
uations and nearby accidents, and 2) non-safety applications
(e.g. real-time interactive games) that aim at providing com-
fortable and entertaining services to the drivers [16]–[18].
The huge need of those applications and congestion con-
trol protocols to deal with traffic congestion in vehicular
environments opens up many challenges and requirements
[17], [24]. In fact, the large amount of data, that represents
dynamic user needs, and which is exchanged among vehi-
cles and Road Side Units (RSUs) causes tremendous data
congestion issues at different network levels [17]. This is
due to several reasons and mostly to the unpredictable nature
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of VANETs that drastically impacts the time-sensitive data
congestion control delivery performance. Those traditional
congestion control protocols waste a considerable amount
of resources to continuously avoid data congestion with-
out raising the importance of predicting the occurrence of
congestion [20], [33], [45]. The performance of those pro-
tocols spontaneously and extremely degrades due to their
entire negligence of a fundamental aspect of vehicular envi-
ronments that is security [13], [14], [20]. Failure to tackle
those issues along with the increasing, heterogenous and
dynamic demands of traffic applications with high QoS
requirements increase the vulnerability of both users and
the network to diverse security attacks and ossify the whole
networking infrastructure. This network ossification exacer-
bates the CAPEX and OPEX costs [8], [38]. Several research
works [3], [34], [40] proposed NFV-based approaches to
cope with network ossification. However, those solutions
often require time to converge which does not fit with the
urgent user requirements in terms of critical safety and emer-
gency applications. Other works proposed Blockchain-based
approaches for secure data dissemination [4]. However, they
are still in their initial stages of research.

In this paper, we fill the gap of trustworthy Blockchain
congestion prediction systems. We present the first, novel,
dynamic, resilient and consistent Blockchain Congestion
Control System (BCOOL) that relies on the heterogeneity of
ML, SDN and NFV paradigms to reliably, immutably, and
accurately predict the occurrence of congestion, at the edge of
the network, and provide fast and accurate SFC deployment
prediction decisions w.r.t vehicles’ heterogenous QoS prior-
ity demands. BCOOL dynamically records vehicle, message
trustworthiness and prediction transactions in a distributed
ledger. It relies on three novel modules:
• The first novel hybrid Blockchain Fog-basedDistributed
Trust Contract Strategy (FDTCS) dynamically and
securely manages message and vehicle trustworthiness,
at the edge of the network to prevent distrustful users
from acquiring access to the infrastructure;

• The second novel Hybrid software-defined On/Off-
Chain-based Multiple Linear Regression Contract Strat-
egy (HOMLRCS) relies on the output of FDTCS to
accurately and reliably predict the occurrence of con-
gestion, ahead of time, while optimizing the Blockchain
validation consensus process;

• HOMLRCS presents a virtualization facility layer that
introduces the third novel K-means/Random Forest-
based Hybrid On/Off-Chain Dynamic Service Func-
tion Chaining Contract Strategy (KRF-ODSFCS). This
strategy proactively predicts VNF placements and their
chaining order and provides fast SFC deployment deci-
sions that match priority user needs while lowering both
CAPEX and OPEX costs.

The complexity analysis and attack mitigation strategies
along with the Byzantine resilience and experimental results
prove the robustness and effectiveness of BCOOL.

The rest of this paper is organized as follows. In Section II,
we present some important background concepts and discuss
the related literature. In Section III, we outline our prob-
lem. In Section IV, we lay out the BCOOL system along
with its three main modules and describe its failure model.
In Section V, we discuss BCOOL attack mitigation strategies
while in Section VI we present and analyze BCOOL simula-
tion results. Finally, Section VII concludes the paper.

II. BACKGROUND & RELATED WORK
Hereafter, we overview Blockchain protocols and architec-
tures that have been devised for VANETs alongwith data con-
gestion protocols and architectures for vehicular networks.

A. BLOCKCHAIN ARCHITECTURES FOR VANETs
Blockchain is a decentralized chain of blocks in which data
is stored as a collection of transactions. For a block to be
added to the chain, a transaction must happen and should
be verified by a decentralized network of nodes. This net-
work confirms the details of the transaction including the
participants, the time and the amount. Then, the transaction
is stored in a block with digital signatures and joins other
transactions [83]. The block is then given a hash of the most
recent block added to the Blockchain and can then be added to
the Blockchain. Blockchain tackled the issue of data trust and
implemented consensus models for users who want to join
and add blocks to the chain [10], [82]. PoA is the consensus
model that we deploy in this work.
In the PoA process, transactions and blocks are validated by
verified nodes also called validators without solving complex
mathematical problems. Blockchain nodes earn the qualifi-
cation to become validators, so they have an incentive to
retain the position they have acquired. Malicious validators
are kicked out by the votes of validators. A PoA Blockchain
is powerful than PoS and PoW because it is cheaper and
safer [82], [83].

By investigating the literature, we find out that few
research proposals tackle VANET challenges using the
Blockchain technology. Most existing and recent research
works that can be related to our work focus on Blockchain
architectures/protocols for WSNs and IoT networks [5], [9],
[12], [32]. On the other hand, research proposals, closest to
our work, focused on the Blockchain computational over-
head problem for resource constrained IoT devices [26]–[30].
However, those works are still in their initial stages of
research and lack details regarding their specific features.
Lu et al. [7] proposed a simple incentive mechanism based
on a game theoretic approach that allows the execution of
complex programs off the Blockchain to prevent wrong calcu-
lation results. Other related research works [4], [31] proposed
Blockchain-based traffic event/message validation and trust
verification frameworks to secure message dissemination and
to tackle the problem of the incorrectness of data and its
negative impact in vehicular environments. They present
a proof-of-event (PoE) consensus concept. This consensus
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concept aims at confirming event occurrences where vehi-
cles periodically transmit their traffic information via CAM
messages to RSUs which collect them and broadcast warning
messages via DENMs once the event is valid. We believe
that periodically sending messages occurs a huge overhead
and delays vehicles’ communications especially in congested
environments. This is in addition to the Blockchain overhead
that occurs while broadcasting/validating blocks and transac-
tions over the entire network especially when the number of
nodes is huge. In [4], beacons are used to exchange vehicle
locations throughout the network and the PoW consensus is
adopted. RSUs and a specific type of vehicles are consid-
ered as miners. These initiatives present several drawbacks
because they do not consider the dynamic nature of vehicular
networks and their high-performance requirements in critical
situations. In other words, the huge resource consumption of
the PoW consensus mechanism and its block generation and
validation time do not meet VANET latency requirements
especially when both RSUs and vehicles are miners [4].
On the other hand, Li et al. [55] proposed a hybrid trust
management scheme to evaluate both data and mobile nodes
trustworthiness in order to secure vehicular networks. The
proposed scheme assumes that RSUs are always trustworthy
and base their data analysis on this assumption which is very
risky [11]. Traffic data is collected using all nodes in the
network to be centrally analyzed without paying attention
to the huge resource consumption occurred to complete this
process [55], [56].

To the best of our knowledge, most of the proposed
blockchain architectures for VANETs are very general
[4], [7], [26]–[28] in their applicability of the Blockchain
in the considered scenarios. None of them provide a com-
plete Blockchain congestion control/prediction system that
dynamically records vehicles trustworthiness while accu-
rately predicting congestion occurrence and proactively man-
aging network services based on the heterogenous users’ QoS
priorities.

B. DATA CONGESTION PROTOCOLS &
ARCHITECTURES FOR VANETs
Congestion control protocols in VANETs are divided into
two groups of solutions, namely open-loop and closed-loop
solutions. They are also classified into four categories of
protocols namely power-based [45], [58]–[60], CSMA/CA-
based [61], [62], rate-based [45], [63], prioritizing-based and
hybrid protocols [20], [45], [57], [64]. Hereafter, we review
congestion control protocols that are closest to our work.

Taherkhani et al. [20] addressed the problem of data
congestion at intersections and proposed a hybrid, central-
ized and localized data congestion control strategy based
on the K-means algorithm using RSUs at intersections.
On the other hand, existing open loop approaches that aim
at predicting and avoiding congestion are mostly distributed
and waste considerable time and resources in calculations
[20], [33], [45]. In fact, Taherkhani et al. proposed an
open-loop and distributed congestion control protocol that

prioritizes safety and service messages based on the content
of messages and state of the network and then dynamically
and heuristically schedules messages in the control and ser-
vice channel queues [20]. However, the taboo heuristic is
continuously running on each vehicle to execute priority
and scheduling tasks either in the presence or absence of
congestion in the network. Zemmouri et al. [33], [45] also
introduced a distributed open-loop congestion prediction pro-
tocol that allows each vehicle to estimate the vehicular den-
sity around itself and use this information to adapt beacons
transmission parameters according to the current state of the
network. Again, each vehicle should perform several calcu-
lations which drastically decrease the protocol performance
in terms of the response latency, accuracy, efficiency and
reliability. On the other hand, a centralized predictive road
traffic management system was proposed in [65]. It estimates
the future traffic intensities at different intersections based on
a modified linear prediction algorithm and re-routes vehicles
to reduce traffic congestion and the total journey time. In this
work, each vehicle periodically sends its information to the
RSU every 5 seconds. RSUs forward vehicles information
to a centralized unit that predicts the future traffic flow once
per minute. More in line with predictive congestion schemes,
Wu et al. [25] proposed an aggregate parameter based on
weights for congestion detection that aims at monitoring the
network performance while considering four aspects which
are the average delay, throughput, message delivery ratio
and overhead ratio. In this work, it is unclear whether the
algorithm is centralized or distributed.

In a nutshell, congestion prediction protocols completely
ignore VANET’s strict latency and reliability requirements
while predicting congestion. We argue that those require-
ments demand ahead-of-time prediction results with latencies
ofmilliseconds [15]. Furthermore, and far beyond performing
calculations to adapt appropriate transmission parameters and
control the congestion [33], details about the beacon dis-
semination protocol that allows vehicles to learn about the
current network conditions are missing in [33], [45]. In fact,
the periodic and blind exchange of beacons can not launch
and would stop the operating of the proposed short-term
prediction scheme especially in a highly dense environment.
Moreover, no details are given in [65] regarding the operating
of the proposed linear prediction algorithm nor the broadcast
protocol used to disseminate messages in the considered
vehicular network. This might drastically impact the system
performance.

On the other hand, other research works focus on the
negative impact of data congestion challenges that lead to
the network infrastructure ossification problem [34], [38].
Various research works proposed NFV/SDN-based approa-
ches to tackle this issue in order to facilitate the design
and programmability of next-generation wireless networks
[71], [72]. To do so, they addressed several aspects of NFV
challenges among which is the VNF placement NP-hard
problem. Several research works proposed heuristics and
approximate solutions to optimize the placement of VNFs
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along with their chaining order in SFCs while considering
the huge network load and carrier-grade requirements of NFV
applications [34], [39], [40], [88]. Nevertheless, the proposed
strategies are mainly reactive threshold-based approaches [3]
and need time to converge. Few research works have recently
appeared in the literature in order to deal with this issue
using ML algorithms [36], [37]. Kim et al. [43] introduced
a learning model to predict VNF resource demands using
SFC data. This learning model can be used to solve the
optimal placement of VNFs. However, it is only applied to
one SFC. Rahman et al. [42] proposed a proactive learning
classification model to auto-scale VNFs while considering
dynamic traffic changes. The selected features used to build
the ML classifier are the time of the day and the measured
traffic at specific times of the day. The classification output
is the number of VNF instances required to serve future
traffic flows while considering QoS requirements. This work
does not give details regarding the obtained measurement of
traffic that are function of the time of the day. The provided
features are not enough to output an accurate number of
VNFs depending on the dynamic network changes. The latter
can impact the performance of the proposed model when
complex real-time traffic patterns are introduced. Moreover,
the approach used to output the number of VNF instances is
very limited and the whole proposed model discards VNF
placement requirements that satisfy carrier-grade require-
ments of NFV applications and that should further include
the VNF chaining, scalability and adaptability [66].

On the other hand, none of the proposed predictive and
proactive VNF placement strategies have considered the
problem of the VNF vulnerability to security threats while
predicting the placement of VNFs and their chaining order
in SFCs. In fact, a single compromised VNF can entirely
damage the whole network. Although the Blockchain tech-
nology has recently appeared as a powerful solution able
to overcome current security challenges, only few research
works have deployed Blockchain to tackle VNF challenges.
In fact, Alvarenga et al. [67] proposed a Blockchain-based
framework for secure configuration and migration of VNFs.
Franco et al. [68] introduced BRAIN, an auditable solution
that aims at discovering and selecting infrastructure providers
able to efficiently host a VNF with regards to end-users
demands. To the best of our knowledge, none of the pre-
vious research works provides proactive, fast, secure, and
immutable prediction of VNF placement and their chaining
order in SFCs while considering carrier-grade requirements
of NFV and heterogenous users’ QoS priorities.

III. PROBLEM STATEMENT
According to related research works, there exist three prin-
cipal challenges that stay behind the lack of a consistent,
flexible, dynamic, resilient and reliable congestion prediction
system. More specifically, those challenges include 1) the
entire negligence of security aspects while controlling con-
gestion in vehicular environments, 2) the lack of congestion
prediction protocols in vehicular environments and 3) the lack

of secure, proactive and predictive VNF placement strategies
that consider dynamic users’ QoS priority requests and all
carrier-grade requirements of NFV applications.

First, according to the regarded open and closed loop con-
gestion control protocols and architectures, we argue that they
inadvertently dismissed a fundamental and critical aspect
of network and vehicular communications that is the huge
vulnerability of RSUs and the whole vehicular environment
to security threats [11], [84]. In fact, data information sent
to RSUs and data disseminated among vehicles represent an
easy target for malicious nodes [11]. Those nodes benefit
from the anonymous nature of vehicular environments to
easily create impersonation, privacy, jamming and forgery
attacks [73]. Jamming attacks are very dangerous for all pro-
posed approaches [2], [11]–[14], [73] especially in the case of
centralized approaches such as the K-means congestion con-
trol strategy [20] and NFV-based frameworks [3], [36], [37],
[42], [43]. It is considered as a severe Denial of Service (DoS)
attack and can create fake data congestion. The latter can
easily destruct the centralized K-means congestion control
algorithm localized at RSUs [20] and inadequately consume
a huge amount of computing resources, falsely allocated,
to establish VNF-based orchestration policies to cope with
fake congestion at the NFV orchestrator unit [3]. Hence, it is
evident that trust among drivers and their vulnerability to
security attacks, in harsh vehicular environments, constitute
dangerous data congestion challenges and risks. They should
not be neglected or taken for granted but rather be prioritized
when devising solutions for data congestion issues.

To the best of our knowledge, SCOOL protocol and its
extension called STEP [13], [14] is the only research work
that took into consideration the dangerous consequences of
security threats on congestion control protocols. Although
this work isolates external attacks, it fails to defend against
internal attacks such as forgery and DoS attacks. In fact, mali-
cious nodes, in highly congested environments, take benefit
of their proximity to propagate fake data or make a vehicle lie
and deny receiving or forwarding certain packets, or broad-
cast large number of messages in a short period of time.
This kind of attacks strongly and negatively impact intra-
vehicle communication even with the presence of a powerful
broadcasting protocol.Moreover, those attacks deteriorate the
congestion control process centralized at RSUs.

On the other hand, SCOOL only focused on securing the
vehicular environment but it failed to provide an efficient
and secure broadcasting protocol to control the congestion
efficiently and reliably. The absence of such a protocol leads
to undesirable delays and exacerbates users’ Quality of Expe-
rience (QoE). This gap complicates the process of building
efficient routing tables in the network and ruins gateways’
calculations of monitoring reports [13], [14]. The latter dras-
tically impacts the accuracy of congestion control decisions
taken at the RSU level and, more importantly, damages the
whole network infrastructure, especially the performance of
both SCOOL/STEP’s secure efficient path recommendation
protocol that is implemented at the RSUs.
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Although those works consider security aspects to control
congestion [13], [14], they are still in their initial stages [4].
In fact, SCOOL relies on central authorities to trace the real
identity of traveling vehicles and remove malicious drivers
from the network. However, central authorities revoke mali-
cious nodes from the group only after the occurrence of
an attack [13], [14] and this becomes harder and awful to
detect in the case of DoS and forgery attacks in congested
environments.

We argue that providing accurate traffic evaluation,
by securing traffic and drivers’ identity, constitute an ini-
tial and innovative step in the congestion control process.
However, this step leaves the work incomplete and does not
entirely solve the data congestion problem.

Other research initiatives [2], [4] tackled vehicles’ trust
management issues using the Blockchain technology to pro-
vide security and trust for message dissemination and traffic
jam estimation. The new type of Blockchain proposed in [4]
failed to meet VANET latency requirements. This is due
to the lack of a reliable dissemination protocol and most
importantly to its negligence of the huge PoW overhead and
delay that occurred while generating new blocks at both
centralized and distributed levels. On the other hand, the pro-
posed Blockchain-based crowdsourcing model [2] incen-
tivizes users to participate in the traffic prediction process
through a neural network-based smart contract deployed onto
the Blockchain network [22]. In this work, authors discarded
several important aspects of the functioning of their proposed
Blockchain model, and partially detailed the neural network
model that predicts the probability of traffic jam. This makes
the Blockchain considerations useless and worthless. In fact,
the identity of PoA validators is not specified. Accounts are
created for all vehicles willing to be part of the network with-
out a prior selection and verification of those vehicles. This
could easily insert false information into the smart contract
neural network prediction process and deteriorate trust among
all participating vehicles. The proposed crowdsourcingmodel
only predicts traffic congestion at different locations and
ignores the data congestion problem that locally occurs when
vehicles share data among each other. All vehicles share
their information with the smart contract deployed onto the
Blockchain network without considering the huge resource
consumption that this multiple sharing may occur. The smart
contract events confirmation process is unknown. The com-
plexity of the neural-network model is unknown, and the time
complexity of the Blockchain validation consensus process is
completely ignored.We believe that each validator is required
to constantly run the neural network prediction process in
order to add transactions to the Blockchain network. Reach-
ing consensus in such situation is resources and time consum-
ing, it ossifies the operating of the whole Blockchain network
which does not go alongwith VANET’s latency requirements.

Given the aforementioned challenges and gaps, we argue
that in addition to securing vehicles’ identity and ensuring
accurate traffic, it is mandatory to fill the gap of predictive
data congestion control mechanisms and devise, at the edge

of the network, a secure, immutable and dynamic data con-
gestion prediction mechanism. This mechanism should learn
in real-time about congestion and automatically and reliably
predict its occurrence, ahead of time. It should then determine
and send appropriate network parameters to vehicles, at the
most appropriate time, to smooth vehicles’ data transmission.
This would allow the network to alleviate undesirable delays
and other congestion consequences and most importantly to
ease the process of detecting and removing malicious nodes.

Second, existing congestion avoidance approaches are
mostly distributed [20], [33], [45]. We argue that avoiding
congestion in non-crowded areas represents a huge waste of
network resources and requires efficient predictive strategies
able to determine the appropriate time to avoid the happen-
ing of congestion. Constantly running avoidance strategies
distributely on vehicles drastically impacts the performance
in terms of the response latency and reliability metrics,
that are of paramount importance in congested vehicular
environments. Those metrics are essential to build and run
several kinds of applications, among which are safety appli-
cations that require latencies of milliseconds to save lives
and decrease accident rates. The few existing predictive
approaches are incomplete [25], [33], [41], [45], because
they do not provide enough details about the operating of
their algorithms. They completely ignore the importance
of underlying communication protocols based on which
they compute metrics to predict/detect the congestion, and
some of them do not tackle the data congestion problem
[2], [41], [44]. We believe that an efficient and reliable com-
munication protocol would decrease the execution frequency
of the proposed congestion detection algorithms which can
optimize the network resource consumption and satisfy users’
QoS requirements.

Third, traffic applications and services range from safety
and traffic efficiency applications to online social andmission
critical applications [15], [35]. Safety applications require
fast and reliable warning data transmission [35]. Online
gaming applications and services are also very sensitive to
delay, while location-aware video streaming services are
more sensitive to message delivery [15]. Maintaining those
QoS priorities in emergency situations like accidents and
natural disasters represents a big challenge for broadband
networks. In fact, the content of these applications is shared
among vehicles and causes severe congestion at the servers’
level. This congestion is due to the huge demand of periodic
content update at the servers since the applications’ content is
highly correlated with the dynamic behavior of vehicles and
their individual and various needs and QoS priorities on the
road [72].

Today, service provisioning process relies principally on
the deployment of middleboxes [8], that often form a service
chain composed of chained network functions to certain traf-
fic flows [8]. However, the performance of service chains is
strictly hindered and constrained by the proprietary source
code of heterogeneous hardware-based middleboxes which
require manual features upgrade in hardware-based network
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FIGURE 1. BCOOL topology.

functions to meet service chain requirements. The latter ossi-
fies the network [38] and leads to high OPEX and CAPEX
costs [8], [38]. NFV copes with this challenge through the
virtualization of middleboxes-based network functions and
deploys them on VMs [8]. This virtualization of network
functions leads to great flexibility and programmability in the
deployment of SFCs. However, this raises an important issue
that relates to the placement and chaining of VNFs given the
restricted and limited network resources and the huge and het-
erogeneous QoS priorities and requirements. Several research
works [34], [39], [40] proposed approximate solutions and
optimization heuristics to tackle this NP-hard problem [34].
However, those traditional solutions often require consider-
able time and resources to converge, which does notmatch the
urgent and QoS priority requirements of user needs in terms
of time-sensitive and critical applications. In addition, and
more importantly, those solutions do not proactively predict
the deployment of VNFs in SFCs neither pay attention to
the vulnerability of VNFs to security attacks [36], [37]. Few
research works have recently tackled the VNF resource pre-
diction problem [36], [37], [42], [43]. However, they incor-
rectly use the real-time traffic information and some of them
ignore the QoS priorities [90] which negatively impacts the
accuracy of their prediction ML mechanisms. Furthermore,
those works do not consider all carrier-grade requirements of
NFV applications and failed to automatically and proactively
provide fast accurate and secure VNF placement decisions in
the context of SFCs. In fact, a compromisedVNF can threaten
the whole traffic that passes through SFCs. Therefore, it is
of paramount importance to provide fast and accurate VNF
placement decisions using a secure and proactive strategy
that predicts the best and accurate placement of VNFs based
on past placement decisions w.r.t highly dynamic users’ QoS
priorities.

IV. SOLVING METHODOLOGY & ARCHITECTURE
To the best of our knowledge, none of the previous network-
ing architectures fully tackled the considered challenges.
As a consequence, we introduce the first novel, flexible,
dynamic, resilient, consistent and rich Blockchain COnges-
tion contrOL (BCOOL) system that relies on the heterogene-
ity of promising networking paradigms -namely ML, SDN
and NFV- to fill the gap of trustworthy Blockchain con-
gestion prediction systems. BCOOL is a Blockchain-based
distributed NFV-SDN architecture that brings the network
and ML intelligence along with computing resources to the
edge of the network using a distributed fog computing infras-
tructure. This greatly minimizes the processing and commu-
nication delay between vehicles and infrastructure resources
and speeds up the PoA validation process that is executed
by edge controllers. BCOOL creates and consolidates trust
among distrustful controllers using on/offchain smart con-
tract functionalities and allows them to reach consensus upon
the execution of those contracts without requiring a third-
party central authority. More specifically, BCOOL’s modules
aim at efficiently, dynamically and immutably managing
vehicle and message trustworthiness, at the edge of the net-
work, while providing fast, accurate and real-time prediction
of congestion, ahead of time, to facilitate the proactive and
automatic prediction of SFC deployment decisions that con-
sider both dynamic users’ QoS priority requests and all the
carrier-grade requirements of NFV applications. It dynami-
cally records vehicle, message trustworthiness, and predic-
tion transactions in a distributed ledger and enforces the
scalability and efficiency of its three main modules using
novel hybrid on/off-chain smart contracts.

The first novel module is a hybrid Blockchain Fog-based
Distributed Trust Contract Strategy (FDTCS) that efficiently,
immutably, and dynamically manages vehicle and message
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FIGURE 2. BCOOL architecture.

trustworthiness to prevent malicious nodes from acquiring
access to the infrastructure.

The second novel module is a Hybrid On/Off-Chain-
based software-defined Multiple Linear Regression Contract
Strategy (HOMLRCS) that relies on the output of the first
module and that aims at 1) continuously and efficiently
learning and monitoring the network at the SDN controller,
2) predicting current level of data congestion and 3) deter-
mining and sending network parameters to vehicles, ahead of
time, to alleviate the occurrence of congestion.

The third novel module is a K-means/Random Forest-
based On/Off-Chain Dynamic Service Function Chaining
Contract Strategy (KRF-ODSFCS) that relies on the output of
former strategies and that aims at fastly, securely and proac-
tively predicting SFC deployment decisions while consider-
ing dynamic users’ QoS priority requests and all requirements
of NFV applications.

A. ARCHITECTURE
Figure 2 portrays the BCOOL architecture that is mainly
composed of three modules: The Hybrid Blockchain
Fog-based Distributed Trust Contract Strategy (FDTCS),

the Hybrid On/Off-Chain-based software-defined Multiple
Linear Regression Contract Strategy (HOMLRCS) and the
K-means/Random Forest-based On/Off-Chain Dynamic Ser-
vice Function Chaining Contract Strategy (KRF-ODSFCS).

Hereafter, we describe the architecture’s topology, our
threat model considerations along with some assumptions.

1) TOPOLOGY
The topology of BCOOL is hybrid and is illustrated
in Figure 1. The main network scenario is divided into three
parts: the distributed vehicular network, the Blockchain-
based distributed controllers’ network and the network ser-
vice providers. In the network scenario there are five kinds
of nodes: ordinary vehicles, selected gateways, server nodes
and SDN controllers that orchestrate FoG controllers and
manage their resources. Vehicles are equipped with GPS
devices allowing them to obtain their locations, speeds and
directions.

2) ASSUMPTIONS
We assume that vehicles communicate with each other and
the infrastructure, represented by RSUs, using the 5.9 GHz
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Dedicated Short-Range Communication (DSRC) standard
and Wireless Access in Vehicular Environment (WAVE).
IEEE 1609.2 and IEEE 802.11p are two WAVE standards.
We assume that security functions that include encryption
key management, authentication, and so on are provided by
IEEE 1609.2 and IEEE 802.11p standards. We also assume
that controllers have appropriate and legal rights and are val-
idators in our architecture. They are responsible for executing
smart contracts, creating and approving contract transactions
and adding blocks to the Blockchain network.

3) THREAT MODEL
In this paper, we suppose that there exist active adversaries
that not only monitor the exchanged messages in the network
but also execute spoofing actions. They introduce fake alerts,
update data notifications and propagate lies that might induce
undesirable effects. Moreover, adversaries can also disguise
their identities to carry out malicious acts. In this work, we do
not consider collusion attack, we leave it for future work.

B. SOLUTION METHODOLOGY
1) FOG-BASED DISTRIBUTED TRUST CONTRACT
STRATEGY (FDTCS)
a: CONCEPT
FDTCS is a hybrid Blockchain trust contract strategy that
aims at immutably, reliably and dynamically recording the
message and recent vehicle trustworthiness in a distributed
edge-based Blockchain network without requiring a third-
party authority. FDTCS is the BCOOL’s building block that
promotes accurate and secure data congestion prediction.
FDTCS prevents dishonest and malicious vehicles from mis-
leading cooperative drivers and getting access to the network
infrastructure.

b: ARCHITECTURE
FDTCS architecture elements are illustrated in
Figures 1 and 2. This contract strategy is deployed at the fog
controller level and only interacts with trustful and stable
gateways to determine vehicles trustworthiness while saving
bandwidth consumption and computing resources. It con-
tinuously updates message and vehicle trustworthiness and
records history and recent vehicle trust scores in a chain
of blocks, as long as PoA consensus is reached among fog
controllers.

c: ALGORITHM
FDTCS operates as follows. Vehicles are first clustered using
an efficient clustering strategy [6], [17]. To discover their
neighborhood and the surrounding environment, vehicles in
each cluster exchange notifications about the events they
observe. Notifications are disseminated efficiently and reli-
ably using a reliable dissemination protocol [16]. Vehicles
proceed to the selection of a minimum number of gate-
ways, upon the end of the discovery process, in order to get
access to the fog controller while saving network resources.

Those gateways are selected based on two metrics: links
stability with cluster members and trust. The fog controller,
on the other hand, keeps track of all notifications received
and is in charge of computing and updating the General
Trust Score (GTS) for all vehicles based on reports received
from gateways. It then, broadcasts updated GTSs to clustered
vehicles. It is worth noting that the vehicles’ GTS is first
provided by a central authority and then updated at the fog
controller.
Gateways Selection: To proceed with gateways selection,

vehicles compute Cluster Trust Scores (CTS) (explained
below) for every vehicle fromwhich they received the event’s
notification. They also check the stability (explained below)
of their links and store this information in a routing table.
Then, they select gateway vehicles with which they have
strong stability (i.e., they drive with approximately the same
velocity) and whose CTS and GTS for the observed event are
high.

- Trust metric is expressed in terms of the veracity of notifi-
cations received from other vehicles. Each receiver computes
a CTS based on its own experience of the received notifi-
cation from each sender. For example, if a sender reports a
notification for an event, the receiver observes and verifies the
event and then judges the veracity of the sender’s notification.
If the sender’s claim is judged honest, then the sender’s trust
is increased as follows:

ctsyx(l + 1) = ctsyx(l)+ m(1− cts
y
x(l)), m ∈ [0.1] (1)

Otherwise, the sender’s trust score is decreased as follows.

ctsyx(l + 1) = ctsyx(l)− n(1− cts
y
x(l)), n ∈ [0.1] (2)

where ctsyx is the cluster trust score that vehicle x computed
for vehicle y after having received a number of notifications
from vehicle y. We use small values for m and n to prevent
malicious nodes from gaining trust so quickly. The values of
n are also small to alleviate the case of inaccurate judgment.
The computed CTS is then added to the sender’s GTS in order
to obtain the trust score of each vehicle. CTS and GTS values
are both between 0 and 1.
- Stability is used by each receiver to predict its link expi-
ration time with the sender. The stability of links between
the sender and receivers is defined by the Link Expiration
Time (LET) and the Route expiration Time (RET) metrics.
The LET defines the expiration time of the link between the
sender and its next hop receiver. Whereas, the RET defines
the expiration time of the link that expires first along a route
composed of multiple (n-1) links. According to [54], if we
consider two adjacent vehicles i and j with coordinates (xi,yi)
and (xj,yj), a transmission range R, moving with speeds vi and
vj in directions θi and θj, respectively, the estimated LET is

LET =
−(ab+ cd)+

√
(a2 + c2)R2 − (ad − bc)2

a2 + c2
(3)

where, a = vi cos θi − vj cos θj, b = xi − xj, c = vi sin θi −
vj sin θj, d = yi−yj. The stability of a link is high LETij = ∞,
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if and only if, both vehicles i and j move with approximately
the same speed vi = vj and in the same directions θi = θj.
The RET consists of the link that expires first in a route and
is computed as follows:

RETn−1 = min{LETj,j+1}, j = 1 . . . .n− 1 (4)

Fog-Based Vehicles’ Trust Contract Evaluation: Once
appropriate gateways are selected, they locally determine the
trustworthiness of vehicles from which they received notifi-
cations regarding incidents. To do so, they compute, for each
received event’s notification, the sender’s CTS and add it to
the sender’s GTS. Then, gateways send simultaneously their
trust reports to the fog controller where the trust contract
strategy is deployed (see Fig.2).

The reception of gateways’ trust reports triggers the trust
contract to compute and continuously update GTSs for each
vehicle based on the updated received reports that are related
to notifications issued by vehicles. Each sent report to the
Fog controller contains notification messages that correspond
to the report and their sender identification number. It also
contains the gateways’ trust evaluation of the received noti-
fication. The fog-based trust contract determines the GTS of
a vehicle based on both the mean score of the vehicle’s past
GTS and the current vehicle’s trust score currgts. The latter is
computed based on the recent received updates for notifica-
tions issued by a vehicle since its last GTS calculation. More
specifically, the GTS of a vehicle x can be written as follows:

gts(x) = αmeanp.gts(x)+ (1− α)currgts(x), α ∈ [0.1] (5)

we choose to give more weight to the mean score of past
GTS of a vehicle in a way that the general trust for a vehicle
changes slightly. So, the mean general score of a vehicle
weigh much more than the current score currgts. Therefore,
the value of α is close to 1.

It is worth noting that we define a threshold for noti-
fications related to an incident while computing currgts.
The trust contract uses the gateways’ attributed scores about
the recent notification and analyzes the reports provided
by the gateways. For each sender that is publishing a noti-
fication, the trust contract receives updated self-evaluations
from all gatewayswho received the notification, observed and
self-evaluated the event’s notification update and were able
to judge its truthfulness (see Algorithm 1, lines 2-4). More
specifically, the currgts score of a vehicle x is calculated as
follows:

currgts(x) = 6g
gts(g).bg∑
g gts(g)

(6)

g belongs to the set of gateways (G) who received notifi-
cations issued by the vehicle x since its previous GTS was
calculated.
gts(g) is the current general score of g and bg is a value

that is either equal to 0 or 1 and that represents the g’s
self-verifications of x notification. We compute the currgts
using gateways’ GTSs which are trustworthy vehicles in

Algorithm 1 The Trust Contract
1: task Determining trustful nodes in the network
2: upon True do

{The contract is waiting to be triggered}

3: for all v ∈ V do
4: GTS(v)← α.meanp.gts(v) + (1− α).currgts(v)

{Computes the GTS of vehicle v}

5: if threshold ≤ GTS(v) ≤ 1 then
6: Trust(v)← True
7: else
8: Trust(v)← False

the considered cluster to have a great influence on the
current score. The currgts will be added to the mean score
of past gts to obtain and update the general trust score of the
vehicle x.
Vehicles’ trust scores (see Algorithm 1 line 5-8) and the

corresponding notification messages are timestamped, vali-
dated using the PoA consensus mechanism and released to
the Blockchain network. The Blockchain manages and stores
the history of the vehicles’ GTS and keeps track of vehicles’
recent trustworthiness in an immutable and reliable manner
which serves as a ground-truth for other network entities in
the global network. Then, the GTS is broadcasted to vehicles
through RSUs and gateways.

It is worth noting that the process of gateway selection is
automatically retriggered once vehicles start losing connec-
tivity with actual gateways. The latter greatly contributes to
the vitality of the network.

d: COMPUTATIONAL COMPLEXITY
The complexity of our FDTC strategy is linear and includes
the complexity of the dissemination protocol, namely Broad-
Trip used to exchange event notifications among vehicles,
the complexity of the gateway selection mechanism and the
complexity of the PoA consensus protocol.

The complexity of BroadTrip [16] is mainly evaluated
upon the delivery of notifications at the MAC layer. In this
layer, the notifications’ retransmission is scheduled. For
each received notification, we go through all n notifica-
tions received and check if they are ready for retransmission
and if they are originated from opposite directions of the
receiver. If this is the case, notifications are paired using net-
work coding and retransmitted at the price of one notification.
We then go through other notifications that are ready for
retransmission and cannot be coded with other notifications
to retransmit them. Therefore, the computational complexity
of BroadTrip is O(n).
Upon the delivery of all vehicle notifications, vehicles

proceed to the selection of gateways. The complexity of the
gateway selection mechanism is O(v), where v is the number
of vehicles in the cluster.

Then, upon the reception of gateway reports at the fog
controller, the trust contract is triggered and updates the
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GTS for each vehicle v based on the uploaded reports. This
operation scales with O(v).

This mechanism is followed by the PoA consensus proto-
col that operates on a set of C trusted authority controllers.
Each controller is identified by a unique id and at least
C/2 + 1 controllers run consensus to add blocks in the
Blockchain network. This means that each authority con-
troller is only allowed to broadcast a block every C/2 + 1
blocks. Therefore, at any time there are at mostC − (C/2+1)
authority controllers allowed to broadcast a block [86]. Thus,
the complexity of our consensus algorithm scales with O(C)
where C is the number of authority controllers. Since the
number of vehicles is large compared to both the number of
PoA consensus controllers and the number of notifications
that vehicles could exchange, then the global computational
complexity of FDTC strategy is O(v).

2) HYBRID ON/OFF-CHAIN-BASED SOFTWARE-DEFINED
MULTIPLE LINEAR REGRESSION CONTRACT
STRATEGY (HOMLRCS)
a: CONCEPT
HOMLRC strategy aims at securely monitoring, fastly and
accurately predicting the occurrence time of congestion,
ahead of time, while relying on an efficient and reliable data
dissemination protocol. HOMLR establishes trust and pre-
vents data tampering once the execution result of the hybrid
On/Off Chain contract is confirmed by Blockchain validators
and added as a transaction to the Blockchain network.

b: ARCHITECTURE
HOMLRCS architecture is illustrated in Figures 1 and 2.
In this strategy, vehicles exchange their messages using the
Broadtrip protocol [16] and only communicate with hon-
est vehicles defined by the fog-based trust contract. It is
worth noting that vehicles’ Broadtrip routing information is
transferred and recorded as transactions on the Blockchain
in order to stop malicious vehicles from generating routing
transactions. The FoG controller continuously feeds the SDN
controller with the received routing information of trusted
vehicles.

The SDN controller monitors the network based on the
received information, fastly and accurately predicts the occur-
rence of congestion using our HOMLR contract strategy.
HOMLRCS predicts the occurrence of congestion ahead of
time using the current network QoSmetrics and based on past
decisions. We split the functions of our smart contract, at the
SDN controller, into an OnChain contract and an OffChain
contract to mainly save computing resources during the min-
ing process. In fact, smart contracts are mainly onchain and
executed by miners. The Multiple Linear Regression (MLR)
algorithm is computationally intensive [21] and would reduce
the scalability of smart contracts, because miners could not
generate any new block before the end of the execution of
the smart contract by all miners. This might open the door
to security attacks where adversary nodes skip the mining

process (due to heavy MLR calculations) and add other new
blocks to the Blockchain network.

To mitigate this issue, we outsource the execution of MLR
to some honest participants in the context of an Off-chain
contract. The Off-Chain MLR output execution will be then
submitted to the onchain contract for verification and min-
ing. The execution result of the hybrid On/Off-Chain smart
contract cannot be tampered after being confirmed by the
PoA consensus mechanism. Vehicles are then informed about
the eventual occurrence of congestion ahead of time and can
adapt their communication parameters to avoid its happening.

It is worth noting that contrary to other ML-based conges-
tion detectionmechanisms that rely on flooding protocol [13],
[14], [20], our HOMLRC strategy relies on the Broad-
Trip [16] protocol that optimizes the execution frequency
of the HOMLR contract at the SDN controller and saves
the additional MLR mining computing resources. Broadtrip
schedules message retransmission using a smart and sophisti-
cated combination of network coding [53] and location-based
wait-and-count mechanisms [49]. The use of Broadtrip as an
underlying communication protocol would allow predicting
congestion ahead of time since the network’s load and QoS
metrics would be optimized as it is proved through simula-
tions in Section VI.

In the following, we detail the operating of the MLR
algorithm used in our strategy.

c: ALGORITHM
Generally, several network performance metrics determine
the level of congestion in a vehicular network, among which
are the packet loss, the throughput, the delay, the delivery rate
and the network overhead. By monitoring change of these
parameters, we can predict the level of congestion of the net-
work and strategically alleviate the occurrence of congestion.
However, finding correlation between those parameters is not
trivial.

Our strategy is based on Multiple Linear Regression [21]
which is a predictive analysis model able to estimate the level
of congestion in real-time through an accurate continuous
value, using a linear function of the network performance
metrics. Unlike other regression algorithms, MLR investi-
gates the relationship between dependent variable (or out-
come) and several independent variables (predictors) [85].
It is a generalization of the simple linear regression model,
suitable in non-linear real time problems, and is an error
correction technique where learning is improved by training
and experiences [46], [47]. In wireless networks, regression
models can potentially be used to accurately predict network
throughput, channel parameters, etc [46]. MLR is proven to
outperform other regression algorithms for different reasons
including extrapolation problem [85]. The general form of the
MLR algorithm is:

fβ (x) = 6k
i=0βixi (7)

where x0 = 1 is the intercept or bias feature, fβ (x) is the
first order model with k variables, βi are the regression
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coefficients, β0 is a constant, xi are the predictors (or inde-
pendent variables) and k is the number of independent vari-
ables. The estimation of the regression coefficients can be
done using the least squares technique. These coefficients are
approximated such that the mean squared difference between
the observed values and the predicted values is minimized.
As a result, the prediction fits as much as possible the
observed values. The Mean Squared Error (MSE) function
is as follows:

E(β) =
1
2n

n∑
i=1

(fβ (x(i))− y(i))2 (8)

where n is the size of the training set and y(i) is the ith output
in the labeled set. Our main optimization objective is to find
the best regression coefficients that minimize the function
E(β). The gradient descent algorithm is used to compute the
optimum β. where

δE(β)
δβj

=
1
n
6n
i=1(fβ (x

(i))− y(i))x ij (9)

λ is the learning rate and βj the jth parameter in the vector of
coefficients β. The convergence of the gradient decent algo-
rithm can be accelerated when independent variables (predic-
tors) are in the same dimension. Predictors scaling technique
allows the algorithm to reach the optimum faster. The predic-
tor scaling equation is given below:

xi =
xi − ρi
si

, i = 1, . . . , k (10)

k is the number of predictors, xi the predictor i in the training
set, ρi the mean value of the predictor xi and si the standard
deviation of the predictor xi. The convergence of the gradient
descent can also be accelerated by modifying the learning
rate λ. If λ is very small, the algorithm will take time to
converge, and if it is very large, the algorithm will diverge.
As a consequence, we must try different values of λ to reach
convergence.
HOMLRCSAlgorithm and Variables Definition:Hereafter,

we detail the operating of our approach and define variables
used in our MLR function. As illustrated in the flowchart
of our algorithm (see Figure 3), the whole contract is split
into two contracts. The light functions of our contract are
executed onto the Blockchain using an on-chain contract,
while we leave our heavy MLR algorithm to an anonymous
off-chain contract. Our on-chain contract verifies the rate
at which vehicles send their own messages and is publicly
executed by all miners. If the message rate increases and
reaches a predefined threshold, then the off-chain contract is
invoked and proceeds to the anonymous computation of the
current network variables and the prediction of the congestion
level using gradient descent algorithm based on our selected
independent variables also called predictors.

The throughput, the delay, the message delivery and the
message overhead are considered key QoS metrics indica-
tors of congestion in vehicular networks [20]. They are the
predictors of our MLR function which can be written as

FIGURE 3. HOMLR flowchart.

Algorithm 2 Gradient Descent

1: proc GD(D, β0)
2: β ← β0

3: while not converged do
4: for 0 ≤ j ≤ k do
5: βj← βj − λ.

1
n6

n
i=1(fβ (x

(i))− y(i))x(i)j {λ is the

learning rate, n is the training data size and k is the

number of predictors}

6: return β

follows:

fβ (x) = β0 + β1x1 + β2x2 + β3x3 + β4x4 (11)

where x1 is the throughput, x2 the delay, x3 the message
delivery and x4 the message overhead.
β0, β1, β2, β3 and β4 are the parameters of the function.
x is the vector (x1, x2, x3, x4).
The cost function is calculated using equation (8), where:
E(β) is the MSE cost function, fβ (x(i)) the estimated

value of network congestion when the throughput, the delay,
the message delivery and the message overhead are repre-
sented by x(i).
y(i) is the network congestion value in the training set.
x(i) is the vector containing the four predictors, namely the

throughput, the delay, the message delivery and the message
overhead in the training set. n is the size of the training set.
The gradient descent algorithm (see algorithm 2) finds the
optimum β which minimizes the cost function E(β) while
varying the learning rate λ for each iteration. β0, β1, β2, β3
and β4 are the regression coefficients of the cost function to
be optimized, and k is the number of features that is equal to 4.
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Once the optimal values of β are found, the off-chain eval-
uates the regression function output and determines the value
and the current congestion level along with the appropriate
communication parameters, namely the transmission range
and rate and the contention window (CWmin) to be used by
vehicles to alleviate the occurrence of congestion.

The off-chain submits the algorithm computation result
to the on-chain contract which sends a contract creation
transaction to the Blockchain network. Upon miners receive
the transaction, they execute the contract code to verify the
correctness of the code execution which consists of check-
ing whether the predicted value of congestion matches with
the computed result. If the transaction is validated, it is
included into a new block and chained into the Blockchain
after being confirmed by the whole network using the PoA
consensus.

Then, the FoG controller communicates the deter-
mined communication parameters to vehicles to alleviate
the possible occurrence of congestion and smooth data
transmission.

d: COMPUTATIONAL COMPLEXITY
The computational complexity of our HOMLRC strategy
includes the complexity of the BroadTrip protocol.

As discussed in Section B.1, the computational complex-
ity of BroadTrip is O(n). If the message rate increases and
reaches the predefined threshold, we run HOMLRC strategy
at the SDN controller level that consists of executing the
least square algorithm to find optimal values of the regression
coefficients βi that minimize theMSE. TheMSE function can
be written in matrix terms as follows

β.XX ′ = YX ′ (12)

Which is equivalent to

(XX ′)−1β.XX ′ = (XX ′)−1.YX ′ (13)

And since

(XX ′)−1.XX ′ = 1 (14)

We have

β = YX ′.(XX ′)−1 (15)

For a least square regression with N training examples and
K features, it takes O(K 2N ) to multiply X ′ by X , O(KN )
to multiply Y by X ′ and O(K 3) to compute the inversion
of (XX ′)−1 and use that to compute the matrix product of
YX ′.(XX ′)−1 [87].

Since O(N ) asymptotically dominates O(KN ) we can
neglect the O(KN ) part. Again, since N>K , then O(K 3)
is asymptotically negligible in front of O(K 2N ). There-
fore, the computational complexity of HOMLRC strategy is
O(K 2N ). Since the number of messages that vehicles could
exchange is large compared to the number of PoA consensus
controllers and the size of the training set, then the global
computational complexity of HOMLRC strategy is O(n).

3) K-MEANS/RANDOM FOREST-BASED ON/OFF-CHAIN
DYNAMIC SERVICE FUNCTION CHAINING CONTRACT
STRATEGY (KRF-ODSFCS)
a: CONCEPT
KRF-ODSFC contract strategy aims at providing a dynamic,
secure, proactive, fast and accurate prediction of VNF place-
ments and their chaining order decisions in the context of
SFCs based on recent placements and while considering
online QoS priority classes of SFC user requests along with
carrier-grade requirements of NFV applications.
We consider SFCs based on network services of the virtual

Evolved Packet Core (vEPC) framework [89]. vEPC encom-
passes four main VNFs, namely the Mobility Management
Entity (MME), the Home Subscriber Service (HSS), the Serv-
ing Gateway (SGW) and the Packet Data Network Gateway
(PGW). It is worth noting that our strategy can be applied to
any type of SFC.
Our proposed strategy is a hybrid On/Off-Chain smart

contract that represents a hybrid and joined execution of
the Off-Chain K-means clustering contract along with the
On-Chain-based Random Forest prediction contract policy.
We choose to split the functions of our contract strategy
and outsource some of them off-chain to optimize the net-
work resources and accelerate the whole mining process.
We assume that offchain functions are executed by hon-
est participants and that network service providers are not
malicious.
The Off-Chain K-means clustering contract strategy aims

at clustering user requests into various QoS priority classes
based on the unlabeled traffic received from the SDN con-
trollers using the HOMLRCS. Compared to other clustering
algorithms, K-means is an efficient, fast and simple learning
algorithm capable of processing large data. The major draw-
back of K-means algorithm is that it does not converge rapidly
especially for big datasets [19], [76].
The Random Forest (RF) [1] is an ensemble decision tree

algorithm that constructs several distributed trees, trained on
various parts of the same training dataset, where the tar-
get (dependent) variable is known and where each tree out-
puts a response to build a classification or prediction model
that predicts future responses.
In our strategy, we execute the training process offline, and

the digest of the training data is uploaded to the OnChain
Random Forest strategy. Moreover, the testing process con-
sists of submitting the online set of the obtained K-means
clusters of current QoS priority classes, received from SDN
controllers, to the Onchain RF Dynamic SFC policy. The
latter interprets these clusters by creating real-time if-then-
else decision rules to efficiently and accurately predict the
placement and priority-based chaining order of VNFs based
on trained sample sets.
Service deployment is triggered by the publication of

onchain RF contract transaction on the Blockchain network.
In the following, we detail the operating of our strat-

egy. We first present its architecture and then describe its
algorithm.
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FIGURE 4. KRF-ODSFC block diagram.

b: ARCHITECTURE
Figure 2 illustrates the proposed Blockchain strategy in the
ETSI NFV reference architecture. Our Offchain K-means
contract can be part of the Operations Support System (OSS)
and Business Support System (BSS) functions. OSS/BSS
automatically assists the NFV-MANO element in the execu-
tion of network policies. This corresponds to the function
of our Offchain K-means contract that builds clusters of
QoS priority classes in real-time, based on SDN controllers
input, and submits them to our RF On-chain Dynamic SFC
contract policy that is part of the NFV/SDN Orchestrator.
According to the ETSI definition [8], the NFVO orchestrates
network services simultaneously with the NFVI and VNF
Manager. It determines adequate policies per identified NFV
application and links together appropriate and different types
of VNF according to the QoS priority classes. Similarly, our
RF OnChain DSFC contract policy outputs a prediction of
VNF placements and their chaining order decisions, based on
past decisions, w.r.t. various and current QoS priority classes
clustered using K-means off-chain contract.

Those decisions are in the form of accurate predictions
of optimal priority-based chaining and placement of appro-
priate VNFs that serve the various QoS priority classes of
user requests while satisfying carrier-grade requirements of

NFV applications. Those decisions constitute resource coor-
dinated Dynamic SFCs where VNF types are shared among
SFCs based on their functional dependencies and are man-
aged by both VNF manager and NFVI resources.

c: ALGORITHM
Hereinabove, the block diagram of our KRF-ODSFC strat-
egy which illustrates its operating. As shown in Figure 4,
KRF-ODSFC principally relies on a hybrid combination of
unsupervised and supervised algorithms, namely K-means
and Random Forest (RF). Hereafter, we detail their operating
in our strategy.
Offline Training Process: In this process, we first use

K-means algorithm to cluster the users’ traffic requests into
different QoS classes. The QoS class defines the level of
delay sensitivity of a traffic class. The K-means features
are the connection duration, message length per connection
and the variability of the intermessage arrival. We initially
focus on four broad QoS classes regularly found in corporate
networks that we list below from highest priority QoS class to
lowest.
• The streaming class represents real-time traffic class which
is the highest priority traffic and which requires low end-
to-end delay. It is exemplified by RTP/UDP protocol and is
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characterized by low to medium average message size and
low connection duration.

• The interactive class is a low end-to-end traffic class rep-
resented by Telnet, RDP and FTP control. Traffic requests
in this class have small message size but long connection
duration.

• The transactional class specifies the high priority traffic
class, is represented by DNS protocol and Oracle transac-
tions and is characterized by small average message size
and short connections.

• The bulk data transfer class specifies a low priority traffic
class and requires high throughput for bulk data transfer
without any real-time constraints. It includes applications
such as FTP and is characterized by large or medium aver-
age message size and low to medium connection duration.

We then use a modified version of the BACON VNF place-
ment heuristic [34] to generate the dataset labels that depicts
the best placement of VNFs and their chaining order within
SFCs. Our priority-based BACON heuristic aims at serv-
ing various requests, represented by QoS priority classes,
by selecting the best placement for the VNFs that minimizes
the end to end SFC delay and that considers the priority
of the SFCs, which depends on the users’ QoS priority
classes, while sharing same VNFs and satisfying the various
carrier-grade requirements of the NFV. The parameters of
the BACON network include server resources, VNF compu-
tational resources, communication delay tolerance between
VNFs, the communication delay between servers, the delay
between two VNFs and the priority of the service requests
at the traversed VNFs. The training process is conducted for
each network at different times of the day for a certain period
that may vary from days to a week.

The output of the offline training process, that is the near
optimal VNF placement given the considered network condi-
tions is then submitted to the On-Chain RF contract strategy.

The complexity of the training process includes the com-
plexity of both K-means algorithm and BACON heuristic.
The complexity of K-means relies on the amount of traffic
T (user requests), the number of clusters K and number of
iterations I needed for cluster convergence. It is equivalent to
O(kTI ). In the worst case scenario, when the amount of traffic
increases, the number of iterations increases systematically.
Hence, the complexity of K-means in the worst case isO(T 2).
On the other hand, the complexity of the VNF placement

heurisitc isO((s3− s2)/2), where s is the number of available
servers in the network. Overall, comparing the two algorithm
complexities, we can see that K-means operates at a lower
complexity.
OSS/BSS K-Means-Based Off-Chain Contract: The main

objective of the K-means algorithm is to build clusters of
QoS priority classes such that the similarities among QoS
class members within the same cluster are maximal, while
similarities among QoS classes from different clusters are
minimal [19], [74]–[77]. K-means clusters a set of data into
k number of clusters based on data features. The k number
of clusters are represented by their centroids. For each data,

K-means computes the Euclidean distance to all centroids
and selects the minimum distance. The data belongs to the
closest cluster where the distance between the data and the
centroid is minimal. Then, the new centroid is computed for
each cluster based on the mean coordinate of all members
of each cluster. Finally, all the data are clustered based on
the new centroid. K-means repeats these steps until the data
cluster stabilizes [74]–[77].

More specifically, K-means mainly consists of the fol-
lowing steps: 1) selecting initial centroids of the K clusters;
2) computing the distance of each data to the centroids using
squared Euclidian formula; 3) computing the new cluster
centroids and finding closest centroids then repeat steps 2 and
3 until the members of the clusters no longer move.

In our strategy, the initial centroids for k clusters are the
first k QoS classes of traffic received from the SDN controller.
Features, number of clusters and number of iterations are
three basic inputs of K-means clustering algorithm. Features
are very important for the performance of K-means and
should be specifically determined according to each prob-
lem [19], [75], [76]. The features of our K-means Off-Chain
contract strategy are the connection duration, the mean of
the message length per connection and the variability of the
intermessage arrival. The number of clusters is the second
input for K-means algorithm. The best number of clusters
can be determined by running the clustering algorithm for
different number of clusters [19], [75], [76]. The convergence
of K-means algorithm is achieved when there are no changes
in the members of the clusters. However, if it is not reached,
the algorithm should be halted after a specific number of
iterations. Algorithm 3 represents our proposed K-means
Off-Chain Contract Strategy.

Upon the arrival of users’ traffic requests, the K-means
OffChain proceeds to building clusters of QoS priority classes
for each instance and submits its computing results that con-
sist of an instance of QoS priority classes to our OnChain RF
contract strategy. This result serves as a test sample to the
OnChain Random Forest contract strategy.

The testing process based on the RF algorithm aims at
predicting the best placement and chaining order of VNFs
for each new k-means test sample based on the gener-
ated training dataset which maps features (QoS priority of
the service request, server resources, VNF computational
resources, communication delay tolerance between VNFs,
communication delay between servers, the delay between
two VNFs) with labels (VNF placements and their chaining
order).
RF-Based DSFC On-Chain Contract: The RF algorithm is

themost robust stable and effectivemethod in prediction [78].
It provides good performance compared to other regressors,
including neural nets and trees [78]. It relies on bagging or
bootstrap aggregating technique. Only a subset of sample
from the original training set S are used to create individual
trees, where S(i) is the ith bootstrap. We then use a modified
decision tree learning algorithm that selects, at each split in
the learning process, a random subset of the features f of F
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Algorithm 3 K-means Off-Chain Contract Algorithm
1: Input:
2: T {Traffic to be clustered}

3: k {number of clusters}

4: MaxIters {limit of iterations}

5: Output:
6: C = {c1, . . . .ck} {set of k clusters}

7: L = {l(t) | t = 1, . . . .n} {set of cluster labels of traffic

classes}

8: X = {x1, . . . .xn} {Set of n data points}

9: C = {c1, . . . .ck} {Set of k centroids}

10: T is represented by X
11: task Determining the inital centroids of the clusters
12: C = {x1, . . . .xk} {considering the first k classes of traffic

as the initial centroids of the clusters}

13: for 1 ≤ i ≤ n do
14: for 1 ≤ j ≤ k do
15: dist(xi, cj)←

∑n
i=1

∑k
j=1 ‖ xi − cj ‖

2

{Euclidian distance of data point xi to the centroid cj}

16: Determine(cj, xi) {determining closest centroid cj
to xi}

17: l(xi)← argmin(xi, cj)
18: taskMain loop of clustering
19: changed ← false
20: iter ← 0

21: task Recalculate and update centroids,
determining new ci in C

22: repeat
23: for 1 ≤ i ≤ k do

24: c′i←
∑n

j=1 1{cj=i}xj∑n
j=1 1{cj=i}

{calculate mean coordinate

among all member of ci}

25: Determine(c′i, xj)
26: c′i← xj
27: for 1 ≤ i ≤ n do
28: for 1 ≤ j ≤ k do
29: dist(xi, cj)←

∑k
j=1

∑n
i=1 ‖ xi − cj ‖

2

{Euclidian distance of data point xi to the

centroid cj}

30: Determine(cj, xi)
31: minDist ← argmin(xi, cj)
32: if minDist 6= l(xi) then
33: l(xi)← minDist
34: changed ← true
35: iter ++
36: until changed = true ∧ iter ≤ MaxIters
37: return (C,L)

to alleviate the correlation among single trees and to increase
the prediction accuracy [79].

In general, two thirds of each training set are sampled each
time a bootstrap sample is taken. The one third of remaining
dataset is used for testing the prediction error of random
forests [78].

Algorithm 4 RF On-Chain Contract Algorithm
1: Input:
2: S = {(x1, y1), (x2, y2) . . . .(xn, yn)} {A training set}

3: xi {input vector}

4: yi {Target response - chain of VNFs}

5: F {Features}

6: B {number of trees in forest B}

7: Output:
8: A prediction decision from all single trees
9: function RandomForest(S,F)
10: H ← ∅
11: for i ∈ (1, . . . ..B) do
12: S i← A bootstrap sample from S
13: f ← very small subset of F {at each node of tree hi,

select f features randomly}

14: Split on best feature in f
15: hi← RandomizedTreeLearn(S i,F)
16: H ← H ∪ hi
17: return ŷ= 1

H

∑H
h=1 ph(x′)

It is worth noting that the training process is similar to the
testing process.When the newK-means test sample is fed into
the root of each decision tree, it is classified into either the
right or the left child node until it reaches the leaf node. For
each decision tree the prediction for future VNF placements
can be obtained by calculating the mean prediction of all indi-
vidual prediction trees. Algorithm 4 shows the pseudocode of
our RF Onchain contract strategy.

Always all VNF placement predictions for onchain con-
tracts are sent as a contract creation transaction to the
Blockchain network. Upon receiving the transaction, miners
include the contract output into the new block and include
it in the Blockchain network after a successful verification
of the onchain contract. An onchain address is a unique ID
identifying the onchain contract and its information. The
infrastructure provider address and the Onchain address form
a hash format generated from a cryptographic key represent-
ing one address in the Blockchain. Thus, the onchain VNF
placement prediction for each SFC user request as well as
functions inside them are all securely recorded inside the
Blockchain for decisions related to future audition. In fact,
all miners can execute the onchain with the same input and
get same outputs.

d: COMPUTATIONAL COMPLEXITY
The complexity of our KRF-ODSFCC strategy includes both
K-means and Random Forest computational complexities.

In fact, the complexity of our OSS/BSS K-means-based
Off-Chain Contract is linear and is equal to O(kTI ) where
k is the number of clusters, T is the traffic classes and I is
the number of iterations needed to complete the clustering
process. We determine the number of iterations needed for
the clustering process offline during the training process
and we use the determined iteration values while online
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clustering user requests into different QoS priority classes
at the OSS/BSS level. Therefore, the main operation exe-
cuted by our OSS/BSS K-means-based Off-Chain Contract
strategy, while iterating using the predetermined number of
iterations, is computing distances between data points and
cluster centroids until the convergence is reached. This leads
to a linear complexity in function of traffic classes O(T ).
The complexity of our RF-based DSFCOn-Chain Contract

strategy consists in the complexity of three phases; The first
phase corresponds to the construction of the random forest,
the second phase deals with the random selection of features
at each node of the DT and the third phase deals with the
execution of the test.

The complexity of the first phase depends on the com-
plexity for building a complete unpruned decision tree that
takes O(n log(n)) where n is the number of records in the
training set. When building random forests with k trees and
for a subset of the features f of F sampled at each node,
the complexity of the first phase would be O(kfn log(n)). The
complexity of the second phase deals with the randomization
processes and is equal to O(kn log(n)), while the complexity
of executing a test is O(k log(n)) [93]. During runtime, our
RF-based strategy operates at a lower complexity which obvi-
ously means that its initial training phase would have already
been completed and it would only executes testing requests.
Therefore, the complexity of our KRF-ODSFCC strategy
that includes the PoA consensus process is asymptotically
dominated by the complexity of the K-means strategy that
is O(T ).

Globally, when comparing BCOOL’s modules complex-
ities, we can evidently notice that during runtime, the
HOMLRCS complexity O(n) asymptotically dominates the
FDTC and KRF-ODSFCC complexities because the amount
of messages n is far greater than both the number of vehicles
v and the amount of traffic T .

C. BCOOL FAILURE MODEL
BCOOL relies on the PoA consensus model which belongs to
the family of Byzantine Fault Tolerant (BFT) protocols [86].
This BFT consensus protocol withstands Byzantine failures
using collective validator decisions issued from working and
non-working SDN controllers to reduce the impact of non-
working SDN controllers. PoA was originally integrated
in the Ethereum version called parity and Geth each of
which offers PoA consensus protocols called Clique and
Aura. Contrary to BFT protocols that allow a maximum of
F < N/3 Byzantine nodes, where Byzantine means valida-
tors that are non-working or malicious, Aura and Clique with-
stand a maximum of F < N/2 Byzantine nodes. Generally,
consensus in distributed environments requires the fulfill-
ment of two main correctness requirements which are consis-
tency and availability. Those requirements state that all SDN
controllers should properly execute user requests in the same
order and at approximately the same time. Angelis et al. [94]
has recently proved that the Clique consensus protocol has
the lowest message latency and that it beats both Aura and

BFT message latencies. They also proved that BFT ensures
strong consistency at the price of availability and that Clique
is faster than BFT. According to their study, Clique provides
availability and guarantees an acceptable consistency thanks
to its GHOST protocol, whereas Aura guarantees availability
with no consistency. Consequently, we adopt the PoA Clique
protocol to withstand failures in predicting future responses
at both our HOMLRCS and KRF-ODSFCS modules. The
PoA Clique protocol withstands up to F < N/2 Byzantine
validators and if those validators provide incorrect prediction
information or fail to predict future responses they are voted
out once the majority vote threshold is reached.

Additionally, the functions of our HOMLRC and
KRF-ODSFC strategies are split into OnChain and Offchain
contracts to mainly save computing resources during the
mining process. The execution of the MLR prediction and
K-means algorithms is outsourced to some honest partic-
ipants in the context of Offchain contracts. If there is a
disruption among those participants about the validity of
the OffChain execution, then we execute the MLR predic-
tion and/or K-means algorithms at the OnChain level in
order to check the correctness of the Offchain participant
results and to detect and redress the misbehavior of dishonest
participants which caused the disruption at the Offchain
level.

V. BCOOL ATTACK MITIGATION STRATEGIES
In this section, we demonstrate through effective strategies
how BCOOL mitigates potential security attacks and pro-
vides resilient, secure, and trustworthy congestion prediction
decisions in a safe vehicular environment.

A. RESISTANCE TO INTEGRITY ATTACKS
All transactions are signed and join other transactions in a
block after being validated by more than half of authenticated
servers using the PoA consensus mechanism. Transactions
are hashed using a Merkle hash that is included in the
block header and is called the Merkle root [80], [81]. The
latter represents the hash of all transaction hashes that
exist in a block of the Blockchain. A malicious vehicle
would need to change the hash code of every block in the
Blockchain network which is awful and requires huge com-
puting resources. Consequently, the information in blocks
cannot be tampered. Therefore, the network congestion and
the SFC deployment decisions can be proactively, securely
and accurately predicted ahead of time during the network
lifetime.

B. RESISTANCE TO AVAILABILITY ATTACKS
The Blockchain network is based on the PoA consensus
mechanism which is qualified for its efficiency compared to
other consensus mechanisms, namely the PoW and PoSmod-
els. Using the PoA mechanism, the validation of only more
than half of authenticated servers allows the storing of the
transaction and the update of the ledger. Therefore, the system
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generates blocks with high throughput which promotes the
availability of services and data.

C. RESISTANCE TO CONSISTENCY ATTACKS
BCOOL records both history and recent message and vehicle
trustworthiness in the distributed ledger which serves as a
ground truth for other vehicles and network entities. BCOOL
relies on the PoA consensus to approve and store transactions
in blocks. Moreover, we split the functions of our smart
contracts into onchain and offchain contracts to lighten the
mining process and we also use an efficient and reliable data
dissemination protocol to reduce the execution frequency
of the off-chain congestion prediction contract strategy and
further optimize the transaction validation process. The rout-
ing information is also stored on the Blockchain. Therefore,
we state that the data stored in transactions signed with digital
signatures in the Blockchain cannot be changed and that
BCOOL supports both availability and strong consistency.
This means that the public approval of transactions through
the PoA consensus-based agreement guarantees the fact that
all vehicles have the same Blockchain at the same time and
that any request should wait until the approval of the current
update. Hence, BCOOL also prevents the double spending
attack.

D. RESISTANCE TO DDoS ATTACKS
In this attack, vehicles attempt to flood a number of RSUs
by sending a series of transactions without any gap between
periodic transmissions in order to interrupt their normal func-
tioning. BCOOL overcomes this attack thanks to the decen-
tralized maintenance of the Blockchain that guarantees the
continuity of blocks’ generation and validation even if some
Blockchain validators go offline. In fact, BCOOL consensus
mechanism exclude unavailable nodes from the list of validat-
ing nodes. Moreover, BCOOL consensus mechanism grants
the block generation and validation tasks to only nodes able
to defend against DDoS attacks.

E. RESISTANCE TO IMPERSONATION ATTACKS
BCOOL prevents impersonation attacks thanks to its strong
anonymity that ensures both pseudonymity and unlinkability.
Pseudonymity consists at providing pseudo-identity to pro-
tect user identities whereas unlinkability withstands the abil-
ity of malicious adversaries to derive user identities through
de-anonymization inference attacks.

F. RESISTANCE TO 51% ATTACKS
In this case and in the context of PoA consensus, an attacker
controls more than 51% of network nodes which is different
from the PoW consensus 51% attack. In fact, an attacker in
the PoW consensus takes control over the majority 51% of
the network computational power resources. We believe that
taking control of the computational power is much easier
than controlling nodes. In fact, an attacker can boost the
computational power to dominate the controlled network and
this increases the percentage attack. In contrast to the PoW

consensus, the PoA consensus does not rely on computational
power to generate and validate new blocks. This makes PoA
more robust than PoW.

VI. PERFORMANCE EVALUATION
Having described the details of BCOOL modules and ana-
lyzed their respective complexities, attack mitigation strate-
gies and resilience to failures, we present in this section
the performance evaluation of BCOOL. We aim at evaluat-
ing BCOOL’s whole mining process performance through
the measurement of the execution frequency of its contract
components. To do so, we profoundly analyze its underly-
ing communication protocol that fully dominates BCOOL
computational complexity performance and mainly rules the
functioning of its edge and cloud On/Offchain smart contract
modules. Accordingly, we assess the performance of the
HOMLRC-BroadTrip module that plays a key role for the
performance of BCOOL at different levels. It monitors users’
information exchange to accurately and securely predict the
occurrence of congestion, ahead of time, at the SDN con-
troller level, and it fully contributes to the provision of smooth
real-time traffic flow toBCOOL’s upper KRF-ODSFCSmod-
ule. The latter greatly impacts the transaction validation pro-
cess at this level, which contributes to significant CAPEX and
OPEX gains.

We implement BCOOL modules in the Network Simu-
lator 3.26 (NS-3.26) [50] and practically evaluate its per-
formance using real traffic data from the Italian city of
Bologna [51]. For our experiments, we use the Simulation of
Urban Mobility (SUMO) [52] as a simulation methodology
for the Bologna dataset [51]. The Bologna dataset covers
a typical day traffic between 8:00 am and 9:00 am (rush
hour), with more than 22000 vehicles; in our experiments,
we mainly focus on routes of congested regions located
along the Bologna ringway. The implementation of BCOOL
edge and cloud modules is based on the OFSwitch13 mod-
ule [91] in NS-3.26. This module provides support for the
OpenFlow protocol version 1.3 [23]. The communication
between controllers and switches is realized over standard
ns3 channels and devices. We conducted extensive simula-
tion experiments to evaluate and compare the performance
of HOMLRC based on Broadtrip to the performance of
HOMLRC based on three other communication protocols,
widely used in vehicular environments, namely Counter-
Based Scheme (CBS) [48], Power-Aware Message Propa-
gation Algorithm (PAMPA) [49] and Flooding (FLOOD).
It worths mentioning that all the functionalities have been
implemented based on IEEE 802.11 MAC, with TwoRay-
Ground propagation model for traffic propagation in the
considered highway scenario. The performance of BCOOL
HOMLRC-BroadTrip module is evaluated in terms of the
following metrics:

- Efficiency that is defined by the forward ratio, i.e., the
number of nodes that forward a broadcast message m divided
by the number of nodes in the network.
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- Reliability that is defined by the delivery ratio, i.e., the
number of nodes that deliver the message divided by the
number of nodes in the network.

- Average Throughput that is defined by the average
number of bytes received successfully by the receivers per
time unit.

- AverageDelay that is defined by the average time elapsed
between the broadcasting of a message by a source and the
delivery of this message by all vehicles in the network.

- OffChain Contract Execution Frequency that is
defined by the number of times the Offchain-basedMLR con-
tract is invoked which is function of the network performance
reliability at the OnChain contract level.

TABLE 1. Simulation parameters.

A. SIMULATION PARAMETERS
Table 1 shows the simulation parameters commonly used in
the literature [92]. The considered highway scenario is 8 km
long with three curved lanes starting from ‘‘Viale Giambat-
tista Ercolani’’ highway, passing by ‘‘Viale Angelo Masini’’,
‘‘Viale Aldini’’ and ‘‘Viale Enrico Panzacchi’’ highways, and
ending at ‘‘Viale Giovani Gozzadini’’ highway. There are
8 RSUs beside the highways and they are 1 km apart from
each other. Each RSU is connected to a switch node using
CSMA links and each switch node is connected to a controller
node using OpenFlow channels. Each pair of switch nodes
connected to a pair of RSUs, which are located 1 km apart
from each other, are controlled by a switch node that is
connected to a controller node in an OpenFlow network.
The transmission range of the vehicles is 200 m, whereas,
the velocity and density of the vehicles are set based on
different scenarios.

To simulate our module, all vehicles send packets of size
1000 bytes. We choose the maximum waiting time mwt to
be 1 second. The average distance between vehicles varies
between 8 and 10 meters. The simulation lasts for 500 s.
The first 150 s are used to initialize the simulations and to
make sure that the vehicles and the network have become
stable. The simulation of each data point is repeated 10 times
with different random seeds. We performed a statistical anal-
ysis by averaging the simulated values to a mean value
that we compare with the benchmark strategies. We also

compare the Confidence Interval (CI) and the Standard Devi-
ation (STDEV) of the obtained simulation results for each
performance metric.

B. SIMULATION RESULTS
Hereafter, we present the performance of HOMLRC-
BroadTrip in terms of the aforementioned metrics, in critical
data congestion environments, characterized by an increasing
number of messages and nodes, as well as high message rates
represented by the Inter-Packet Interval (IPI) parameter. IPI
defines the interval that separates the sending of messages by
each vehicle in the considered clusters. IPI values range from
10 µs and 100 ms to represent realistic critical data conges-
tion scenarios. The lower is the IPI, the higher is the message
rate. All the simulation results with a 95% confidence interval
are represented in Figures 5, 6 and 7.

Figure 5 contrasts the variation of the delivery ratio, for-
ward ratio, average throughput, and delivery delay while
varying the density of clustered nodes along with the number
of messages. The IPI is set to 100 ms.

Figure 6 shows the variation of the delivery ratio, forward
ratio, average throughput, and delivery delay while varying
the IPI and the transmission range of vehicles in a high node
cluster density.

Figure 7 illustrates the variation of the OffChain contract
execution frequency as function of the IPI and the number
of messages for different communication protocols in low,
medium, and high node cluster density environments.

The graphs of Figure 5 contrast the variation of four
performance metrics namely the efficiency (forward ratio),
reliability (delivery ratio), average throughput and delay as
function of the node cluster densities where the distance
between nodes varies between 8 and 10 meters and where
each vehicle sends 10 and 30 messages, one message every
100 ms, in a range of 200 m.

As it can be seen from the simulation results, the for-
ward ratio, delivery delay and throughput of our HOMLRC-
BroadTrip strategy increases as long as the node cluster
density increases. On the other hand, and in terms of reli-
ability, Fig. 5(b) shows that HOMLRC-BroadTrip reaches
100% delivery rate for low andmedium node cluster densities
and 96% to 80% for high node cluster density. Nevertheless,
the performance of other mechanisms namely, HOMLRC-
CBS, HOMLRC-PAMPA andHOMLRC-FLOOD is far from
reaching HOMLRC-BroadTrip’s potential performance for
all considered node densities and network sizes.

In low density node cluster (50-75 nodes) and when each
vehicle individually sends 30 messages, one message every
100 ms, HOMLRC-BroadTrip successfully reaches 100%
delivery rate with extremely higher throughput values, lower
delay values and 0% retransmission (see Fig. 5(a)). In terms
of forward ratio, HOMLRC-BroadTrip beats HOMLRC-
CBS, HOMLRC-PAMPA and HOMLRC-FLOOD by 100%
forward gain. In terms of delivery ratio, HOMLRC-
BroadTrip beats HOMLRC-CBS, HOMLRC-PAMPA and
HOMLRC-FLOOD by 53% to 64%, 57% to 65% and 56%
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FIGURE 5. Simulation results of BCOOL-BroadTrip, with a 95% confidence interval, compared with four strategies - (a) Forward ratio, (b) Delivery ratio
and (c) Throughput ratio, (d) Average delay. The IPI is 100 ms and R=200 m.

to 66% delivery gain respectively. In terms of throughput,
we see that HOMLRC-BroadTrip provides high throughput
gains over existing benchmark strategies. It outperforms them
by 66% to 73%, 68% to 73.44% and 69% to 75% throughput
gain respectively. In terms of delay, and as it is represented
in Fig. 5(d), HOMLRC-BroadTrip successfully provides sig-
nificant delay gains over other strategies. It surpasses them
by 26% to 23%, 24.35% and 29% to 25.5% delay gains
respectively.

In medium density node cluster (100 nodes), HOMLRC-
BroadTrip average delivery ratio slightly decreases to
reach 96.8% while maintaining a higher average through-
put and lower delay values. In terms of forward ratio,
HOMLRC-BroadTrip beats HOMLRC-CBS, HOMLRC-
PAMPA and HOMLRC-FLOOD by 90%, 89% and
90% respectively. In terms of delivery ratio, HOMLRC-
BroadTrip surpasses HOMLRC-CBS, HOMLRC-PAMPA
and HOMLRC-FLOOD by an average gain of 70%, 71%
and 72% respectively. In terms of average throughput

values, HOMLRC-BroadTrip outperforms HOMLRC-CBS,
HOMLRC-PAMPA and HOMLRC-FLOOD by 77%, 76%
and 78% throughput gain respectively. HOMLRC-BroadTrip
delivers a huge number of messages in a shorter time com-
pared to other strategies which fail to deliver a comparable
number of messages. It beats HOMLRC-CBS, HOMLRC-
PAMPA and HOMLRC-FLOOD by 21%, 17.5% and 22%
delay gains respectively.

In high density node cluster (125-150 nodes), the for-
ward ratio of HOMLRC-BroadTrip slightly increases and
beats HOMLRC-CBS, HOMLRC-PAMPA and HOMLRC-
FLOOD forward ratios by 72.86%, 74.84% and 74.7%
respectively. The average delivery ratio of HOMLRC-
BroadTrip slightly decreases and reaches 80% delivery ratio.
However, it continues to surpass the average delivery ratios
of other comparable strategies. Globally, it beats HOMLRC-
CBS, HOMLRC-PAMPA and HOMLRC-FLOOD by 72%,
70% and 73% respectively. In terms of throughput, we see
in Fig. 5(c) that HOMLRC-BroaTrip average throughput
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FIGURE 6. Simulation results of BCOOL-BroadTrip in high node cluster density (150 nodes), with a 95% confidence interval, compared with four
strategies - (a) Forward ratio, (b) Delivery ratio and (c) Throughput ratio, (d) Average delay. The number of messages is 30 messages.

FIGURE 7. Simulation results of the Offchain Contract Execution Frequency function of the Inter-Packet Interval and the number of messages.

significantly increases and surpasses other strategies by 76%,
74% and 77% respectively. In terms of delivery delay,
HOMLRC-BroadTrip values keep being lower than those of
other strategies even in high density node cluster. HOMLRC-
BroadTrip saves 13%, 14.9% and 15%delay of the other three
strategies’ average delivery delays.

On the other hand and when each vehicle sends
10 messages, one message every 100 ms, we clearly see
that HOMLRC-BroadTrip performance still dominates other
strategies’ performance. However, we see that when we
decrease the number of messages that each vehicle sends,
the performance of the benchmark strategies increases for low
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to medium densities and slightly decreases as the node cluster
density increases.

In fact, in low density node cluster (50-75 nodes),
HOMLRC-BroadTrip still beats other strategies by 100% in
terms of forward ratio and successfully surpasses HOMLRC-
CBS, HOMLRC-PAMPA and HOMLRC-FLOOD by 5% to
10%, 35% and 44% to 53% in terms of average delivery
gain, respectively. The latter systematically reflects on the
throughput and delay. In fact, HOMLRC-BroadTrip again
outperforms other strategies’ average throughput by 5% to
10%, 35% to 36% and 45% to 54%, respectively. Moreover,
it takes 98% to 99% of the delivery delay of other strategies
to deliver a huge amount of messages compared to other
strategies that fail to reach the same performance.

In medium density node cluster (100 nodes) and in terms
of forward ratio, HOMLRC-BroadTrip beats other strategies
by 88% to 93% respectively. In terms of delivery ratio and
throughput, HOMLRC-BroadTrip surpasses other strategies
by 19.6%, 38% and 58.4% delivery and throughput gains.
Moreover, HOMLRC-BroadTrip takes 99.99% to 98% of the
delivery delay of other benchmark strategies to achieve good
performance that outperforms other strategies’ performance.

In high density node cluster (125-150 nodes), we see that
HOMLRC-BroadTrip shows a forward gain of 78% to 69%,
83% to 71% and 84% to 74% over other benchmark strate-
gies’ forward ratios. Moreover, it outperforms the delivery
performance of other strategies by 45% to 51%, 44% to
50% and 60% to 58% gain respectively and it achieves those
performance in 97% to 99% of the delivery delay of other
strategies.

The reason behind BCOOL-BroadTrip’s high performance
in this critical vehicular environment, where each vehicle
continuously and periodically sends a message each 100 ms,
lies in the fact that BCOOL-BroadTrip relies on a smart
and powerful combination of Non Forward Zone (NFZ),
network coding [53] and location-basedwait and count mech-
anisms [49]. Network codingmixes twomessages from oppo-
site directions and sends them at the price of one message
which lowers the number of messages forwarded throughout
the network and strengthens the messages delivery thanks
to the location-based wait-and-count mechanism that selects
forwarders based on their distances from senders. Vehicles
located inside the NFZ decode the received messages but
do not establish a retransmission schedule to forward those
messages, they only decode, deliver and stay silent. The
combination of those mechanisms contributes to a successful
and reliable dissemination of messages for any node density
even in critical conditions as shown through simulations.

Other strategies fail to achieve a similar performance in the
two considered critical vehicular scenarios for all node cluster
densities.

In fact, the performance of HOMLRC-CBS, HOMLRC-
PAMPA and HOMLR-FLOOD increased when we decreased
the amount of messages to 10 messages per vehicle.
However, this performance dramatically decreased when we
increased the number of messages to 30 message per vehicle.

In addition, even if we decreased the number of messages,
the performance of benchmark strategies still decreases as
the network size increases. This led to a significant drop of
messages, huge delivery delays, low throughput values and
huge overhead over the network.

Globally, we notice that increasing the number of messages
along with the node cluster densities yield instability in the
considered challenging vehicular scenarios. This instability
arises consistently when the increasing number of vehicles
back off for a random amount of time and simultaneously
contend for the shared wireless channel in order to send/for-
ward their instant messages every 100 ms. The large num-
ber of users that instantly and simultaneously compete to
send their messages cause massive message collisions after
reaching the back off limit which dramatically increases
message losses and delivery delays. This network instabil-
ity proves that those benchmark protocols namely CBS,
PAMPA and FLOOD are not suitable solutions for critical
vehicular scenarios because they are easily prone to data
congestion.

This network instability is clearly apparent in the statisti-
cal analysis of the delay metric that we display in Table 2.
In terms of this statistical analysis, we see that when
we increase the number of messages, the reliability of
HOMLRC-BroadTrip maintains its optimality compared to
the reliability of other benchmark strategies that drops drasti-
cally (see Figure 5(b)). This fact greatly impacts the precision
of the CI of HOMLRC-BroaTrip which is stable and optimal
compared to the CI’s precision of other benchmark strategies.
More specifically, the low delivery ratio of other strategies
and their increasing number of dropped messages introduce
randomness and increase heterogeneity in the considered crit-
ical vehicular scenarios which systematically widen the cor-
respondent CIs and STDEVs of benchmark strategies. This
confirms the outstanding performance of our HOMLRC-
BroadTrip strategy.

To further demonstrate the potential performance of our
HOMLRC-BroadTrip strategy in critical data congestion
environments, we evaluated the impact of varying the trans-
mission range and increasing the message rate on the consid-
ered metrics. Figure 6 contrasts the variation of the forward
ratio, delivery ratio, throughput and delivery delay as function
of extremely low IPIs which correspond to highmessage rates
when the transmission range is equal to 200 m and 350 m,
respectively, in high density node cluster (150 nodes).

As it can be seen from the simulation results, the
performance of HOMLRC-BroadTrip is far above the perfor-
mance of other benchmark strategies. Contrary to HOMLRC-
BroadTrip, all state-of-the-art strategies fail to deliver the
same number of messages in the considered critical data
congestion scenarios when the IPI values range from 10 µs
to 100 ms. Although we increased the value of the trans-
mission range, the benchmark strategies’ behaviour remains
stagnant. However, the performance of HOMLRC-BroadTrip
increased significantly when the vehicles’ transmission range
increased.
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TABLE 2. Statistical analysis: delay (ms).

In fact, when we set the vehicles’ transmission range to
200 m and vary the IPI from 10 µs to 100 ms, we see
that in terms of forward ratio, HOMLRC-BroadTrip out-
performs other benchmark strategies, namely HOMLRC-
CBS, HOMLRC-PAMPA and HOMLRC-FLOOD by 49%
to 53%, 51% to 55% and by 53% to 57% respectively.
In terms of delivery ratio, HOMLRC-BroadTrip demon-
strates higher reliability compared to other strategies. It sur-
passes HOMLRC-CBS by 72% to 73%, HOMLRC-PAMPA
by 70% to 74% and HOMLRC-FLOOD by 72% to 76%.
Moreover, HOMLRC-BroadTrip achieves extremely higher
throughput values compared to other strategies. It outper-
forms HOMLRC-CBS, HOMLRC-PAMPA and HOMLRC-
FLOOD by 76% to 77%, 74.88% to 76.55% and 76%
to 78.27% respectively. Additionally, HOMLRC-BroadTrip
delivery delay represents 86% to 87% of the average delay
of HOMLRC-CBS, 85% to 90% of the average delay of
HOMLRC-PAMPA and 85% to 91% of the average delay of
HOMLRC-FLOOD.

On the other hand, when we increase vehicles’ transmis-
sion range to 350 m and keep varying the IPI from 10 µs to
100 ms, we see that HOMLRC-BroadTrip provides a forward
gain of 100% over other benchmark strategies for all values
of IPI. In terms of delivery ratio, HOMLRC-BroadTrip suc-
ceeds to deliver all messages with high average throughput
values and low delivery delays. It surpasses HOMLRC-CBS,
HOMLRC-PAMPA and HOMLRC-FLOOD by a delivery
gain of 75% to 77%, 76% to 78% and 80% respectively.
It provides a throughput gain of 81%, 82% and 83% over the
average throughput of HOMLRC-CBS, HOMLRC-PAMPA
and HOMLRC-FLOOD respectively. Moreover, HOMLRC-
BroadTrip achieves 100% delivery in a short delay compared
to other strategies. It saves 17.6% to 19%, 16.8% to 18.5%
and 18% of the delay of HOMLRC-CBS, HOMLRC-PAMPA
and HOMLRC-FLOOD respectively.

As we can see, increasing the transmission range repre-
sents an excellent alternative for HOMLRC-BroadTrip to
increase its reliability and overall performance even in critical
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data congestion environments. Nevertheless, this alternative
does not impact the performance of other strategies which
remains stagnant in regards of the change in the transmission
range. It is clear that the performance of those strategies,
in those critical network settings, is relentlessly blocked. This
persistent behaviour is obviously due to massive collisions
that occur in shared wireless channels when all vehicles
concurrently contend to instantly send out their messages
over the physical medium. This incapacity to handle critical
data congestion yields to drastic performance losses which
directly and negatively impact the CAPEX and OPEX cost
of BCOOL HOMLRCS and KRF-ODSFCS modules. More
specifically, the inability of the benchmark strategies to tackle
critical data congestion represents one of the chief obstacles
that disrupt the normal functioning of BCOOL. This obstacle
engenders huge time and resource consumption at different
levels of the architecture. For instance, the low reliability of
benchmark strategies significantly and badly increases the
MLR Offchain’s workload which ossifies the mining pro-
cess, incurs long provision delays at different architecture
layers and intensifies the system’s vulnerability to security
attacks.

Figure 7(a) represents the variation of the OffChain Con-
tract execution frequency as function of the IPI when the
number of messages that each vehicle sends out in high node
cluster density is 30 messages in 350 m transmission range.
Figures 7(b) and 7(c) illustrate the variation of the OffChain
Contract execution frequency as function of the number of
messages when the IPI is set to 100 ms in low, medium and
high node densities.

It is worth noting that the OffChain contract is invoked
when the network performance degrades at the Onchain con-
tract level which corresponds to a low delivery rate.

Accordingly, and as shown in figure 7(a), HOMLRC-
BroadTrip maintains a 100% message delivery rate even
when each vehicle sends out 30messageswith extremely high
message rates which range from 10 µs to 100 ms. We clearly
see that HOMLRC-BroadTrip performance does not invoke
the process of the OffChain contract contrary to other bench-
mark strategies’ relentless bad performance which continu-
ously trigger the Offchain congestion prediction contract to
predict and avoid the occurrence of congestion.

On the other hand, when we set the IPI to 100 ms and vary
the number of messages in all node cluster densities, we see
that increasing the number of vehicle messages impacts the
running of the Offchain execution frequency as we proved
it in the computational complexity analysis section. In fact,
in low node cluster density (50 nodes), HOMLRC-BroadTrip
maintains a high reliability rate until the number of mes-
sages, that each vehicle sends out, reaches 70 messages.
This is in contrast with medium and high node clus-
ter densities (100-150 nodes) whose delivery performance
started decreasing when the number of messages reaches
60 messages. On the other hand, HOMLRC-CBS delivery
performance started dropping, in low node cluster density
(50 nodes), when vehiclemessages reaches only 15messages.

However, other strategies exhibit very low delivery perfor-
mance for all increasing number of messages in all node
cluster densities in the considered critical network congestion
setting.

This is due to excessive collisions that occur when the large
number of nodes simultaneously contend over the shared
physical medium to transmit their instantaneous messages.
Those strategies’ low performance systematically and recur-
rently triggers the Offchain contract strategy to predict and
avoid congestion when their delivery performance and mes-
sage loss is less than 75% and greater than 25%, respec-
tively [20]. This makes BCOOL consume huge computing
resources which creates bottlenecks at different levels of
BCOOL architecture and dramatically increases CAPEX and
OPEX expenditures.

It first and automatically increases the workload of the
OffChain congestion prediction contract which runs indefi-
nitely to predict and avoid the happening of data congestion.
This workload systematically biases the prediction results’
accuracy and badly delays the reception of the prediction
results (if correctly issued) by clustered vehicles. Second,
this makes miners wait for the Offchain contract results in
order to reach consensus and add transactions to the chain
of blocks. Third, the consequences of those strategies’ poor
performance badly damage the operating of the upper KRF-
ODSFC strategy. In fact, the extremely low reliability of those
strategies precludes the full collection of user’s requests at the
Offchain K-means clustering contract strategy. This results
in inconsistent VNF prediction decisions that do not match
users’ QoS priority requests. This in addition to inducing long
provision delays at both SFC prediction process and the SFC
transactions mining process.

Unlike those strategies’ performance, BCOOL-BroadTrip
exhibits a strong resilience against data congestion which
efficiently smooths the functioning of its KRF-ODSFC strat-
egy. In fact, in transient and time-varying traffic conges-
tion, BCOOL-BroadTrip flexibly adapts to traffic changes.
The HOMLRC-BroadTrip Offchain contract is completely
switched off for extremely low values of IPI which corre-
sponds to high message rates in high cluster node densities
when the number of messages is below 50 messages. This
Offchain contract is only invoked when the number of mes-
sages reaches 60 and 70 messages in low medium and high
cluster densities, respectively. This presents a significant gain
over other strategies, alleviates BCOOL modules security
concerns, and speeds up the consensus process. Moreover,
and in addition to this gain outcomes, the high reliability of
BCOOL-BroadTrip consolidates the full collection of user
requests at the Offchain K-means contract which contributes
to reliable and effective VNF placement decisions. Using
the BroadTrip protocol, the provision delay of those reli-
able decisions (see figure 8) only increases linearly with
user requests which represents another significant CAPEX
and OPEX gains compared to traditional VNF placement
strategies [34] that rely on high complexity BACON heuristic
solutions.
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FIGURE 8. CAPEX and OPEX Gain.

C. ASSESSMENT
As predicted, Broadtrip is the most convenient protocol
for our proposed BCOOL’s cloud/edge-based On/Off-chain
smart contract modules. Contrary to other congestion control/
prediction strategies that follow the same and classic trend of
controlling/predicting congestion while relying on unknown
communication protocols [2], [20], BCOOL’s computational
complexity analysis and simulations proved that commu-
nication protocols rule the functioning of data congestion
prediction/control systems and represent a fundamental input
to efficiently and accurately control the congestion. Fully
ignoring the importance of the efficiency and reliability of
the deployed data dissemination protocols, while predicting
data congestion at different network levels, only ossifies the
network infrastructure which biases the congestion prediction
results, amplifies CAPEX andOPEX costs and creates bottle-
necks at different data congestion prediction network entities.

Extensive simulations proved that HOMLRC-BroadTrip’s
strongly handles data congestion in extremely challenging
data congestion environments which provides significant
CAPEX and OPEX gain. It saves BCOOL’s computing
resources and optimizes its whole mining process at differ-
ent infrastructure levels, which validates the effectiveness of
our system’s implementation plan. In fact, using this proto-
col, SDN controllers mainly monitor the congestion using
Onchain contracts that only verify the rate at which messages
are exchanged throughout the network and deliver smooth
traffic flow to upper layers. The frequency at which the
Offchain contract is to be triggered is strictly minimized
thanks to the high and flexible performance of BroadTrip
in challenging data congestion environments. This workload
reduction at the Offchain level improves the quality of the
accuracy of prediction results and speeds up the provision
of VNF prediction decisions. As demonstrated, the perfor-
mance of other strategies severely struggles in challenging
data congestion environments characterized by an increasing
number of nodes, messages and highmessage rates. The latter
ossifies the operating of BCOOL cloud-based On/Offchain
modules, makes them prone to data vulnerabilities which

renders the data congestion prediction results, if correctly
issued, meaningless and the process useless.

An interesting finding is that the use of BroadTrip con-
tributes to the provision of fast and accurate congestion pre-
diction decisions that reach vehicles ahead of time. Another
interesting finding is that this reduction in the execution
frequency of BCOOL-HOMLR Offchain contract, in critical
data congestion environments, fully contributes to the acqui-
sition of smooth, real-time unlabeled traffic by the K-means
Offchain contract at the OSS/BSS level which fastens and
refines the prediction of SFC deployment decisions. This also
systematically contributes to a significant resource saving in
the transaction validation process and obviously to a consid-
erable CAPEX and OPEX gain.

VII. CONCLUSION
In this paper, we focused on a very important but seldom
studied problem that is the lack of trustworthy Blockchain
congestion prediction systems.We proposed a novel, flexible,
dynamic, consistent, resilient and unique Blockchain Con-
gestion ContrOL (BCOOL) system for vehicular networks.
BCOOL relies on three novel modules. The first module
is BCOOL’s building block that aims at dynamically and
reliably managing recent message and vehicle trustworthi-
ness, at the edge of the network, and at preventing dis-
trustful vehicles from acquiring access to the infrastructure.
The second novel module immutably, and dynamically learns
in real-time about congestion while relying on an efficient
and reliable broadcasting protocol to accurately and fastly
predict the occurrence of congestion, ahead of time, and to
consequently lighten the transaction validation process. The
third novel KRF-ODSFCSmodule proactively and accurately
predicts VNF placements and their chaining order in the
context of SFCs while considering both dynamic user QoS
priority requests, received using the HOMLRC strategy, and
the requirements of NFV applications. BCOOL dynamically
and immutably records message, vehicle trustworthiness and
prediction transactions in the distributed ledger at the edge of
the network with a linear time complexity.

The Byzantine resilience and attack mitigation strategies
proved that BCOOL not only satisfied the security require-
ments of vehicular networks but also provided countermea-
sures to withstand failures, DDOS, double spending and the
majority (51%) consensus attacks.

Taking into account a real-world mobility scenario,
the mining performance of BCOOL based on the Broad-
Trip protocol was evaluated and compared to other strategies
in critical data congestion environments. The comparison
showed that our proposed system outperformed other strate-
gies in the considered challenging mobility scenarios with
significant CAPEX/OPEX gains. Overall, the failure model,
threat defense strategies and complexity analysis along with
the obtained results proved that BCOOL-BroadTrip effi-
ciently copes with simultaneous QoS priority user requests
and provides fast, accurate and consistent predictive deci-
sions, ahead of time, while alleviating failures and security
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concerns and lowering the whole infrastructure-based block
generation delay.

As future research directions, we plan to relax some of the
constraints introduced in the design of the proposed system
and investigate their impact on the performance of BCOOL
using real-world evaluations.
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